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Abstract. We consider the problem of clustering partially labeled data from a minimal
number of randomly chosen pairwise comparisons between the items. We introduce an efficient
local algorithm based on a power iteration of the non-backtracking operator and study its
performance on a generative model. For the case of two clusters, we give bounds on the
classification error and show that a small error can be achieved from O(n) randomly chosen
measurements, where n is the number of items in the dataset. Our algorithm is therefore
efficient both in terms of time and space complexities. We also investigate numerically the
performance of the algorithm on synthetic and real-world data.

1. Introduction
Similarity-based clustering aims at classifying data points into homogeneous groups based on
some measure of their resemblance. The problem can be stated formally as follows: given n
items {xi}i∈[n] ∈ X n, and a symmetric similarity function s : X 2 → R, the aim is to cluster
the dataset from the knowledge of the pairwise similarities sij := s(xi, xj), for 1 ≤ i < j ≤ n.
This information is usually represented in the form of a weighted similarity graph G = (V,E)
where the nodes represent the items of the dataset and the edges are weighted by the pairwise
similarities. Popular choices for the similarity graph are the fully-connected graph, or the k-
nearest neighbors graph, for a suitable k (see e.g. [1] for a review). Both choices, however,
require the computation of a large number of pairwise similarities, typically O(n2). For large
datasets, with n in the millions or billions, or large-dimensional data, where computing each
similarity sij is costly, the complexity of this procedure is often prohibitive, both in terms of
computational and memory requirements.

It is then natural to ask whether it is really required to compute as many as O(n2) similarities
to accurately cluster the data. In the absence of additional information on the data, a reasonable
alternative is to compare each item to a small number of other items in the dataset, chosen
uniformly at random. Random subsampling methods are a well-known means of reducing the
complexity of a problem, and they have been shown to yield substantial speed-ups in clustering
[2] and low-rank approximation [3, 4]. In particular, [5] recently showed that an unsupervised
spectral method based on the principal eigenvectors of the non-backtracking operator of [6] can
cluster the data better than chance from only O(n) similarities.

In this paper, we build upon previous work by considering two variations motivated by real-
world applications. The first question we address is how to incorporate the knowledge of the

http://creativecommons.org/licenses/by/3.0
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labels of a small fraction of the items to aid clustering of the whole dataset, resulting in a
more efficient algorithm. This question, referred to as semi-supervised clustering, is of broad
practical interest [7, 8]. For instance, in a social network, we may have pre-identified individuals
of interest, and we might be looking for other individuals sharing similar characteristics. In
biological networks, the function of some genes or proteins may have been determined by costly
experiments, and we might seek other genes or proteins sharing the same function. More
generally, efficient human-powered methods such as crowdsourcing can be used to accurately
label part of the data [9, 10], and we might want to use this knowledge to cluster the rest of the
dataset at no additional cost.

The second question we address is the number of randomly chosen pairwise similarities that
are needed to achieve a given classification error. Previous work has mainly focused on two
related, but different questions. One line of research has been interested in exact recovery,
i.e. how many measurements are necessary to exactly cluster the data. Note that for exact
recovery to be possible, it is necessary to choose at least O(n log n) random measurements for
the similarity graph to be connected with high probability. On simple models, [11, 12, 13]
showed that this scaling is also sufficient for exact recovery. On the sparser end of the spectrum,
[14, 15, 16, 5] have focused on the detectability threshold, i.e. how many measurements are
needed to cluster the data better than chance. On simple models, this threshold is typically
achievable with O(n) measurements only. While this scaling is certainly attractive for large
problems, it is important for practical applications to understand how the expected classification
error decays with the number of measurements.

To answer these two questions, we introduce a highly efficient, local algorithm based on a
power iteration of the non-backtracking operator. For the case of two clusters, we show on a
generative model that the classification error decays exponentially with the number of measured
pairwise similarities, thus allowing the algorithm to cluster data to arbitrary accuracy while being
efficient both in terms of time and space complexities. We demonstrate the good performance
of this algorithm on both synthetic and real-world data, and compare it to the popular label
propagation algorithm [8].

2. Algorithm and guarantee
2.1. Algorithm for 2 clusters
Consider n items {xi}i∈[n] ∈ X n and a symmetric similarity function s : X 2 → R. The choice
of the similarity function is problem-dependent, and we will assume one has been chosen. For
concreteness, s can be thought of as a decreasing function of a distance if X is an Euclidean
space. The following analysis, however, applies to a generic function s, and our bounds will
depend explicitly on its statistical properties. We assume that the true labels (σi = ±1)i∈L of a
subset L ⊂ [n] of items is known. Our aim is to find an estimate (σi)i∈[n] of the labels of all the
items, using a small number of similarities. More precisely, let E be a random subset of all the(
n
2

)
possible pairs of items, containing each given pair (ij) ∈ [n]2 with probability α/n, for some

α > 0. We compute only the O(αn) similarities (sij := s(xi, xj))(ij)∈E of the pairs thus chosen.
From these similarities, we define a weighted similarity graph G = (V,E) where the vertices

V = [n] represent the items, and each edge (ij) ∈ E carries a weight wij := w(sij), where
w is a weighting function. Once more, we will consider a generic function w in our analysis,
and discuss the performance of our algorithm as a function of the choice of w. In particular,
we show in section 2.2 that there is an optimal choice of w when the data is generated from
the symmetric model defined in (2) below. However, in practice, the main purpose of w is
to center the similarities, i.e. we will take in our numerical simulations w(s) = s − s̄, where
s̄ is the empirical mean of the observed similarities. The necessity to center the similarities
is discussed in the following. Note that the graph G is a weighted version of an Erdős-Rényi
random graph with average degree α, which controls the sampling rate: a larger α means more
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pairwise similarities are computed, at the expense of an increase in complexity. Algorithm 1
describes our clustering procedure for the case of 2 clusters. We denote by ∂i the set of neighbors
of node i in the graph G, and by �E the set of directed edges of G.

Algorithm 1 Non-backtracking local walk (2 clusters)

Input: n ,L , (σi = ±1)i∈L , E , (wij)(ij)∈E , kmax

Output: Cluster assignments (σ̂i)i∈[n]
1: Initialize the messages v(0) = (v

(0)
i→j)(i→j)∈ �E

2: for all (i→ j) ∈ �E do

3: if i ∈ L then v
(0)
i→j ← σi

4: else v
(0)
i→j ← ±1 uniformly at random

5: Iterate for k = 1, . . . , kmax

6: for (i→ j) ∈ �E do v
(k)
i→j ←

∑
l∈∂i\j wilv

(k−1)
l→i

7: Pool the messages

8: for i ∈ [n] do v̂i ←
∑

l∈∂iwilv
(kmax)
l→i

9: Output the assignments

10: for i ∈ [n] do σ̂i ← sign(v̂i)

This algorithm can be thought of as a linearized version of a belief propagation algorithm,
that iteratively updates messages on the directed edges of the similarity graph, by assigning
to each message the weighted sum of its incoming messages. More precisely, Algorithm 1 can
be observed to approximate the leading eigenvector of the non-backtracking operator B, whose
elements are defined, for (i→ j), (k → l) ∈ �E, by

B(i→j),(k→l) := wkl 1(i = l)1(k �= j) . (1)

It is therefore close in spirit to the unsupervised spectral methods introduced by [6, 16, 5], which
rely on the computation of the principal eigenvector of B. On sparse graphs, methods based on
the non-backtracking operator are known to perform better than traditional spectral algorithms
based e.g. on the adjacency matrix, or random walk matrix of the sparse similarity graph, which
suffer from the appearance of large eigenvalues with localized eigenvectors (see e.g. [6, 17]). In
particular, we will see on the numerical experiments of Section 3 that Algorithm 1 outperforms
the label propagation algorithm, based on an iteration of the random walk matrix.

However, in contrast with the past spectral approaches based on B, our algorithm is local,
in that the estimate σ̂i for a given item i ∈ [n] depends only on the messages on the edges
that are at most kmax + 1 steps away from i in the graph G. This fact will prove essential
in our analysis. Indeed, we will show that in our semi-supervised setting, a finite number of
iterations (independent of n) is enough to ensure a low classification error. On the other hand,
in the unsupervised setting, we expect local algorithms not to be able to find large clusters
in a graph, a limitation that has already been highlighted on the related problems of finding
large independent sets on graphs [18] and community detection [19]. On the practical side, the
local nature of Algorithm 1 leads to a drastic improvement in running time. Indeed, in order
to compute the leading eigenvector of B, a number of iterations k scaling with the number n of
items is required [20]. Here, on the contrary, the number of iterations stays independent of the
size n of the dataset.
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2.2. Model and guarantee
To evaluate the performance of Algorithm 1, we consider the following semi-supervised variant
of the labeled stochastic block model [15]. This model extends the popular stochastic block
model by allowing generic edge-weights and is used as a benchmark for a theoretical analysis of
graph clustering [12]. We assign n items to 2 predefined clusters of the same average size n/2,
by drawing for each item i ∈ [n] a cluster label σi ∈ {±1} with uniform probability 1/2. We
choose uniformly at random ηn items to form a subset L ⊂ [n] of items whose label is revealed,
so that η is the fraction of labeled data. Next, we choose which pairs of items will be compared
by generating an Erdős-Rényi random graph G = (V = [n], E) ∈ G(n, α/n), for some constant
α > 0, independent of n. We will assume that the similarity sij between two items i and j is a
random variable depending only on the labels of the items i and j. More precisely, we consider
the symmetric model

P(sij = s|σi , σj) =
{
pin(s) if σi = σj ,

pout(s) if σi �= σj ,
(2)

where pin (resp. pout) is the distribution of the similarities between items within the same
cluster (resp. different clusters). The properties of the weighting function w will determine
the performance of our algorithm through the two following quantities. Define 2Δ(w) :=
E [wij |σj = σj ]−E [wij |σj �= σj ], the difference in expectation between the weights inside a cluster
and between different clusters. Define also Σ(w)2 := E

[
w2

]
, the second moment of the weights.

Our first result (proved in section 4) is concerned with what value of α is required to improve
the initial labeling with Algorithm 1.

Theorem 1. Assume a similarity graph G with n items and a labeled set L of size ηn to be

generated from the symmetric model (2) with 2 clusters. Define τ(α,w) := αΔ(w)2

Σ(w)2
. If Δ(w) > 0,

then there exists a constant C > 0 such that the estimates σ̂i from k iterations of Algorithm 1
achieve

1

n

n∑
i=1

P(σi �= σ̂i) ≤ 1− rk+1 + C
αk+1 log n√

n
, (3)

where r0 = η2 and for 0 ≤ l ≤ k,

rl+1 =
τ(α,w)rl

1 + τ(α,w)rl
. (4)

To understand the content of this bound, we consider the limit of a large number of items
n→∞, so that the last term of (3) vanishes. Note first that if τ(α,w) > 1, then starting from
any positive initial condition, rk converges to (τ(α,w) − 1)/τ(α,w) > 0 in the limit where the
number of iterations k → ∞. A random guess on the unlabeled points yields an asymptotic
error of limn→∞ 1

n

∑n
i=1 P(σi �= σ̂i) = (1−η)/2 , so that a sufficient condition for Algorithm 1 to

improve the initial partial labeling, after a certain number of iterations k(τ(α,w), η) independent
of n, is

τ(α,w) >
2

1− η
. (5)

Note that there is an optimal choice of weighting function w which maximizes τ(α,w), namely
(consistently with [14]):

w∗(s) : =
pin(s)− pout(s)

pin(s) + pout(s)

⇐⇒ τ(α,w∗) =
α

2

∫
ds

(pin(s)− pout(s))
2

pin(s) + pout(s)
,

(6)
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which, however, requires knowing the parameters of the model. It is then informative to compare
our bound (5) to known optimal asymptotic bounds in the unsupervised setting. In the limit
of vanishing supervision η → 0, the bound (5) guarantees improving the initial labeling if
τ(α,w∗) > 2 + O(η). In the unsupervised setting (η = 0), it has been shown by [14] that if
τ(α,w∗) < 1, no algorithm, either local or global, can cluster the graph better than random
guessing. If τ(α,w∗) > 1, on the other hand, then a global spectral method based on the principal
eigenvectors of the non-backtracking operator improves over random guessing [5]. This suggests
that, in the limit of vanishing supervision η → 0, the bound (5) is close to optimal, but off by a
factor of 2.

Note, however, that Theorem 1 applies to a generic weighting function w. In particular,
while the optimal choice (6) is not practical, theorem 1 guarantees that Algorithm 1 retains
the ability to improve the initial labeling from a small number of measurements, as long as
Δ(w) > 0. With the choice w(s) = s − s̄ advocated for in section 2.1, we have 2Δ(w) =
E [sij |σj = σj ] − E [sij |σj �= σj ]. Therefore Algorithm 1 improves over random guessing for α
large enough if the similarity between items in the same cluster is larger in expectation than the
similarity between items in different clusters, which is a reasonable requirement. Note that the
hypotheses of Theorem 1 do not require the weighting function w to be centered. However, it
is easy to check that if E[w] �= 0, defining a new weighting function by w′(s) := w(s)−E[w], we
have τ(α,w′) > τ(α,w), so that the bound (3) is improved.

While Theorem 1 guarantees improving the initial clustering from a small sampling rate α, it
provides a rather loose bound on the expected error when α becomes larger. The next theorem
addresses this regime. A proof is given in Section 5.

Theorem 2. Assume a similarity graph G with n items and a labeled set L of size ηn to be
generated from the symmetric model (2) with 2 clusters. Assume further that the weighting

function w is bounded: ∀s ∈ R, |w(s)| ≤ 1. Define τ(α,w) := αΔ(w)2

Σ(w)2
. If αΔ(w) > 1 and

αΣ(w)2 > 1, then there exists a constant C > 0 such that the estimates σ̂i from k iterations of
Algorithm 1 achieve

1

n

n∑
i=1

P(σi �= σ̂i) ≤ exp

[
−qk+1

4
min

(
1,

Σ(w)2

Δ(w)

)]

+ C
αk+1 log n√

n
,

(7)

where q0 = 2η2 and for 0 ≤ l ≤ k,

ql+1 =
τ(α,w)ql

1 + 3/2max(1, ql)
. (8)

Note that by linearity of Algorithm 1, the condition ∀s, |w(s)| ≤ 1 can be relaxed to w
bounded. It is once more instructive to consider the limit of large number of items n → ∞.
Starting from any initial condition, if τ(α,w) < 5/2, then qk −→

k→∞
0 so that the bound (7) is

uninformative. On the other hand, if τ(α,w) > 5/2, then starting from any positive initial
condition, qk −→

k→∞
2
3(τ(α,w)− 1) > 0. This bound therefore shows that on a model with a given

distribution of similarities (2) and a given weighting function w, an error smaller than ε can
be achieved from αn = O(n log 1/ε) measurements, in the limit ε → 0, with a finite number of
iterations k(τ(α,w), η, ε) independent of n. We note that this result is the analog, for a weighted
graph, of the recent results of [21] who show that in the stochastic block model, a local algorithm
similar to Algorithm 1 achieves an error decaying exponentially as a function of a relevant signal
to noise ratio.
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2.3. More than 2 clusters
Algorithm 2 gives a natural extension of our algorithm to q > 2 clusters. In this case, we
expect the non-backtracking operator B defined in equation (1) to have q − 1 large eigenvalues,
with eigenvectors correlated with the types σi of the items (see [5]). We use a deflation-
based power iteration method [22] to approximate these eigenvectors, starting from informative
initial conditions incorporating the knowledge drawn from the partially labeled data. Numerical
simulations illustrating the performance of this algorithm are presented in Section 3. Note that
each deflated matrix Bc for c ≥ 2 is a rank-(c− 1) perturbation of a sparse matrix, so that the
power iteration can be done efficiently using sparse linear algebra routines. In particular, both
Algorithms 1 and 2 have a time and space complexities linear in the number of items n.

Algorithm 2 Non-backtracking local walk (q clusters)

Input: n , q ,L , (σi ∈ [q])i∈L , E, (wij)(ij)∈E , kmax

Output: Cluster assignments (σ̂i)i∈[n]
1: B1 ← B where B is the matrix of equation (1)
2: for c = 1, · · · , q − 1 do

3: Initialize the messages v(0) = (v
(0)
i→j)(ij)∈E

4: for all (i→ j) ∈ �E do

5: if i ∈ L and σi = c then v
(0)
i→j ← 1

6: else if i ∈ L and σi �= c then v
(0)
i→j ← −1

7: else v
(0)
i→j ← ±1 uniformly at random

8: Iterate for k = 1, . . . , kmax

9: v(k) ← Bcv
(k−1)

10: Pool the messages in a vector v̂c ∈ R
n with

11: entries (v̂i,c)i∈[n]
12: for i ∈ [n] do v̂i,c ←

∑
l∈∂iwilv

(kmax)
l→i

13: Deflate Bc

14: Bc+1 ← Bc − Bcv
(kmax)v(kmax)ᵀBc

v(kmax)ᵀBcv(kmax)

15: Concatenate V̂ ← [v̂1| · · · |v̂q−1] ∈ R
n×(q−1)

16: Output the assignments (σ̂i)i∈[n] ← kmeans(V̂ )

3. Numerical simulations
In addition to the theoretical guarantees presented in the previous section, we ran numerical
simulations on two toy datasets consisting of 2 and 4 Gaussian blobs (Figure 1), and two subsets
of the MNIST dataset [23] consisting respectively of the digits in {0, 1} and {0, 1, 2} (Figure 2).
We also considered the 20 Newsgroups text dataset [24], consisting of text documents organized
in 20 topics, of which we selected 2 for our experiments of Figure 3. All three examples differ
considerably from the model we have studied analytically. In particular, the random similarities
are not identically distributed conditioned on the true labels of the items, but depend on latent
variables, such as the distance to the center of the Gaussian, in the case of Figure 1. Additionally,
in the case of the MNIST dataset of Figure 2, the clusters have different sizes (e.g. 6903 for the 0’s
and 7877 for the 1’s). Nevertheless, we find that our algorithm performs well, and outperforms
the popular label propagation algorithm [8] in a wide range of values of the sampling rate α.



7

1234567890 ‘’“”

International Meeting on “High-Dimensional Data-Driven Science” (HD3-2017) IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1036 (2018) 012015  doi :10.1088/1742-6596/1036/1/012015

Figure 1. Performance of algorithms 1 and 2 compared to label propagation on a toy dataset
in two dimensions. The left panel shows the data, composed of n = 104 points, with their true
labels. The right panel shows the clustering performance on random subsamples of the complete
similarity graph. Each point is averaged over 100 realizations. The accuracy is defined as the
fraction of correctly labeled points. We set the maximum number of iterations of our algorithms
to kmax = 30. α is the average degree of the Erdős-Rényi random graph G, and η is the fraction
of labeled data. For all methods, we used the same similarity function sij = exp−d2ij/σ2 where

dij is the Euclidean distance between points i and j and σ2 is a scaling factor which we set
to the empirical mean of the observed squared distances d2ij . For algorithms 1 and 2, we used
the weighting function w(s) := s − s̄ (i.e. we simply center the similarities, see text). Label
propagation is run on the random similarity graph G. We note that Algorithm 1 has the same
preformance as label propagation with ten times fewer labeled data and with only a number of
similarities of the order of three times the number of points.

In all cases, we find that the accuracy achieved by Algorithms 1 and 2 is an increasing
function of α, rapidly reaching a plateau at a limiting accuracy. This limiting accuracy is also
reached by label propagation and depends on the choice of the similarity function. But the
most important observation is the rate of convergence of the accuracy to this limiting value, as
a function of α. Indeed, on these simple datasets, it is enough to compute, for each item, their
similarity with a few randomly chosen other items to reach an accuracy within a few percents
of the limiting accuracy allowed by the quality of the similarity function. As a consequence,
similarity-based clustering can be significantly sped up. For example, we note that the semi-
supervised clustering of the 0’s and 1’s of the MNIST dataset (representing n = 14780 points
in dimension 784), from 1% labeled data, and to an accuracy greater than 96% requires α ≈ 6
(see figure 2), and runs on a laptop in 2 seconds, including the computation of the randomly
chosen similarities. Additionally, in contrast with our algorithms, we find that in the strongly
undersampled regime (small α), the performance of label propagation depends strongly on the
fraction η of available labeled data. We find in particular that Algorithms 1 and 2 outperform
label propagation even starting from ten times fewer labeled data.
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Figure 2. Performance of algorithms 1 and 2 compared to label propagation on a subset of the
MNIST dataset. The left panel corresponds the set of 0’s and 1’s (n = 14780 samples) while the
right panel corresponds the 0’s,1’s and 2’s (n = 21770). All the parameters are the same as in
the caption of figure 1, except that we used the Cosine distance in place of the Euclidean one.

4. Proof of Theorem 1
Consider the model introduced in Section 2 for the case of two clusters. We will bound the
probability of error on a randomly chosen node, and (3) will follow. Denote by I an integer

drawn uniformly at random from [n], and by σ̂
(k)
I the decision variable after k iterations of

Algorithm 1. We are interested in the probability of error at node I conditioned on the true

label of node I. As noted previously, the algorithm is local in the sense that σ̂
(k)
I depends only

on the messages in the neighborhood of I consisting of all the nodes and edges of G that are at
most k + 1 steps aways from I. Thanks to the total variation distance bound between the law
of this neighborhood and a weighted Galton-Watson branching process (see prop. 31 in [20]),
we can use a standard coupling argument to reduce the analysis of our algorithm on G to its

analysis on a branching process and this will introdce the error term C αk+1 logn√
n

in (3). Using

the recursive structure of the branching process allows us to determine the law of v̂I = v̂
(k)
σ

conditioned on the type of node I being σ = ±1,

v̂(k)σ
D
=

d1∑
i=1

wi,inv
(k)
i,σ +

d2∑
i=1

wi,outv
(k)
i,−σ , (9)

where
D
= denotes equality in distribution. The random variables v

(k)
i,σ for σ = ±1 have the same

distribution as the message v
(k)
i→j after k iterations of the algorithm, for a randomly chosen edge

(i→ j), conditioned on the type of node i being σ. They are i.i.d. copies of a random variable
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Figure 3. Performance of Algorithm 1 compared to label propagation on a subset of the 20
Newsgroups dataset with q = 2 clusters. We consider the topics “misc.forsale” (975 documents)
and “ soc.religion.christian” (997 documents), which are relatively easy to distinguish, to
illustrate the efficiency of our subsampling approach. The resulting dataset consists of n = 1972
text documents, to which we applied a standard “tf-idf” transformation (after stemming, and
using word unigrams) to obtain a vector representation of the documents. We used the same
similarity (based on the Cosine distance) and weighting functions as in figure 2.

v
(k)
σ whose distribution is defined recursively, for l ≥ 0 and σ = ±1, through

v(l+1)
σ

D
=

d1∑
i=1

wi,inv
(l)
i,σ +

d2∑
i=1

wi,outv
(l)
i,−σ . (10)

In equations (9), d1 and d2 are two independent random variables with a Poisson distribution
of mean α/2, and wi,in (resp. wi,out) are i.i.d copies of win (resp. wout) whose distribution is the

same as the weights wij , conditioned on σi = σj (resp. σi �= σj). Note in particular that v̂
(k)
σ

has the same distribution as v
(k+1)
σ .

Theorem 1 will follow by analyzing the evolution of the first and second moments of the

distribution of v
(k+1)
+1 and v

(k+1)
−1 . Equations (10) can be used to derive recursive formulas for

the first and second moments. In particular, the expected values verify the following linear
system ⎛

⎜⎜⎝
E

[
v
(l+1)
+1

]

E

[
v
(l+1)
−1

]
⎞
⎟⎟⎠ =

α

2

⎛
⎜⎜⎝

E[win] E[wout]

E[wout] E[win]

⎞
⎟⎟⎠

⎛
⎜⎜⎝
E

[
v
(l)
+1

]

E

[
v
(l)
−1

]
⎞
⎟⎟⎠ . (11)

The eigenvalues of this matrix are E [win]+E [wout] with eigenvector (1, 1)ᵀ, and E [win]−E [wout]

with eigenvector (1,−1)ᵀ. With the assumption of our model, we have E

[
v
(0)
+1

]
= η = −E

[
v
(0)
−1

]
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which is proportional to the second eigenvector. Recalling the definition of Δ(w) from section
2, we therefore have, for any l ≥ 0,

E

[
v
(l+1)
+1

]
= αΔ(w)E

[
v
(l)
+1

]
, (12)

and E

[
v
(l)
−1

]
= −E

[
v
(l)
+1

]
. With the additional observation that E

[(
v
(0)
+1

)2
]
= E

[(
v
(0)
−1

)2
]
= 1,

a simple induction shows that for any l ≥ 0, E

[(
v
(l)
+1

)2
]
= E

[(
v
(l)
−1

)2
]
. Recalling the definition

of Σ(w)2 from Section 2, we have the recursion

E

[(
v
(l+1)
+1

)2
]
=α2Δ(w)2 E

[
v
(l)
+1

]2

+αΣ(w)2 E

[(
v
(l)
+1

)2
]
.

(13)

Noting that since Δ(w) > 0, we have σ E

[
v
(k+1)
σ

]
> 0 for σ = ±1, the proof of Theorem 1 is

concluded by invoking Cantelli’s inequality

P

(
σ v(k+1)

σ ≤ 0
)
≤ 1− rk+1 , (14)

with, for l ≥ 0,

rl := E

[
v(l)σ

]2
E

[(
v(l)σ

)2
]−1

, (15)

where rl is independent of σ, and is shown to verify the recursion (4) by combining (12) and
(13).

5. Proof of theorem 2
The proof is adapted from a technique developed by [9]. We show that the random variables

v
(l)
σ are sub-exponential by induction on l. A random variable X is said to be sub-exponential
if there exist constants K > 0, a, b such that for |λ| < K

E[eλX ] ≤ exp
(
λa+ λ2b

)
. (16)

Define f
(l)
σ (λ) := E

[
eλv

(l)
σ

]
for l ≥ 0 and σ = ±1. We introduce two sequences (al)l≥0, (bl)l≥0

defined recursively by a0 = η, b0 = 1/2 and for l ≥ 0

al+1 = αΔ(w)al ,

bl+1 = αΣ(w)2
(
bl +

3

2
max(a2l , bl)

)
.

(17)

Note that since we assume that αΔ(w) > 1 and αΣ(w)2 > 1, both sequences are positive and
increasing. In the following, we show that

f (k+1)
σ (λ) ≤ exp

(
σλak+1 + λ2bk+1

)
, (18)

for |λ| ≤ (
2max

(
ak,
√
bk
))−1

. Theorem 2 will follow from the Chernoff bound applied at

λ∗σ = −σ ak+1

2bk+1
min

(
1,

Σ(w)2

Δ(w)

)
. (19)
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The fact that |λ∗σ| ≤
(
2max

(
ak,
√
bk
))−1

follows from (17). Noting that σλ∗σ < 0 for σ = ±1,
the Chernoff bound allows to show

P

(
σv(k+1)

σ ≤ 0
)
≤ f (k+1)

σ (λ∗σ)

≤ exp

[
−qk+1

4
min

(
1,

Σ(w)2

Δ(w)

)]
,

(20)

where qk+1 := a2k+1/bk+1 is shown using (17) to verify the recursion (8). We are left to show

that f
(k+1)
σ (λ) verifies (18). First, with the choice of initialization in Algorithm 1, we have for

any λ ∈ R

f
(0)
+1 (λ) = f

(0)
−1 (−λ) =

1 + η

2
exp (λ) +

1− η

2
exp (−λ)

≤ exp
(
ηλ+ λ2/2

)
,

(21)

where we have used the inequality for x ∈ [0, 1], λ ∈ R

xeλ + (1− x)e−λ ≤ exp
(
(2x− 1)λ+ λ2/2

)
. (22)

Therefore we have shown f
(0)
σ (λ) ≤ exp (σλa0 + λ2b0). Next, let us assume that for some l ≥ 0

and for any λ such that |λ| ≤ (
2max

(
al−1,

√
bl−1

))−1
,

f (l)
σ (λ) ≤ exp (σλal + λ2bl) , (23)

with the convention a−1 = b−1 = 0 so that the previous statement is true for any λ ∈ R if l = 0.
The density evolution equations (10) imply the following recursion on the moment-generating
functions, for any λ ∈ R, σ = ±1,

f (l+1)
σ (λ) = exp

(
− α+

α

2

(
Ewin

[
f (l)
σ (λwin)

]

+ Ewout

[
f
(l)
−σ(λwout)

] ))
.

(24)

We claim that for |λ| ≤ (
2max

(
al,
√
bl
))−1

and for σ = ±1,
1

2

(
Ewin

[
f (l)
σ (λwin)

]
+ Ewout

[
f
(l)
−σ(λwout)

])

≤ 1 + σalΔ(w)λ+ λ2Σ(w)2
(
bl +

3

2
max(a2l , bl)

) (25)

Injecting equation (25) in the recursion (24) yields f
(l+1)
σ (λ) ≤ exp (σλ al+1 + λ2 bl+1), for any λ

such that |λ| ≤ (
2max

(
al,
√
bl
))−1

, with al+1, bl+1 defined by (17). The proof is then concluded
by induction on 0 ≤ l ≤ k. To show (25), we start from the following inequality: for |a| ≤ 3/4,

exp(a) ≤ 1 + a+ (2/3)a2 . (26)

With |w| ≤ 1 as per the assumption of theorem 2, for |λ| ≤ (
2max

(
al,
√
bl
))−1

, we have for
σ = ±1 that |σλwal + λ2w2bl| ≤ 3/4. Additionally, since al and bl are non-decreasing in l, we

also have that |λ| ≤ (
2max

(
al−1,

√
bl−1

))−1
, so that by our induction hypothesis, for σ = ±1

f (l)
σ (λw) ≤ exp

(
σλwal + λ2w2bl

)
≤ 1 + σλwal + λ2w2bl +

2

3

(
σλwal + λ2w2bl

)2
≤ 1 + σλwal + λ2w2bl +

2

3
λ2w2 (al + |λ|bl)2

≤ 1 + σλwal + λ2w2bl +
3

2
λ2w2max(a2l , bl) ,



12

1234567890 ‘’“”

International Meeting on “High-Dimensional Data-Driven Science” (HD3-2017) IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1036 (2018) 012015  doi :10.1088/1742-6596/1036/1/012015

where we have used in the last inequality that (al + |λ|bl)2 ≤ 9/4max(a2l , bl). The claim (25)
follows by taking expectation, and the proof is completed.
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