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Abstract—We report on the development of CMOS
compatible SiN/AIN/GaN MIS-HEMT process on 200mm Si
substrates for Ka-band power amplification. The combination
of soft gate process, gate design with reduced electric field, in-
situ SiN gate dielectric, low temperature ohmic contacts, low
substrate RF losses and GaN:C back-barrier leads to Ft/Fmax
of 81/173GHz for 2x50um devices with Lg=150nm. At 28
GHz, the device shows performance similar to other GaN/Si
technologies at Vpp=10V and competitive performance with
GaN/SiC at Vpp=20V with PAE=41% and Psat= 6.6 W/mm.

I. INTRODUCTION

GaN-based high electron mobility transistors (HEMT) have
shown superior performance for RF applications such as mobile
communication, radar, satcom, earth observation or industrial
heating, due to its high breakdown field and high carrier density
(Ns) and electron saturation velocity of its two dimensional
electron gas (2DEQG) [1]. One of the emerging mm-wave II1I-N
HEMT technology is using ultra-thin, ultra-wide bandgap
(UWBG) barrier layer, like AIN or ScAIN, to simultaneously
support operation at high current, high voltage and high
frequency [2],[6],[12],[14]. In order to avoid excessive gate
leakage associated with ultra-thin barriers, MIS-HEMT
structures have been proposed. Recently, very high
performance MIS-HEMT has been demonstrated, using CMOS
compatible, deeply scaled ex-situ high-k gate insulator [4],[9].
An alternative approach is to use in-situ MOCVD SiN for the
gate dielectric. In-situ SiN/AIN/GaN HEMT stack has the
combined advantage of high Ns with a very thin barrier layer
due to the high spontaneous and piezoelectric polarization of
AIN on GaN with high quality in-situ SiN layer. This structure
shows very good performance up to mm-wave. However the
majority of published studies are based on GaN/SiC and/or non
CMOS compatible processing [5],[6],[7],[14].

In this work, we demonstrate state of the art 200mm CMOS
compatible SiN/AIN/GaN/Si MIS-HEMT with in-situ SiN gate
dielectric, a low damage gate process and low temperature
ohmic contacts to preserve heterojunction performance. These
devices are designed with a reference gate length, Lg=150nm
for power amplification in Ka-band.

II. DEVICE TECHNOLOGY

A. Epitaxy structure and Device Processing

The starting material is 200mm MOCVD GaN epitaxy on
Si-HR <I111> substrate with resistivity > 3 kQ.cm from
ENKRIS Semiconductor. It consists of nucleation and stress
management layers, a carbon doped GaN buffer (GaN:C), a
150nm un-intentionally doped GaN channel (appropriate for Lg
=150nm), a Snm AIN barrier and an in-situ 2.5 nm SiN capping
layer (Fig.1). The fully CMOS compatible, gold free process
flow is summarized in Fig.2. Ar was implanted for device
isolation. Fully recessed Ti/Al ohmic contacts annealed at
590°C show a contact resistance, Rc of 0.4 Q.mm, extracted
from TLM measurement and a metal sheet resistance of
0.24Q/sq. This low temperature contact avoids 2DEG
properties degradation observed for high temperature contact
(>800°C) even with in-situ SiN capping layer [5]. At metal 1
level, the 2DEG sheet resistance, Rg is 220 Q/sq (Van der
Pauw) close to the post-epitaxy value of 200 Q/sq (Eddy
current). The gate finger has a static resistance of 0.106 Q per
micron gate width for Lc=150nm. The sheet resistance of the
1.4 um Ti/TiN/AICu/Ti/TiN metal 1 interconnects is 21 m/sq.
RF losses 0f 0.13 +/- 0.01 dB/mm are extracted at 30 GHz from
Coplanar Waveguide (CPW) S-parameters measurements at the
end of the HEMT process (Fig.3). The final coplanar two finger
device is shown in Fig.4. The uniformity of typical device
parameters is shown in Fig.5.

Device TEM cross-section is shown in Fig.6. The dielectric
stack used for the gate foot fabrication allows very soft gate
processing with minimal impact on the in-situ SiN gate
dielectric and heterojunction underneath. Before ALCVD TiN
deposition, the bottom oxide layer is wet etched, which
additionally produces rounded gate edge to minimize electric
field peak at the gate corner. TCAD simulations, carried out
with Sentaurus Device from Synopsys (Fig.7 and Fig.8), show
the reduction of the electric field peak at gate edge due to the
wet etch undercut (UC). Low field channel transport properties
were measured with a gated Hall bar test structure (Fig.9). High
channel sheet carrier density, Ns, and mobility, p, associated
with a low channel sheet resistance, Rs are obtained, indicating
low gate process impact on the 2DEG.

B. Transistor measurement

The reference HEMT has a 150nm gate length, 2x50pum
width, Lgs = 0.4um and Lgp = 1.1pm. Its DC characteristics are



shown in Fig.10. At Vds=10V, a typical HEMT shows a high
maximum drain current, Ipmax of 1.8 A/mm at Vgs=+2V, a
pinch-off voltage, Vp of -2.6V (at Vds=10V, 1d=100pA/mm),
and a Gmmax of 610 mS/mm. In off-state at Vgs=-7.1V Id
reached 3mA/mm at Vps=24V. This is not a gate-drain
breakdown but a D-S leakage (Fig.10.d). The onset of this
leakage is strongly dependent on L (Fig.11) due to a short
channel effect (SCE) [8] as shown in Fig.12 and Fig.13. The
on-state resistance, Ron = 1.3 Ohm.mm for Lg=150nm (Fig.11)
is mainly driven by Rc (~60%) which leaves room for
improvement of this device. We have reached Rc = 0.22 +/-
0.014 Q.mm with recess optimization, which would translate to
Rox = 0.94 Q.mm. [3] even reached 0.15 Q.mm with a similar
contact technology. The device behaves well at 150°C with
Ipmax =1.5A/mm (Fig.14). The temperature impact on the knee
voltage is low due to the weak temperature sensitivity of Rc.

Pulsed I-V measurements were carried out on the reference
HEMT with a PIV AM3200 from AMCAD Engineering. A
pulse width and delay of 1ps and a duty cycle of 0.1% were
used. The reference bias was Vgsq/Vdsq=0/0V and the stress
biases were Vgsorr/OV, /10V, /15V, /20V with Vgsorr=-5.1 V.
A typical pulsed-IV characteristic is shown in Fig.15. Gate lag
(GL) and Drain lag (DL) are extracted from maximum power
load-lines (including both knee voltage and drain current
degradations due to trapping). Four dies have been measured
across the wafer radius. As can be observed in Table 1, the GL
is very small and the mean DL is below 10% at
Vdsq/Vgsq=20V/-5.1V  (with similar values on 4 dies),
indicating a low trapping effect and good uniformity.

S-parameters were measured using 100um pitch GSG probes
and a N5227B PNA from Keysight on a semi-automatic prober
from MPI. The frequency range is I00MHz to 67GHz with an
IF of 100Hz. Voltage biasing was done through the intern bias-
T from the VNA and DC polarizations was applied using B1500
SMU. After de-embedding, the reference HEMT yields Ft =
81GHz and Fmax=173GHz (Fig.16). L and W¢ impact on Ft
and Fumax are described in Fig.17 and Fig.18, respectively. Ft does
not increase for Lc=80nm because the channel is too thick
(150nm) and because of a parasitic capacitance due to
unwanted proximity between the gate head and the source
contact after oxide polishing (see Fig.6). Fmax higher than 200
GHz is reached for 2x35um devices thanks to smaller Re.

The continuous wave (CW) large signal performance of the
transistors was measured using an on-wafer vectorial multi-
harmonic Load-Pull (LP) setup. The fundamental frequency
was set to 28GHz, with second harmonic tuning on both source
and load. The source and load impedances were set for
optimum PAE (Power Added Efficiency). The tuners were
connected directly to the probes for improved impedance
coverage (DELTA tuners from Focus Microwaves). The
reference HEMT was measured at different bias points, with
PAEwmax= 47.2% and Psar=2.93W/mm at Vpp=10V (Flglg)
At Vpp=20V, the device shows a PAEmax=41.1% and
Psar=0.58W/mm. A HEMT with Wg=2x35um is more
efficient with PAEmax=51.5% at Vpp=8V and 49.5% at
Vpp=10V (Fig.20). Table 2 summarizes LP results on various

device geometries. An estimation of the reference device
temperature rise is obtained from measured DC power as a
function of Py and a transistor thermal resistance, Ry of 116
K/W, extracted by IR thermal imaging on the same transistor
fabricated on a very similar epi stack [10]. The high thermal
conductivity of the GaN:C back-barrier (compared to AlGaN
based), close to the heat source, allows the device temperature
to remain below 135°C (30°C chuck) at a Poyr of 6.6 W/mm
(Fig.21).

High power density has been reached in this work thanks to
1) high drain current available with AIN barrier 2) low substrate
RF losses 3) low lag 4) delayed forward gate injection due to
SiN gate insulator allowing large gate swing (Fig.10a) and 5)
reasonable Ry with GaN:C back-barrier. A benchmark of PAE
versus Pour max is shown in Fig.22. This power performance is
close to the best GaN/Si results at Vps=10V and shows that this
technology can approach GaN/SiC power density performance
around 30 GHz for PA applications at higher voltages. Fig.23
compares the Fyax versus Ft of the reference device in this
work with other GaN transistors with same or lower Lg. This
work shows state of the art Ft and Fmax for Le=150nm when
compared to GaN/SiC devices with comparable Lg and
competitive performance when compared to other GaN/Si
devices with lower Lg.

III. CONCLUSION

CMOS compatible 200mm SiN/AIN/GaN MIS-HEMT on
Silicon demonstration is reported. Low damage gate process
and low temperature ohmic contacts integrated on high Ns/u
AIN based heterostructure with in-situ SiN gate dielectric leads
to high current (1.8A/mm), high Gm max (>600mS/mm) and
high CW Pour (>6.5W/mm) at 28 GHz. This work brings
GaN/Si HEMT closer to GaN/SiC performance at 28 GHz in
terms of power density and highlights SiN/AIN/GaN on silicon
MIS-HEMT as a potential candidate for high power Ka-band
PAs. It is foreseen from those results that device performance
can be further improved by reduction of Rc and optimization
of channel thickness to reduce SCE for short gate lengths.
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Fig.2: Process flow of the coplanar 2 finger devices.
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Fig.6: Left: STEM cross-section of the transistor showing asymmetry of Lss and Lgp
and large gate head section to achieve low Rg. Very good S/D edge definition is
obtained with contact recessing, low temperature annealing and planarization. Right:
STEM cross-section of a 80nm gate foot showing the conformal gate metal (TiN), the
2.5nm in-situ SiN gate dielectric, the Snm AIN barrier and the rounded gate edge.
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coplanar 2x50um transistor at
Metal 1 level with GSG in/out.
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Fig.7: TCAD simulations of the Electric field magnitude (|E|) at
the drain side of the gate foot on the reference transistor at Vgs/Vps
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