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Abstract—In recent years, touchless technologies for human-
computer interaction have been widely developed. Doppler sonar
makes it possible to extract information from hand gestures
by emitting/receiving ultrasounds, and gestures recognition is
generally achieved using features extracted from a gesture
sequence as input to Convolutional Neural Network. This work
aims at achieving an accurate and rich acoustical touchless
gesture recognition with a low number of transducers and a
low complexity real-time classifier. For this purpose, we use a
thin plate as an acoustic antenna, excited by a few piezoelectric
actuators, and capture the echoes with microphones around
the plate. High amplitude emissions on a large bandwidth
are achievable with a better-integrated system. Signal features
selected to contain meaningful information on rich 3D gestures
are computed and used as an input to a small Gated-Recurrent-
Unit neural network. We achieve the detection and classification
of 11 3D gestures with an accuracy of 93.5% with our system.

Index Terms—Ultrasound, Doppler, hand gesture recognition,
machine learning, GRU

I. INTRODUCTION

Over the past years, technologies for contactless human-
computer interaction (HCI) have been developed, particularly
for gesture recognition (GR). Commands can be recognized
by a system through the movement of a user. The solutions
developed for this task rely on various technologies, including
but not limited to the use of cameras, radar sensors, or acoustic
sensors. Vision-based solutions primarily rely on analyzing
images provided by cameras (e.g., IR, depth sensors) such
as Kinect or Leap Motion but may raise privacy concerns and
are sensitive to changes in the surrounding lighting conditions.
Radar and acoustic solutions, in addition to overcoming these
issues, can offer wavelengths that enable centimeter-level
resolution, suitable for detecting hand gestures.

The developed radar or ultrasound solutions employ diverse
emission and analysis techniques. Some rely on the study of
time of arrival (ToA) and time of flight (ToF) [1], [2]. Other
methods utilize Doppler and micro-Doppler analysis, with a
continuous wave (CW), frequency-modulated continuous wave
(FMCW) or pulse emission with low ultrasound speakers or
transducers with a narrow bandwidth for ultrasound solutions
[3], [4]. After features extraction, gesture classification is per-
formed in various ways. Many systems employed classification

using CNN [5]–[7] while some recent solutions presented the
use of Recurrent Neural Networks (RNN) and their derivatives
as Long Short-Term Memory (LSTM) or Gated-Recurrent-
Unit (GRU) given their effectiveness in handling temporal
data. These networks have been used for activity recognition
[8] or GR tasks [9], [10]. However, gestures sequences are of-
ten processed into a bi-directional network which can prevent
low latency streaming operation.

In this article, we present a novel integrated acoustic emitter
design for GR task. By utilizing a plate excited by a small
number of piezoelectric actuators, we can achieve multi-
frequency emission in a large bandwidth. Furthermore, the di-
rectivity properties of this system provide gesture localization
information. We also propose a set of features extracted not
only from isolated microphone signals but also from relative
signals. Finally, we show that our system combined with a low-
complexity unidirectional GRU network trained using a max-
pooling loss function, can both detect and classify gestures
in streaming. We perform a 93.5% accuracy in recognizing 11
3D gestures, showing the robustness of the system and making
real-time HCI applications feasible.

II. SYSTEM DESIGN

The setup consists of a thin glass plate equipped with four
piezoceramic actuators (PI Ceramic, PIC 151) glued on it
as shown in Fig. 1a. The plate is designed to be simply
supported on the edges and baffled by an acrylic structure.
The signals generated and amplified result in a voltage range
of ±30 V applied to the actuators. Additionally, three micro-
phones (PCB Piezotronics, 378C01) are positioned around the
plate to capture the reflected echoes. Signals are generated
and measured between the system and the computer using an
National Instruments NI6363 DAQ card.

Utilizing a plate as an emitter offers several advantages
compared to using traditional transducers. Firstly, integrating
the emitter into devices such as smartphones is easier, with
transducers located behind the screen. Additionally, the plate
allows for CW signal emission at different frequencies and
high amplitudes. By exploiting radiation directivity of the
plate, which depends on the excitation frequency as depicted in
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(a) Acoustic setup overview. (b) Normalized pressure level radia-
tion above the plate for a 40 kHz ex-
citation (top) and 100 kHz excitation
(bottom), at x=0.

Fig. 1. System design.

Fig. 1b, specific frequency ranges can convey distinct informa-
tion about gestures performed above specific parts of the plate.
Lower frequencies are more responsive to gestures executed
on the sides, while higher frequencies capture gestures on the
top surface. Furthermore, the use of multi-frequency emission
helps to mitigate the impact of frequency selective fading,
which can result in information loss when relying solely on a
single frequency emission. Lastly, as this system enables high-
frequency emissions, we can measure higher Doppler shifts,
enhancing the detection of slower-speed gestures. To ensure
effective GR within a 25 cm space surrounding the plate,
we have selected three distinct frequencies for CW acoustic
emission: 40 kHz, 60 kHz, and 100 kHz.

III. GESTURE RECOGNITION METHOD

A. Data Pre-processing

Before extracting features from the various microphone
signals, we initiate their preprocessing as depicted in Fig. 2.

We begin by applying bandpass filtering to each received
signal, taking into account the different carrier frequencies, and
considering the Doppler shift associated with a maximum hand
velocity of 5 m/s. Next, we calculate the baseband complex
signal for each carrier frequency and microphone. These
signals, which are downsampled to 10 kHz, will be called
single microphone channels. We also take an additional step
by multiplying the complex signal of one microphone with the
conjugate of another microphone for each existing pair. The
resulting signals, called relative microphone channels, provide
instantaneous relative Doppler shift information between the
two microphones through the phase component in the case of
a single moving reflector.

Finally, we compute the Fast Fourier Transform (FFT) on
40 ms windows. This operation is performed every 20 ms,

Fig. 2. Pre-processing pipeline with bandpass filtering, baseband conversion
and frequency spectrum computation.

Fig. 3. Spectrograms for a left-to-right swipe at 100 kHz of single microphone
channels (first line) and relative microphone channels (second line).

defining the system frame rate, to obtain a time-frequency
representation of the signals. The resulting power spectrums,
denoted as S(t, f) with t and f representing the time and
frequency variables, are depicted in Fig. 3 for a left-to-right
swipe at 100 kHz. The relative channels at the bottom provide
spatial information about the hand movement between the
receivers.

B. Features Extraction

In order to maintain a manageable input vector size for the
network without compromising GR performance, we extract
informative features related to the gestures, as presented in Ta-
ble I. While many existing systems perform this extraction on
full time-frequency representations of gesture sequences, we
have chosen to perform a frame-by-frame features extraction
to enable real-time detection and classification tasks.

The spectral flux Fl and spectral entropy H provide valu-
able information regarding the presence of movement and
reflectors above the plate, respectively. These features are
summed over different channels and carrier frequencies to
reduce overall dimensionality. The spectral centroid provides
information about the Doppler shift for each frame, and the
relative Doppler shift between two microphones for rela-
tive channels. Additionally, the spectral envelopes represent
the Doppler frequency signature of each gesture. Extracting
these envelopes has demonstrated promising results in vari-
ous gestures recognition task [11]. They offer supplementary
information to other features, particularly for finer gestures
that may exhibit multiple Doppler velocities simultaneously,
where the centroid alone may not provide sufficient relevant
information. The lower and upper envelopes are computed by
considering the minimum and maximum frequencies at which
the spectrogram energy in the Doppler bandwidth surpasses a
threshold empirically chosen. To fully leverage the multiplicity
of receivers, the last two features are computed directly on
both single microphone channels and relative channels. This
approach provides more meaningful information than simply
applying basic operations to features extracted from single
microphone channels.



TABLE I
FEATURES EXTRACTED FROM THE FREQUENCY SPECTRUMS.

Features Description

Spectral flux Fl(t) =
√∑

f |S(t, f)− S(t− 1, f)|2

Spectral entropy H(t) = −
∑

f
S(t,f)∑
f S(t,f)

log2
S(t,f)∑
f S(t,f)

log2K

Spectral centroid c(t) =

∑
f fS(t,f)∑
f S(t,f)

Spectral envelope flow(t), fup(t)

C. Neural Network Design

The network architecture, depicted in Fig. 4a, shows the
use of GRU layers which are a variant of LSTM. These types
of layers were specifically designed to address the issues of
exploding or vanishing gradients that could occur when using
traditional RNN. Both LSTM and GRU cells incorporate gat-
ing mechanisms including a forget gate to effectively process
time series data.

For our application, we have decided to employ two unidi-
rectional GRU layers. This choice was motivated by the fact
that GRU cells are less complex than LSTM cells and are
well-suited for training with small datasets. Additionally, this
network architecture only considers information from the past,
suitable for streaming application, as opposed to bidirectional
layers that incorporate information from both past and future.
Each GRU layer consists of 48 units, and the final layer is
followed by a dense layer of 12 units with a sigmoid activation
function.

The first eleven classes correspond to the gestures to be
classified, while the last class indicates the presence of a
gesture. This allows the network to detect when a gesture is
performed, regardless of its specific class.

(a) Neural Network
architecture.

(b) Training steps of the network.

Fig. 4. Neural network design for GR.

The network undergoes two training stages, following the
approach described for keyword spotting in [12] and illustrated
in Fig. 4b. In the pre-training stage, binary cross-entropy
loss is employed to train the system for frame-by-frame
classification of gestures and non-gestures. Subsequently, the
pre-trained model is further trained using max-pooling loss,
transitioning to a segment-level perspective. The system learns
to generate spikes when it becomes confident about the
presence of a gesture and its corresponding classification.
In order to make a decision, we examine frames where the
probability of gesture presence surpasses a threshold. We then
assess whether this threshold is also exceeded for each specific
gesture class.

IV. DATA COLLECTION

The 11 gestures studied are presented in Fig. 5, with four
swipes (a) right to left (Srl), (b) left to right (Slr), (c) top to
bottom (Stb), (d) bottom to top (Sbt), (e) spread fingers (SF),
(f) pinch fingers (PF), (g) finger rotation clockwise (FRc),
(h) counter-clockwise rotation (FRcc), (i) push-pull moving
toward then away from the plate (PPull), (j) pull-push moving
away then toward (PPush) and (k) a double-tap mouvement
(Dt). These 3D gestures are widely used and have been
selected due to their direct applicability to HCI tasks involving
digital systems [13]. Moreover, these gestures include both
finer and larger movements, presenting a challenge for the
system.

We collected data from a total of 19 participants (8 females
and 11 males). Participants were instructed to perform ran-
domly selected gestures, based on their corresponding names
and pictures. They were given a single instruction regarding
the desired speed of the gestures, ranging from slow to fast.
In order to increase the variability in the dataset, no specific
guidelines were provided regarding hand placement, approach
and removal phases, or the height relative to the system

The collected dataset composed of 1400 gestures was di-
vided into a training and a test set. The training set encom-
passed gestures performed by 14 participants, whereas the test
set comprised gestures performed by the remaining 5 partici-
pants. In addition, we included recordings where no gestures

Fig. 5. Illustration of the eleven 3D gestures.



were performed in the training set. The labeling of the data
was based on video recordings of the gestures. This labeling
approach ensured that the hand’s approach and removal phases
were excluded from the labeled gestures, thereby preventing
the network from learning from these specific points.

V. RESULTS AND DISCUSSION

The system accurately detects and classifies 93.5% of
gestures performed. For a 5%, gestures are not recognized
as learned gestures or are identified as multiple gestures
simultaneously (i.e. the probabilities are under the threshold
or multiple are above). These cases correspond to the out-
of-domain (OOD) category in confusion matrix in Fig. 6.
Furthermore, in 1.5% of cases, the system accurately detects
the presence of a gesture, but it may confuse it with another
gesture. This confusion typically occurs with similar gestures
such as swipes.

These results can be compared to systems presented in
Table II. As with the works presented, our system retains
good accuracy for participants who have not contributed to the
training set, despite the large in-class variability with minimal
instruction and speed variation. This proves the robustness of
our system for detecting a set of diversified 3D gestures.

While confirming the benefits of multi-frequency emission
in our system with an average recognition rate difference of
approximately 4% between using a single carrier and three
carriers in transmission, we found that using more carriers
would not enhance accuracy as the frequencies already fully
cover the spatial area above the plate.

VI. CONCLUSION

The system presented allows for efficient detection and
classification of 11 3D gestures that can be used for HCI
tasks. In addition to relying on a better-integrated transmitter
in digital systems, our system exhibits good robustness in
handling the significant variability in execution among users.
Furthermore, the detection remains highly accurate even for

Fig. 6. Confusion matrix for the GR task with an overall accuracy of 93.5%.

TABLE II
COMPARISON OF OUR WORK WITH OTHER DOPPLER GR SYSTEMS.

Our system [5] [10] [6]
Type of Ultrasound Ultrasound Ultrasound Radar
emission CW Pulse CW FMCW
Method Doppler Doppler Doppler Doppler

# Receivers # 3 # 1 # 3 # 2 to 4
Classifier GRU CNN LSTM CNN

Performance 93.5% 96.5% 95.65% 83.3% to
(# Gestures) (# 11) (# 5) (# 6) 98.8% (# 6)

Range of 5 to 25 cm N/A 0 to 1 m 25 cm
detection

gestures performed by users not included in training set. The
proposed set of features and the utilization of a low-complexity
GRU network trained with a max-pooling loss appear to be
suitable for the task of gesture detection and classification
in real-time with a CW Doppler sonar. Further studies can
be conducted to explore the improved integration of receivers
into our system, as well as the classification performance for
a broader range of diverse gestures. Some work can also be
done to improve features extraction and make calculation less
complex for a low-consumption system design.
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