
HAL Id: cea-04539632
https://cea.hal.science/cea-04539632v1

Submitted on 9 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A TLA+ formal proof of a cross-chain swap
Zeinab Nehai, Francois Bobot, Sara Tucci, Carole Delporte-Gallet, Hugues

Fauconnier

To cite this version:
Zeinab Nehai, Francois Bobot, Sara Tucci, Carole Delporte-Gallet, Hugues Fauconnier. A TLA+ for-
mal proof of a cross-chain swap. ICDCN ’22: 23rd International Conference on Distributed Computing
and Networking, ACM, Jan 2022, Delhi, India. pp.148-159, �10.1145/3491003.3491006�. �cea-04539632�

https://cea.hal.science/cea-04539632v1
https://hal.archives-ouvertes.fr

A TLA+ Formal Proof of a Cross-Chain Swap
Zeinab Nehaï

Université Paris-Saclay, CEA, List
IRIF, Université de Paris

France

Sara Tucci-Piergiovanni
François Bobot

Université Paris-Saclay, CEA, List
F-91120, Palaiseau, France

Carole Delporte-Gallet
Hugues Fauconnier
IRIF, Université de Paris

Paris, France

ABSTRACT
Blockchains are a specific type of distributed ledgers structured
by a sequence of blocks of transactional data linked to each other.
The use of blockchains has increased over time, and several new
blockchains are emerging. It is therefore essential to enhance the
interoperability between blockchain implementations to allow
decentralised trading. One way to achieve this is with Cross-Chain
Swap protocols. These protocols are critical systems as they han-
dle assets. Therefore, it must be sure that the system does not
contain errors. In this paper, we describe the Cross-Chain Swap
problem in a formal way. We define safety and weak-liveness prop-
erties that guarantee no correct participant will be worse-off in
an asynchronous system. Moreover, we provide a formally proved
Byzantine fault-tolerant protocol that satisfies the swap specifica-
tion. The protocol abstracts the blockchain enough to suit various
distributed ledger frameworks aiming to perform a cross-chain
swap. In addition, we illustrate how the described abstract proto-
col can be instantiated in a blockchain system.

CCS CONCEPTS
• Computing methodologies → Distributed algorithms.

KEYWORDS
cross-chain, blockchain, byzantine fault-tolerance, formal meth-
ods, tla+

1 INTRODUCTION
Context and Motivation. A blockchain system is a distributed

ledger that maintains a continuously growing history of unalter-
able ordered information organised in a chain of blocks. The most
well-known and used blockchains are Bitcoin [15] and Ethereum [2].
A feature that has given rise to a strong interest in blockchains is
writing smart contracts [22]. These are sequential and executable
programs that run in blockchains. They permit trusted transac-
tions and agreements to be carried out among parties without the
need for a central authority while keeping transactions traceable,
transparent, and irreversible. Blockchain technology has become
popular both in industry and academia. Thus, its use has seen a
considerable increase in recent years. As a result, it is necessary
to develop infrastructures that allow transactions across multi-
ple blockchains. One such solution is what we call “Cross-Chain
Swap”. This solution was first mentioned in a discussion on a bit-
coin forum [18], and since then, many people are interested in it.
The motivation of this concept is to enable exchanging assets or
tokens between different blockchains.

At a high level, the idea is to have a set of participants settling
transactions. For example, Alice transfers a red coin to Bob, which

transfers a green coin to Charlie, which transfers to Alice a digi-
tised asset. A distributed protocol is responsible for realising the
swap among participants. However, in the current literature, swap
specifications do not agree on what a swap protocol should guar-
antee in terms of safety and liveness properties [7]. In addition,
underlying timing and failure assumptions vary from a protocol to
another [5][8][25][19]. In synchronous solutions [5][8], based on
timed actions, a swap can result in a correct but slow participant
being worse-off at the end of the swap. Zakhary et al. [25] are the
first to propose a protocol in which correct “asynchronous” partici-
pants are never worse-off at the end of the swap. By getting close to
the well-known two-phase commit algorithm [1], participants in
[25]’s lock their asset at the beginning of the protocol. Afterwards,
a coordinator either authorises or aborts all the transfers.

Furthermore, to date, very little work has focused on the formal
verification of such protocols hindering their safe application[16],
more so with Byzantine. The difficulty of proving a distributed
protocol in the presence of Byzantine failures is well-known due
to its ability to deviate arbitrarily from the protocol, which poses
difficulty in representing its behaviour in formal tools [10].

Our Approach. This paper introduces a formal specification
for Cross-Chain Swap in the presence of Byzantine participants,
and an abstract swap protocol formally proved, inspired by [25].
The formal specification separates the swap problem from the
protocol in a clear way. We define two properties, safety and weak
liveness, which guarantee, in an asynchronous system, that no
correct participant will end up worse-off. Moreover, we provide a
semi-automatic proof of the protocol using TLA+ [12], a language
for formal specification of distributed systems. It has a model-
checker, TLC [24] and a proof system, TLAPS[14].

The protocol is blockchain agnostic and relies on an abstraction
that we call “proof-of-action” to cope with Byzantine participants.
The idea is that a participant sends proof to the coordinator of hav-
ing prepared the transaction correctly. The coordinator, assumed
correct, will verify the sending proof and authorise the swap only
if all the participants sent valid proofs.

Notably, both the proof-of-action and the assumption of the
coordinator’s correctness can be achieved in a blockchain context.
The proof-of-action can be implemented by extracting correct in-
formation from participants’ blockchain [25][6]. In [25], the proof-
of-action represents a part of the blockchain’s history that must
contain the needed information to authorise the swap while in [6]
the proof-of-action is a sequence of blocks and their certificates.

The assumption of the coordinator’s correctness relies on the
coordinator’s logic implemented as a smart contract. This im-
plementation allows considering the coordinator as correct and
public. A smart contract is a passive entity and, its execution is trig-
gered only by participants’ calls; thus, it will always be responsive.

https://orcid.org/1234-5678-9012

Nehaï, et al.

Moreover, the persistence of the coordinator execution trace al-
lows a slow process to get the coordinator decision asynchronously
and then either retrieve the asset (if the swap is authorised) or re-
covers the asset initially possessed (if the swap is aborted).

Crucially, the proof-of-action and the coordinator correctness
restrict the Byzantine behaviour in a predetermined and detectable
way. Consequently, it helps us carry out the formal proof of the
protocol so that the presence of Byzantine failures does not add sig-
nificant complexity. In our setting, a Byzantine participant could
try to double-spend an asset already locked in its blockchain. How-
ever, in the case where the asset is no longer in the hands of the
Byzantine, the proof-of-action will not be valid, leading to the
abortion of the transfer.

Let us finally note that, in our specification, a non-correct pro-
cess might not retrieve (or recover) the asset, contrary to [25].
The atomicity property in [25] states that all or none of the asset
transfers occur. We think that the specification introduced in our
paper, which weakens the [25]’s atomicity, is more adapted to the
blockchain context. Namely, each participant is responsible for
retrieving/recovering its asset or not at the end of the swap.

Contributions. In summary, our contributions are the following:

• We propose a specification for cross-chain swaps resilient
to Byzantine failures.

• We describe a formal protocol that satisfies the specifica-
tion, relying on abstracted blockchain properties.

• A semi-automatic proof of the protocol is provided using
the TLA+ tool.

The paper is organised as follows: Section II describes the prob-
lem specification and the swap definition. Section III introduces
the protocol specification that includes the protocol of each par-
ticipant and the description of the swap. Section IV provides the
formal proof, using TLA+, of the protocol. Section V illustrates how
the abstract protocol can be instantiated in blockchain systems.
A state-of-the-art review of existing work concerning cross-chain
protocols is described in section VI. Finally, section VII gives some
conclusions.

2 PROBLEM SPECIFICATION
In this section, we define the system model of the swap problem
and its specification.

The system is composed of a set of participantsΠ and a set of
assetsΛ.Π can be defined asΠ=Πs ∪Πr withΠs the set of partic-
ipants transferring assets andΠr the set of participants receiving
transferred assets. An asset has a unique owner. A participant can
transfer its asset’s ownership to another participant. Throughout
the study, we will use the term “asset” for reasons of clarity but,
it should be remembered that it is the “asset’s ownership” that is
transferred and not the physical asset.

Each participant is asynchronous and has a local clock. In ad-
dition, messages are digitally signed; hence we assume that they
cannot be forged.

Failure Model. A participant who never fails in the system is
said to be correct. A Byzantine is a participant for whom nothing
can be assumed about its behaviour. There is no bound on the
number of Byzantine participants in the system.

AB C
e1 e3

e2

e4

Figure 1: A swap graph S withΠ= {A,B ,C } and m = 4 assets

Swap Model. A swap S is modelled as a directed graph S = (Π,E)
(see figure 1). S is composed of a set of verticesΠ (the set of partic-
ipants) and a set of labelled edges E = {e1,e2, ...,em }. The label of
an edge is the transferred asset. Each edge of S transfers a unique
asset from the set of assets involved in the swap;Λ. Consequently,
|E | = m represents the total number of transferred assets in S. An
edge is defined as ei = (s, ai ,r) ∈Πs×Λ×Πr with i ∈ {1, ..,m}, s ≠ r ,
and ai the label of the edge that designates the transferred asset.
Moreover,Πs is the set of participants transferring assets, “sources”
(vertices with outgoing edges) and Πr the set of participants re-
ceiving transferred assets, “recipients” (vertices with incoming
edges).

Note that a participant who is both a source and a recipient
will have two different identifiers. For example, participant A in
figure 1 is a source for edges {e1,e3}; hence it will be identified by
sA , and is a recipient, identified by r A , for the edge {e2}.

We assume that, before the swap, the graph is constructed by
all the participants. Thereby, they agree with its configuration (the
graph construction is out of the scope).

Problem Definition. A swap is a distributed transactions model.
The objective is to transfer assets between participants across mul-
tiple distributed ledgers. An asset can be a cryptocurrency or a
certificate of a physical asset’s ownership. The goal is to transfer an
asset’s ownership in a trustless environment without an interme-
diary. In a swap, the number of participants and assets is finite. A
participant is a user of any distributed ledger involved in the swap;
it can be either a source or a recipient. The source transfers its
asset’s ownership, and the recipient receives a transferred asset’s
ownership. There is no limit to one source transferring multiple as-
sets and one recipient receiving multiple transferred assets within
the same swap. The swap problem is specified as follows 1:

• Consistency. For any correct source s1 of an edge e1 =
(s1, a1,r1) and correct recipient r2 of an edge e2 = (s2, a2,r2),
at the end of their execution, either s1 owns a1 or r2 owns
a2.

• Ownership. No asset owned initially by a correct source is
ownerless forever or, no asset intended to be transferred
to a correct recipient is ownerless forever.

• Retrieving. If all participants are correct then all recipients
will retrieve their intended assets.

Consistency is a safety property, and Ownership is a weak-liveness
property. Both properties are satisfied in an asynchronous system.
Retrieving property is a strong liveness property that assumes a
synchronous system.

1The specification is inspired by [6]

A TLA+ Formal Proof of a Cross-Chain Swap

The Consistency property states that no correct participant will
end up worse-off. Since the system tolerates Byzantine partici-
pants, the classical atomicity definition “all-or-nothing” cannot
be applied, as said in [6]. It is impossible to force a participant to
initiate the transfer of its asset. For this reason, safety is intended
to be weaker than classical atomicity while ensuring that a cor-
rect participant will always terminate safely. Moreover, reasoning
about a pair of correct source and recipient is sufficient to extrapo-
late the property to all pairs of correct participants, thus avoiding
the limitation of checking the execution completion of all correct
participants. The Ownership property assumes that a Byzantine
participant may choose never to retrieve its asset(s) (if the swap
is authorised) or to recover its asset(s) (if the swap is aborted)
and to leave the asset(s) ownerless (the asset is neither owned
by the source nor by the recipient). However, a slow participant
that is not Byzantine will never end up worse-off. Thereby, it will
always either retrieve or recover its asset(s) asynchronously. Note
that “recovers” is only used for sources. It can be translated by the
restitution of the asset to the source. “Retrieves” is only used for
recipients meaning receiving the transferred asset by the recipient.

The Retrieving property state the desired outcome in the case
where all participants are correct. It avoids any empty protocols.

3 PROTOCOL SPECIFICATION
This section describes the protocol specification that details the
asset representation, which defines asset states and transitions
and the participants’ state machines. Moreover, this section details
the different phases of the abstract protocol Psw ap .

3.1 Representation of Asset’s States in a Swap
In this part, we introduce a representation of the asset’s possible
states in the swap. For the proof of the protocol, detailed later, we
project the possible states of an asset ai as follows (figure 2(a)): the
state “OWS” characterises Owned by its Source; the original owner
si . This state is reached in the initial state and when the source
recovers its asset. “LOCKED” state is when si locks the asset and
designates the new owner of the asset (the receiver of the asset; ri).
“OWR” state, Owned by its Recipient, is when the asset has been
retrieved by ri (the new owner). We introduce an additional state
“OTHER” that characterises all other states beyond the swap. For
example, if an asset is transferred to a participant who is not part
of the swap or transferred without following the swap transfer’s
rules, the asset is set to “OTHER”. We will detail this point later.

The participants have operations that, once computed, cause
a change in an asset’s state. The protocol interacts with assets
through trigger events ϵi , where i ∈N. Triggers make it possible to
modify assets’ states.

An asset can change its state legally (following an action made
by a correct participant; plain edges →) or illegally (following an
action made by a Byzantine participant, dashed edgesd).

Sources have two operations: (1) Lock Asset(ai ,ri); locking the
asset ai and assigning ri as the new owner of the asset (ϵa

1 in
figure 2(a)); (2) Recover i ng Asset (ai); recovering the asset ai and
becoming again the owner of ai (ϵa

2). Recipients have one oper-
ation: Retr i evi ng Asset (ai); retrieving the asset ai and becoming

the new owner of ai (ϵa
3). The implementation of these operations

depends on the protocol, which is detailed later.
Moreover, Byzantine actions can also change the assets’ state.

Their actions are the following (see figure2(a)):

• ϵa
4 : a Byzantine source transfers directly the asset to the

recipient without passing through the swap.
• ϵa

5 : a Byzantine recipient, once retrieves the asset, can
send back the asset to the original owner, the source.

• ϵa
{6,7}: a Byzantine source or recipient can transfer its asset

to an unknown participant or lock it somewhere or all
other action not recognised by the swap.

We can see from figure 2(a) that there is no illegal action from
“LOCKED”. This state reflects the locking asset respecting the swap’s
rules. Therefore, once an asset is legally locked, it can only be
legally unlocked. In addition, we did not represent the outgoing
edges from “OTHER”, as this would not add any decisive informa-
tion since the outgoing edges would cancel the incoming edges.

3.2 The Abstract Protocol Psw ap

The abstract protocol, Psw ap , is modelled as a set of state ma-
chines that influences the assets introduced in Section 3.1.

The following working hypotheses ensure the clarity of the pro-
tocol: (1) The protocol is tolerant to unbounded Byzantine faults.
(2) A proof-of-action (detailed later) allows countering Byzantine
behaviour. (3) A proof-of-action, once provided, cannot be forged,
even if a Byzantine provides the proof.

3.2.1 Overview of the Protocol Psw ap . Psw ap is inspired by the
defined protocol in [25]. The idea is similar to the well-known
two-phase commit protocol [1]. The two-phase commit ensures
that a transaction either commits or aborts for all the participants.
It avoids the undesirable outcome that the transaction commits
for one participant and aborts for another. For a two-phase com-
mit to taking place, a special entity, known as a coordinator, is
required. The coordinator decides whether to commit or abort the
transaction and communicates the result to all the participants.

In Psw ap , the coordinator is defined as a public entity. We
assume a communication channel between the coordinator and
each participant, but no direct communication among the par-
ticipants during the swap. The behaviour of each participant is
independent of the others. On the other hand, the coordinator
behaviour influences the participants and vice versa. We make no
assumptions about the behaviour of participants.

We assume that correct participants can evaluate the correct-
ness of the coordinator. Hence, if the coordinator is Byzantine,
the swap could not start in the first place. From this premise, if
the swap starts we assume the coordinator correct to simplify the
description of the protocol. To prove their wish to commit the
swap, all sources must lock their asset(s). The coordinator has the
role of authorising the swap, or not, by giving a decision to the
swap participants. Only the coordinator decision can unlock the
assets. The possible decisions are the redeem decision to authorise
the swap or the refund decision to prohibit the swap.

3.2.2 Proof-of-actions. The coordinator and participants can ver-
ify executed actions in the swap. To do this, we use a proof-of-
action: the coordinator and participants can produce proof that a

Nehaï, et al.

given action or state change was correctly done. This proof can-
not be falsified. If any proof is false, then it will be automatically
detected. If a given action was correctly done, the proof is valid.

3.2.3 Participants State Machines. Psw ap interacts with partici-
pants of the swap where their behaviour is represented by a state
machine structured with the following elements (Γ, Q, Σ, δ, q0, F).

• Operations Γ: a finite set of operations.
• Vertices Q: a finite set of states, represented by circles and

labelled with unique designator symbols.
• Label symbols Σ: a finite collection of label symbols.
• Edges δ: represents transitions from one state to another

as caused by the label. A transition is written as δ : Q×Σ→
Q.

• Start state q0: represents the initial state, where q0 ∈ Q
drawn by a “start” incoming arrow.

• Accepting state F : represents the final state drawn by a
double circle, where F ∈Q. When this state is reached, the
state machine can no longer evolve into another state.

Moreover, a label in Σ contains three parts (each one is op-

tional), written q
ϵ;σ;ω−−−−→ q ′: an action name ϵ, a guard σ expressing

a condition and an operation name ω. A guard is a condition to
satisfy the transition and, an action is an event that allows taking
the transition. An action can be a sending message action, de-
noted by the discrete action ϵ!, or a receiving message, denoted
by the discrete action ϵ?. An operation ω is the computation of
an operation in Γ. The symbol ⊘ is used where the label does not
contain one of the three parts. We now introduce the protocol of
each participant (see figure 2):

The Publisher. The publisher is a participant in Π. Its role is
to publish the swap graph to the coordinator with the action ϵ

p
1 :

publ i sh! from figure 2(e). A publisher can also be a source and/or
a recipient.

The Coordinator. The role of the coordinator is to coordinate
the evolution of the swap. The coordinator gives the authorisation
to carry out the swap or not by changing states. Its state machine is
public; therefore, any state updates are known to all. As explained
previously, the coordinator evolves according to the participants’
behaviour (see figure 2(b)): in ϵc

1, the coordinator waits for the pub-
lisher to execute the publ i sh! action. Then, in ϵc

2, the coordinator
waits for the participants to ask for a refund decision (askRF !) or
a redeem decision (askRM !). If σc

3 is true (resp. σc
4), it satisfies

σs
4,σr

5 (resp. σs
6,σr

3) from figures 2(c)2(d). We define a predicate
ValidTransfer() as the conjunction of the swap’s conditions to al-
low the transfer of assets. When ValidTransfer() is satisfied, assets
are ready to be retrieved by their recipient. We define a second
predicate, AbortTransfer(), which characterises the conditions for
an asset to be recovered by its source. When AbortTransfer() is
satisfied, assets are ready to be recovered by their source. The
predicates are mutually exclusive. Both ValidTransfer() and Abort-
Transfer() predicates are conditioned by a valid proof-of-action.
Their implementation depends on the protocol detailed later.

Sources. The role of the source is to transfer assets to recipients.
Let us introduce the following four predicates: CorrectSwap() is
the conjunction of; (1) the source’s local graph and the published

one are identical and (2) the source’s local timeout is not reached.
NoDecision() is true when after some time the coordinator has
not made a decision. AuthoRM() is true when the coordinator
state machine is in “OKRM” state. AuthoRF() is true when the
coordinator is in “OKRF” state. Note that, all the predicates, except
NoDecision(), need a proof-of-action to be satisfied. This part is
detailed in the protocol description.

The protocol of a source is in figure 2(c): to start, the source
checks the status of the graph. If the graph does not satisfy Cor-
rectSwap(), then it exits the swap (σs

1). Otherwise (σs
2), it com-

putes the ωs
2 operation and locks its asset ai and assigns the new

owner ri . Consequently, ϵa
1 from figure 2(a) of its asset is triggered.

Then, the source sends a request message to the coordinator to
give a redeem decision through the ϵs

3 action. The source adds
proof that the locked asset operation has been executed properly.
Hence, this step allows the coordinator to assess the validity of the
Lock Asset (ai ,ri) operation executed by the source.

Depending on the coordinator decision, either the source exits
the swap if σs

4 is satisfied, or the source recovers its asset if σs
6

is satisfied. The source computes the ωs
6 operation to recover its

asset. Thereby, it satisfies ϵa
2 from figure 2(a) of its asset. However,

after some time, if no decision has been made,σs
5 is set to true. The

source asks for a refund decision by sending a request message to
the coordinator through the ϵs

5 action.
It is essential to clarify that figure 2(c) represents the source’s

state machine of one transfer. Indeed, a source may have more
than one asset to transfer and must run the protocol for each one.
Considering, separately, each of the participants’ tasks for each
asset simplifies the formalisation without loss of generalisation.
Thereby, to help understand the protocol and afterwards helping
the formal proof, a source transferring multiple assets will have
different identification for each transfer asset. If we take the exam-
ple of figure 1, A as a source will have the following identification :
{sA1 , sA3 }.

Recipients. The recipient is the new owner of an asset. The pred-
icates defined above, CorrectSwap(), NoDecision(), AuthoRM() and
AuthoRF() have the exact definition for recipients. Like the source,
the recipient must run the protocol, figure 2(d), for each asset
it receives, for the same reason defined above. For example, the
participant B from figure 1 as a recipient will have as identifica-
tion {rB1 ,rB4 } and the protocol for each one is the following: the
recipient starts by checking the status of the graph (σr

1 and σr
2).

Depending on the coordinator decision, either the recipient exits
the swap if σr

3 is true, or the recipient retrieves its asset if σr
5 is

true. To retrieve its asset, the recipient computes the ωr
5 operation.

Consequently, this triggers ϵa
3 from figure 2(a) of its asset, and the

recipient becomes the new owner. However, if σr
4 is satisfied, the

recipient asks for a refund decision through ϵr
4.

3.3 Detailed Description of the Protocol Psw ap

In this part, we describe in detail the different phases of the pro-
tocol and the link between proof-of-actions and the predicates
defined in 3.2.3. Let us recall that proof-of-actions allows counter-
ing all unacceptable behaviours of the Byzantine participants that
may violate the specification.

A TLA+ Formal Proof of a Cross-Chain Swap

OWSstart LOCKED

OTHER

OWR

ϵa
1

ϵ
a

6

ϵa
4

ϵa
2

ϵa
3

ϵ a
7

ϵ
a
5

(a) Representation of an asset possible states ai , with i ∈ {1, ...,m} and m the total
number of assets

INITstart PUBLISHED

OKRM

OKRF

ϵc
1 : publ i sh?;

⊘;⊘

⊘;

σ c
4 :AbortTransfer();⊘

ϵc
2 : askRM?∨askRF ?;

⊘;⊘

⊘;

σ
c

3
:Va
lid
Tr
an
sfe
r()

;⊘

(b) State machine of the coordinator

INITstart PUBLISHED WAITFORD

EXIT

REFUNDED⊘;

ωs
2 : Lock Asset (ai ,ri)

σs
2 :CorrectSwap()

⊘;σ
s
1

:¬Co
rrec

tSw
ap()

;⊘

ϵs
3 : askRM !;

⊘;⊘
⊘;σs

6 : AuthoRF();
ωs

6 : Recover i ng Asset (ai)

⊘;σs
4 : AuthoRM(); ⊘

ϵs
5 : askRF !;σs

5 :NoDecision();⊘

⊘;⊘;⊘

(c) State machine of a source si

INITstart WAITFORD

REDEEMEDEXIT

⊘;σr
2 :CorrectSwap();⊘

⊘;
σ

r 1
:¬

C
or
re
ct
Sw

ap
()

;⊘

⊘;σr
5 : AuthoRM();

ωr
5 : Retr i evi ng Asset (ai)

ϵr
4 : askRF !;σr

4 :NoDecision() ;⊘

⊘;σ r
3 :AuthoRF();⊘

⊘;⊘;⊘

(d) State machine of a recipient ri

INIT

start

PUBLISH EXIT

ϵ
p
1 : publ i sh!;⊘;⊘

⊘;⊘;⊘

(e) State machine of the publisher

Figure 2: Asset representation and participants state machines

Nehaï, et al.

The protocol Psw ap runs through three phases. Each phase is
conditioned by the validation of a proof-of-action:

Phase 1: proof of graph publication. In phase 1, participants
designate a publisher to publish the swap graph to the coordina-
tor (figures 2(e), 2(b)). Each correct participant waits for a proof-
of-action, let us call it “Proof publish”, from the coordinator that
the graph has been published (figures 2(c), 2(d)). Since all in-
formation of the coordinator is public, participants can retrieve
“Proof publish” and verify its validity; i.e. checking if their local
graph and the published one are identical. “Proof publish” allows to
satisfy CorrectSwap(). The coordinator being public helps prevent
a misbehavior from the publisher. If “Proof publish” is invalid or the
graph has not been published after some time then CorrectSwap()
is violated and correct participants will abandon the swap.

Phase 2: proof of locking assets. During phase 2, sources lock
their assets. Note that sources need “Proof publish” to lock their as-
sets. Indeed, if a source locks an asset before the graph publication,
the asset can be locked forever if the Byzantine publisher decides
not to publish the graph. Locking operation assigns the new owner
of the asset, and only the recipient designated as the new owner
can retrieve the asset. Once the asset is locked, each correct source
sends a message to the coordinator to request a redeem decision.
This request is accompanied by a proof “Proof lock”, provided by
the source, that it successfully computed Lock Asset . All sources
must send a request message accompanied by “Proof lock” for each
transferred asset; otherwise, the swap cannot be accomplished.
The coordinator collects all proofs through the askRM ! action of
all sources and check their validity. If one proof is invalid, then the
coordinator aborts the swap by giving a refund decision.

To give a redeem decision, the conditions of the predicate Valid-
Transfer() are: (1) all sources must request the coordinator to give
a redeem decision; (2) all sources’ “Proof lock” must be valid and
verified by the coordinator. If no decision is given after some time,
any correct participant can send a refund request.

For example, if a source crashes before sending a redeem re-
quest message, any correct participant can ask for a refund de-
cision. A single request message is enough for the coordinator
to authorise the refund if no decision has been made previously.
Thus, the conditions of the AbortTransfer() predicate are (1) any
correct participant asks for a refund decision or (2) at least one
“Proof lock” is invalid.

Phase 3: proof of decision. In phase 3, participants wait until the
coordinator gives any decision. Consequently, if the coordinator
gives a redeem decision by updating its state to “OKRM”, correct
recipients retrieve the proof “Proof redeem” that the decision is “re-
deem”. This proof allows to satisfy the predicate AuthoRM(), and
correct recipients will be redeemed. If the decision is “refund”, cor-
rect sources retrieve from the coordinator the proof “Proof refund”
to be refunded. This proof validates the predicate AuthoRF(). The
two proofs are the only way to unlock the assets.

4 TLA+ IMPLEMENTATION
In this section, we prove the protocol Psw ap using formal meth-
ods. In this paper, we focus on the model-checking[4] for proving
the liveness properties and the theorem proving[17] for the safety

property with TLA+[12]. The complete code of the implementation
is online2.

TLA+ Overview. To start, we describe the TLA+ language without
going into deep detail. For more information, please refer to [12].

TLA+ is a specification language based on temporal logic. It
is used to specify the model of concurrent and distributed sys-
tems. The TLA+ language provides a module structure for writing
specifications. A system is represented as actions over unprimed
variables (old state) and primed variables (new state). Each action
states the operations to be carried out and updates the context if
required. A system is specified as Spec = Init /\[][Next]_vars.
The predicate Init specifies the possible initial states, Next spec-
ifies a disjunction of all possible actions of the system and vars

the tuple of all variables. The expression [][Next]_vars means
it is always true that either one of the actions defined in Next is
executed or vars is in a state of stuttering. The stuttering is when
a variable has the same value in the current and the new states.
Consequently, the Spec defines a set of infinite sequences of steps,
characterising a behaviour, where in each step either an action is
true and the state changes or vars stutters.

TLA+ toolbox. A model-checker, TLC, is integrated into the TLA+
toolbox and checks the specification by executing every possible
behaviour of the system. It builds a finite state model for checking
invariance properties, written as an LTL formula. In addition, TLA+
has a proof system TLAPS that mechanically checks proofs of
properties.

PlusCal. TLA+ language can become difficult to use if we have
no background in TLA+ formalism. In order to make it easy for
inexperienced users to use TLA+, PlusCal [13] has been proposed.
It is a high-level algorithmic language to generate TLA+ code.

Fair process. A system satisfies a liveness property under fair-
ness assumptions on actions. In a PlusCal algorithm, each label
corresponds to an action. An action is enabled iff it can be exe-
cuted, i.e. a fair process cannot stop at that action. Omitting the
word fair make the process unfair and has no fairness assump-
tions on its actions (it can behave as a crash process).

4.1 Functions and predicates
In section 2, the swap modelling distinguishes between a partic-
ipant’s operation and action. However, their implementation in
the TLA+ language does not make this distinction. An action and
an operation are modelled by the definition of a macro. Note that
the parameters of the functions may vary from 2 because of the
TLA+ language. The following functions, written in PlusCal, are
actions and operations of participants:

Lock Asset (ai ,ri), source’s operation:

1 macro lockAsset(self){
2 if (ProofPublish = TRUE /\ self \in Sources /\
3 assets[AofS(self)] = "OwS")
4 assets[AofS(self)]:= "locked"; ProofLock[self]:= TRUE;}

self is the function caller and Sources the set of sources. The
primitive AofS(self) gives the identifier of self’s asset and assets[]

is a hashtable that maps an asset with its state. The following is
the askRM ! and askRF ! actions:

1 macro askRM(self){

2https://anonymous.4open.science/r/ICDCN22-D3C5/CrossChain.tla

A TLA+ Formal Proof of a Cross-Chain Swap

2 if (self \in Sources /\ ProofLock[self] = TRUE /\
3 coordState = "published") qrm := qrm \union {self};}
4 macro askRF(self){
5 if (coordState = "published") qrf := TRUE;}

coordState is a variable that describes the coordinator state.
qrm is a sequence of askRM ! call function and qrf a boolean that
is true when a participant calls the askRF ! function. Below is the
Retr i evi ng Asset (ai) and Recover i ng Asset (ai) operations:

1 macro retrievingAsset(self){
2 if (self \in Recipients /\ ProofOkRM = TRUE /\
3 assets[AofR(self)] = "locked") assets[AofR(self)] := "OwR";}
4 macro recoveringAsset(self){
5 if (self \in Sources /\ ProofOkRF = TRUE /\
6 assets[AofS(self)] ="locked") assets[AofS(self)] := "OwS";}

Recipients is the set of recipients and AofR(self) gives the
identifier of the recipient’s asset. In the following, we describe
additional actions specific to Byzantine:

1 macro otherS(self){
2 if (self \in Sources /\ assets[AofS(self)] = "OwS")
3 assets[AofS(self)]:= "other";}
4 macro otherR(self){
5 if (self \in Recipients /\ assets[AofR(self)] = "OwR")
6 assets[AofR(self)]:= "other";}
7 macro directToR(self){
8 if (self \in Sources /\ assets[AofS(self)] = "OwS")
9 assets[AofS(self)]:= "OwR";}

10 macro directToS(self){
11 if (self \in Recipients /\ assets[AofR(self)] = "OwR")
12 assets[AofR(self)]:= "OwS";}

4.2 Byzantine model
In TLA+, we model Byzantine as unpredictable participants. Hence,
we use a non-determinism structure ([either, or] statement) in
Byzantine processes design. A Byzantine source (resp. recipient)
may execute actions and operations of a correct source (resp. re-
cipient) in completely random order. As a result, there exists a run
execution of the protocol where Byzantine behaves as a correct
participant. The following PlusCal code characterises the process
of a Byzantine source. It can execute actions of correct sources
lines {5, 6, 7, 8}, and additional actions defined in 4.1, lines {3, 4}.

1 process (BSource \in BSources){
2 init_bsrc:
3 either {BdirectToR: directToR(self); goto init_bsrc; }
4 or {Bother: otherS(self); goto init_bsrc; }
5 or {BaskRM: askRM(self); goto init_bsrc; }
6 or {BlockAsset: lockAsset(self); goto init_bsrc; }
7 or {BSaskRF: askRF(self); goto init_bsrc; }
8 or {BrecoveringAsset: recoveringAsset(self); goto init_bsrc;};};

BSource is the process name and BSources the set of Byzantine
sources.

The following code is the process of a Byzantine recipient. Lines
3 and 4 represent actions of the correct recipient, and lines 6 and
7 represent actions specific to Byzantine recipients.

1 process (BRecipient \in BRecipients){
2 init_brcp:
3 either {BRaskRF: askRF(self); goto init_brcp;}
4 or {BRretrievingAsset: retrievingAsset(self); goto init_brcp;}
5 or {BRdirectToS: directToS(self); goto init_brcp;}
6 or {BRother: otherR(self); goto init_brcp;};};

BRecipient is the process name and BRecipients the set of
Byzantine recipients. BRretrievingAsset, BrecoveringAsset, BRother,

BRdirectToS, init_bsrc, init_brcp, BdirectToR, BaskRM, BlockAsset,

BSaskRF, BRaskRF, Bother are labels.
As a result, a Byzantine may execute any branch of its code or

do nothing, acting like a crashed participant (no fair keyword).
A publisher can be Byzantine. What it can do wrong is either

publish a wrong graph or do nothing. In both cases, the swap does
not take place.

4.3 Proof of the Safety Property
The Consistency property is a safety property. In the following, we
demonstrate the strategy of the proof using TLAPS. The strategy
to prove the property is to define an inductive invariant Inv. We
need to prove that the invariant holds for all states of behaviour.
For that, it suffices to prove : (1) The invariant is true in the ini-
tial state, (2) if the invariant is true in any state of the behaviour,
then it is true in the next state of the behaviour; (3) the Consis-
tency is true in all reachable states. The resulting invariant rule is :
Ini t=>Inv Inv∧Next=>Inv ′ Inv=>Consi stenc y

Spec=>□Consi stenc y
The following predicate captures the invariant Inv: TypeOk /\CoordInv,

with TypeOk the type correctness invariant and CoordInv the predi-
cate that specifies the state of each variable at each coordinator’s
step. CoordID is the identifier of the coordinator.

1 CoordInv ==
2 /\ pc[CoordID] = "init_c" => init_cInv
3 /\ pc[CoordID] = "decision" => decisionInv
4 /\ pc[CoordID] = "decisionValid" => decisionValidInv
5 /\ pc[CoordID] = "decisionAbort" => decisionAbortInv
6 /\(pc[CoordID] = "Done" /\ coordState = "okRM") => okRMInv
7 /\(pc[CoordID] = "Done" /\ coordState = "okRF") => okRFInv

init_c, decision, decisionValid, decisionAbort, Done are labels
of the coordinator process and pc[] the program counter vari-
able that tracks which label the process are currently on. okRMInv,
init_cInv, decisionInv, decisionValidInv, decisionAbortInv, okRFInv

are invariants. The following two predicates model the ownership
of an asset in TLA+:

1 AvailableS(a) == assets[a] = "OwS" \/
2 (ProofOkRF = TRUE /\ assets[a] = "locked")
3 AvailableR(a) == assets[a] = "OwR" \/
4 (ProofOkRM = TRUE /\ assets[a] = "locked")

AvailableS(a) (resp. AvailableR(a)) is a predicate that evaluates
the asset whether is owned by its source, assets[a] = "OwS" (resp.
by its recipient, assets[a] = "OwR"), or accessible by the source,
ProofOkRF = TRUE /\assets[a] = "locked" (resp. by the recipient, ProofOkRM
= TRUE /\assets[a] = "locked").

Accessible by source or recipient models that any participant
that has timeout prematurely will still have the possibility to recov-
er/retrieve its asset asynchronously even if the swap is terminated
since the proof of decision will always be available. The TLA+
safety property is:

1 Consistency == \A s \in CSources, r \in CRecipients:
2 Finish(s,r) => AvailableS(AofS(s)) \/ AvailableR(AofR(r))

With CSources and CRecipients the set of correct sources and
correct recipients. The predicate Finish(s, r) is true if both s and r

processes have finish their protocol : Finish(s,r) == pc[s] = "Done"

/\pc[r] = "Done".

Nehaï, et al.

Table 1: Sucess Ownership’s model-checking for 6 participants

Rcps
Srcs

0 1 2 3

0
11s 21s 02mi n17 25mi n22
24 27 32 37

24107 216405 1973867 20850284

1
11s 31s 04mi n07 40mi n27
27 28 32 37

46405 379715 3483165 39095140

2
15s 50s 07mi n48 01h21mi n32
30 31 32 37

95475 710325 6393275 76729100

3
22s 01mi n22 15mi n21 −
33 34 35 −

247125 1526875 12648125 −

4.4 Proof of the Liveness Properties
Liveness properties are proven using model-checking. TLAPS is
not suited for proving liveness. The properties are the following :
Ownership and Retrieving.

The following predicates are needed to describe the liveness:
1 AllParticipantsAreCorrect == (Pi = Pc) /\ swapGraph = "correct"
2 AtLeastOneCorrect == Pc # {}

AllParticipantsAreCorrect is a predicate that is true if all partic-
ipants (sources, recipients and publisher) are correct. The state-
ment swapGraph = "correct" describes that the publisher is correct.

AtLeastOneCorrect is a predicate that is true if there is at least
one participant correct.

The liveness properties are:
(A ∼> B) is "syntactic sugar" for [](A => <>B), with the temporal

operators []; always, <>; eventually and =>; implies.
1 OwnershipS == \A s \in AssetsFromCS : AvailableS(s)
2 OwnershipR == \A r \in AssetsForCR : AvailableR(r)
3 Ownership == AtLeastOneCorrect ~> (OwnershipS \/ OwnershipR)
4 Retrieving == AllParticipantsAreCorrect /\ Timeout = FALSE ~>
5 (\A r \in Recipients: assets[AofR(r)] = "OwR")

With AssetsFromCS, the set of assets initially owned by correct
sources, and AssetsForCR is the set of assets intended for correct
recipients.

Table 1 gives some results concerning the model-checking car-
ried out on Psw ap for the Ownership property on a computer
Intel® Core™ i7-8850H CPU @ 2.60GHz × 12. The table gives the
proportion of Byzantine recipients and sources in the system. The
information in each cell is the time TLC took to model-check, the
diameter and the distinct states. The case where all participants
are Byzantine (Srcs = 3 and Rcps = 3) has run out of memory with
TLC. Though we can trivially deduce that the property holds since
the predicate AtLeastOneCorrect is FALSE.

The Retrieving property assumes a synchronous system; hence
we suppose that all correct participants will never timeout. This
assumption is modelled by Timeout = FALSE. The checking is trivial
if the predicate on the left side of Retrieving holds. A run of TLC
with six participants and all correct takes two seconds to succeed.

5 THE INSTANTIATED PROTOCOL Pi nst

Pi nst protocol is an instantiation of the protocol Psw ap . In this
section, we instantiate Psw ap in a blockchain environment. The
goal is to transfer assets between different participants of different
blockchains. Everything that has been described in the abstract

protocol applies to the instantiated protocol with the addition of
blockchain-specific implementations: smart contracts and con-
sensus mechanisms needed to produce specific proof-of-actions.

Smart Contracts. A blockchain system is a distributed ledger
that maintains a continuously-growing history of unalterable or-
dered information organised in a chain of blocks. A smart contract
is a self-executing contract running in a blockchain with the terms
of the agreement between parties without the need for a central
authority. A smart contract is a computer program that contains
variables and functions. A smart contract is identified by a unique
address. Once a smart contract is published, its location is known
to all the blockchain’s participants. Each modification of the con-
tract state, e.g. through a function call, generates a transaction.
Each created transaction is recorded in the blockchain.

Consensus Mechanisms. The most well-known blockchains, Bit-
coin [15] and Ethereum [2], are based on Proof-of-Work [15] and
Proof-of-Stake [20] consensus. Their mechanism for adding blocks
to the chain can generate what we call forks. The result is that some
participants might not have locally the same chain. The rule of the
longest chain allows reconciling the blockchain state. However,
after reconciliation, some blocks can be revoked. In this case, we
say that confirmation is probabilistic.

A committee-based blockchain is a category of blockchain that
relies on the BFT consensus mechanism [3]. The block creators
are known and clearly defined as the validators. For each block,
there is a subset of validators, a committee that produces that
block and sign it. Using deterministic BFT consensus, this cate-
gory of blockchains offers consistency guarantees that forks will
never occur as long as no more than 1

3 of committee members are
Byzantine; hence the blockchain will always have a unique chain.
These blockchains guarantee immediate block confirmation, i.e.
when a block is added to the chain, it is immediately confirmed.
For any decision concerning the validity of a block, a quorum of
2 f +1 validator signatures is needed in the committee. f is the
number of participants that can deviate from the protocol. A block
signed by quorum is called a certified block. Some examples of
such blockchains are HotStuff [23] and Tendermint [11].

5.1 Instantiation of Psw ap

Forks occurrence is a crucial issue for the adoption of blockchain
technologies in critical applications. Thereby, in the instantiated
protocol presented in this paper, we have chosen to rely on committee-
based blockchains. Thus, all the blockchains involved in the swap
are of this category. In the following, we describe how the abstract
protocol can be instantiated in a blockchain.

The protocol relies on smart contracts and certified blocks to
satisfy the specification of the swap. Throughout the protocol, par-
ticipants are invoking functions of involved contracts to execute
the swap. Therefore, a recorded transaction in a certified block,
i.e. which will be signed and validated by at least 2 f +1 validators
of the blockchain, constitutes a reliable proof-of-action for our
protocol; as in [6]. In the following, we detail how smart contracts
and certified blocks are used to instantiate Psw ap protocol.

5.1.1 Instantiation of Participants. As for the abstract protocol, the
set of participants consists of a set of sources, a set of recipients

A TLA+ Formal Proof of a Cross-Chain Swap

and a publisher, defined by their state machine in figures 2(c), 2(d),
2(e). A public key address identifies each participant.

The coordinator is represented by a smart contract SCc imple-
menting the state machine logic introduced in figure 2(b). This
contract is used to coordinate the protocol by preventing the occur-
rence of both redeem and refund decisions. In Psw ap , we assume
that correct participants can evaluate the coordinator correct-
ness. Delegating the responsibility of the coordinator to a contract
makes it possible to satisfy this assumption. Once published on
a blockchain, a smart contract can be analysed by everyone. All
participants can obtain information from SCc using its address.

SCc can be in the following states: “INIT” state, the contract
is not yet published. Once the publisher publishes SCc , its state
changes to “PUBLISHED” 3. This publ i sh! action is a function de-
fined in SCc . The function inputs are the swap graph and all valida-
tors addresses of each blockchain involved in the swap. Moreover,
each decision (redeem or refund) is handled by a function con-
tained in SCc . The function responsible for changing the state of
SCc to “OKRM” has as parameter a proof that the function caller
must provide. This proof is the certified block proving the good
behaviour of sources. In addition, the function will have as a pre-
condition the predicate ValidTransfer(). Thus, the function can
only be executed if the precondition is satisfied. For the function
responsible for changing the state to “OKRF” the precondition will
be the predicate AbortTransfer(). If the precondition is satisfied,
the contract SCc changes its state to “OKRF”.

5.1.2 Instantiation of Locking Asset Operation. A source in the
swap is a participant that wants to transfer one or multiple assets.
According to Psw ap , each source has to lock each asset it wants
to trade. In Pi nst , each asset ai is locked in a unique smart con-
tract SCai . For doing this, sources have to publish SCai on their
corresponding blockchain. The publication of SCai sets the new
asset’s owner r and is accompanied by an additional input detailed
in the following. By publishing a contract, sources express their
agreement to transfer assets and, it avoids the double spending of
the asset. This operation of publishing asset ai corresponds to the
operation Lock Asset (ai , r) defined in section 3.1.

5.1.3 Instatiation of Proof-of-actions. As described in section 3.2,
the proof-of-action is a mechanism to guard against Byzantine
participants. This mechanism can be instantiated in various ways.
Our instantiated protocol uses proofs based on certified blocks.
Indeed, all blockchains involved in our swap are committee-based
blockchains. Thus, a block in the chain is an immediately con-
firmed block and can no longer be undone; because the block has
been validated and signed by a quorum of 2 f +1 validators:

Proofpublish. Each source needs the block where the proof of
SCc publication can be found to publish its contract and lock its
asset. Indeed, the function responsible for the publication of the
source contract can be only executed if the proof “Proof publish” is
valid. The proof must be given as a parameter of the function. The
source must wait for SCc publication before publishing its con-
tract(s) to avoid a forever locking asset. Consequently, if the proof
is valid, each asset ai must be locked in SCai by its corresponding
source by publishing it.

3the choice of the blockchain where SCc is published is out of the scope.

Prooflock. Once the contracts of sources are published, each
source requests the redeem decision. This request is a call function
from the contract SCc . The source must give as parameter of the
function “Proof lock”. This proof is the block where SCai is located.
Notice that if a source transfers multiple assets, it must make for
each asset a request. As the coordinator has the list of validators
of each blockchain of the swap, it will check if the block has at
least 2 f +1 signature of the validators. If this occurs, the redeem
decision is given. This condition is embedded in the predicate
ValidTransfer(). As a reminder, the conditions are: (1) all sources
have requested a redeem decision and (2) all sources’ certified
block must be valid. An invalid block leads to a refund decision.

Proofredeem,refund. Participants wait for SCc to change state.
The block where the change of state is located is used as a proof.
Accordingly, if SCc moves to “OKRM” state, recipients retrieve
the proof “Proof redeem” and retrieve their asset(s) from the cor-
responding contract(s). If SCc moves to “OKRF” state, sources
recover their assets from the corresponding contract using the
proof “Proof refund”. Both the retrieve and recover asset operations
are possible due to functions in SCai that need proof of either
redeem or refund decision.

6 STATE OF THE ART
Cross-chain swaps have given rise to several articles on this sub-
ject. The one that remains the reference is the atomic cross-chain
swap of [5]. In this algorithm, the protocol is based on Hashed
Timelocked Contract [21] to transfer assets and, the swap is mod-
elled as a directed graph. [9] proposes a protocol to improve space
and local time complexity of [5]’s protocol by using only signatures
to set hashed timelocks instead of the graph topology. Both arti-
cles guarantee the atomicity property in a synchronous system.
As a result, a very slow participant, but following its protocol is
considered faulty. Our approach does not allow such result and
guarantee that a slow participant will never be worse-off.

[25] have coped with this problem by drawing on a well-known
protocol in distributed transactions, namely the two-phase com-
mit [1]. This distributed transaction consists of sub-transactions,
and each sub-transaction transfers an asset on some blockchain.
The protocol is modelled as a directed graph. Our protocol is
strongly inspired by [25], but with significant differences sum-
marises in table 2. They present a solution to the problem of im-
plementing such a swap while aiming to ensure Atomicity and
Commitment properties. They guard against behaviour deviating
from the protocol by checking the content of the blockchains par-
ticipating in the swap. However, the specification does not cover
all deviating behaviours. For example, if we consider the swap
between A and B. A transfers bitcoins to B, which in turn transfers
ether to A. If the swap is authorised to redeem, A safely retrieves
the transferred ether. However, imagine that B crashes just before
being able to retrieve the transferred bitcoins. The sub-transaction
that characterises the bitcoin transfer will never occur. Thereby,
we face the violation of the Atomicity and Commitment property

[19] and [6] show that atomicity in a system in the presence
of malicious participants cannot be all or nothing. They define
an algorithm that can perform cross-chain transfers through in-
termediaries without asserting atomicity. Both articles define a

Nehaï, et al.

Table 2: Comparison between authors

Zakhary and al.[25] Van Glabbeek and al.[19] Herlihy and al.[6] Psw ap

Specification
Protocol-agnostic ✓ ✗ ✗ ✓

Resilient to Byzantine ✗ ✓ ✓ ✓

Strong liveness guarantee ✗ ✓ ✓ ✓

Protocol Formal description ✗ ✓ ✗ ✓

Formal proof
Manual proof ✓ ✓ ✓ ✓

Semi-automatic proof ✗ ✗ ✗ ✓

Blockchain env
PoW-based blockchain ✓ ✓ ✓ "
Committee-based blockchain ✗ ✗ ✓ ✓

specification dependent on their protocol. In [6], property 2 assers
that no asset belonging to a compliant party is escrowed forever.
Although putting assets in escrow is present in most cross-chain
protocols, this property makes the specification protocol depen-
dent. The same analysis applies to [19]. Conversely, the Psw ap
and [25] specification are completely protocol-agnostic. Another
point of comparison is the formal description of the protocol. Un-
like Psw ap , [6] and [25] describe the protocol in natural language,
without using a formal approach (e.g. by a pseudo-code or an
automaton, like in [19]). It is not intuitive to identify the exact
behaviour of the protocol participants. In contrast, both articles
provide the pseudo-code of the smart contracts involved in the
protocol. However, none of the cited articles addresses a semi-
automatic proof of their protocol.

Finally, the implementation environment differs from one pa-
per to another. Note that, in our paper, we do not highlight the
implementation of the protocol in a PoW-consensus blockchain
environment. Although it can be instantiated there, we make a
choice not to put it forward. The implementation requires strong
assumptions, which in our opinion, do not reflect the reality of the
blockchain environment.

7 CONCLUSION
In this paper, we introduce a cross-chain swap that allows the
transfer of assets across different distributed ledgers in the pres-
ence of Byzantine participants. We propose a protocol sufficiently
abstracted to be instantiated in various distributed ledger frame-
works. The resulting protocol describes the modelling of the par-
ticipants in the form of a state machine that eases the proof. A
semi-automatic proof of the protocol is given, demonstrating that
the abstract protocol satisfies the swap specification. Moreover, we
present a way to instantiate the protocol in concrete blockchains
systems. At last, the proof of conformity between the abstract
protocol and the instantiated protocol are left as future work.

REFERENCES
[1] Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concur-

rency control and recovery in database systems. Addison-wesley New York.
[2] Vitalik Buterin. 2014. A next-generation smart contract and decentralized

application platform. white paper (2014).
[3] Miguel Castro, Barbara Liskov, et al. 1999. Practical byzantine fault tolerance. In

OSDI.
[4] E Allen Emerson and Edmund M Clarke. 1980. Characterizing correctness

properties of parallel programs using fixpoints. In International Colloquium on
Automata, Languages, and Programming.

[5] Maurice Herlihy. 2018. Atomic cross-chain swaps. In Proceedings of the 2018
ACM symposium on principles of distributed computing.

[6] Maurice Herlihy, Barbara Liskov, and Liuba Shrira. 2019. Cross-chain deals and
adversarial commerce. Proceedings of the VLDB Endowment (2019).

[7] Yoichi Hirai. 2018. Blockchains as kripke models: An analysis of atomic cross-
chain swap. In International Symposium on Leveraging Applications of Formal
Methods.

[8] Philipp Hoenisch and Lucas Soriano del Pino. 2021. Atomic Swaps between
Bitcoin and Monero. arXiv:2101.12332 (2021).

[9] Soichiro Imoto, Yuichi Sudo, Hirotsugu Kakugawa, and Toshimitsu Masuzawa.
2019. Atomic Cross-Chain Swaps with Improved Space and Local Time Com-
plexity. In International Symposium on Stabilizing, Safety, and Security of Dis-
tributed Systems.

[10] Igor Konnov, Marijana Lazić, Ilina Stoilkovska, and Josef Widder. 2020. Tutorial:
Parameterized Verification with Byzantine Model Checker. In International
Conference on Formal Techniques for Distributed Objects, Components, and
Systems.

[11] Jae Kwon. 2014. Tendermint: Consensus without mining. Draft v. 0.6, fall
(2014).

[12] Leslie Lamport. 2002. Specifying systems: the TLA+ language and tools for
hardware and software engineers. Addison-Wesley Longman Publishing Co.,
Inc.

[13] Leslie Lamport. 2009. The PlusCal algorithm language. In International Collo-
quium on Theoretical Aspects of Computing.

[14] Stephan Merz and Hernán Vanzetto. 2012. Automatic verification of TLA+
proof obligations with SMT solvers. In International Conference on Logic for
Programming Artificial Intelligence and Reasoning.

[15] Satoshi Nakamoto. 2019. Bitcoin: A peer-to-peer electronic cash system. http:
//www.bitcoin.org/bitcoin.pdf

[16] NomadicLabs. 2021. Dexter flaw. https://forum.tezosagora.org/t/dexter-flaw-
discovered-funds-are-safe/2742

[17] Alan JA Robinson and Andrei Voronkov. 2001. Handbook of automated reason-
ing. Elsevier and MIT Press.

[18] TierNolan. 2013. Bitcoin talk forum. http://bitcointalk.org/index.php?topic=
193281.msg2224949#msg2224949/

[19] Rob van Glabbeek, Vincent Gramoli, and Pierre Tholoniat. 2019. Cross-Chain
Payment Protocols with Success Guarantees. arXiv:1912.04513 (2019).

[20] Pavel Vasin. 2014. Blackcoin’s proof-of-stake protocol v2. white paper (2014).
[21] Bitcoin Wiki. 2019. Hashed timelock contracts. http://en.bitcoin.it/wiki/Hash_

Time_Locked_Contracts
[22] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction

ledger. Ethereum project yellow paper (2014).
[23] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abra-

ham. 2018. HotStuff: BFT consensus in the lens of blockchain. arXiv:1803.05069
(2018).

[24] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. 1999. Model checking TLA+
specifications. In Advanced Research Working Conference on Correct Hardware
Design and Verification Methods.

[25] Victor Zakhary, Divyakant Agrawal, and Amr El Abbadi. 2020. Atomic Commit-
ment Across Blockchains. Proc. VLDB Endow. (2020).

A RESULTS OF THE RETRIEVING
MODEL-CHECKING

In this section, we introduce the results of the Retrieving model-
checking 3. As for the Ownership property, the case where all par-
ticipants are Byzantine (Rcps = 3 and Srcs = 3) runs out of memory.
However, since the predicate AllParticipantsAreCorrect is false;
the property is trivially true.

http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
https://forum.tezosagora.org/t/dexter-flaw-discovered-funds-are-safe/2742
https://forum.tezosagora.org/t/dexter-flaw-discovered-funds-are-safe/2742
http://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949/
http://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949/
http://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts
http://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts

A TLA+ Formal Proof of a Cross-Chain Swap

Table 3: Sucess Retrieving ’s model-checking results for 6 partici-
pants

Rcps
Srcs

0 1 2 3

0
02s 15s 01mi n20 20mi n20
23 30 34 40

867 123494 1406300 18173512

1
12s 25s 02mi n41 39mi n40
28 29 34 39

23010 230300 2607290 35349580

2
14s 39s 05mi n30 1h18mi n56
31 32 33 38

56700 477050 5125400 72527350

3
23s 01mi n20 14mi n31 −
34 35 36 −

200500 1240750 11282250 −

B MANUAL PROOF
In this section, we will prove manually the swap problem prop-
erties defined in section 2. Properties are written as an LTL for-
mula. Let l oc(x) be the location state of ‘x’. Let Ar be the set of
states that implies “available to its recipient" with Ar = (loc(a) =
“OwR" ∨ (Proof redeem ∧ loc(a) = “locked")) and As the set of
states that implies “available to its source" with As = (loc(a) =
“OwS"∨ (Proof refund ∧ loc(a) = “l ocked")). Λ is the set of all as-
sets of the swap andΛs the set of assets initially owned by correct
sources, withΛs ⊆Λ. The set of assets intended for correct recipi-
ents is Λr , with Λr ⊆Λ. Πs is the set of sources and Πr the set of
recipients. Let Pc be the set of correct participants with Pc ⊆ Π.
Let us denote ‘c’ the coordinator and ‘p’ the publisher.

LEMMA B.1. When the coordinator is in its initial state, then no
correct sources are in published state and, assets initially owned by
a correct source are owned by their source.

Formally: loc(c) = “INIT" =⇒ ∀s ∈ (Pc∩Πs) : l oc(s) ∉ “PUBLISHED"
∧∀a ∈Λs : loc(a) = “OWS".

PROOF. From figure 2(b) we can see that in the initial state, the
coordinator has not triggered ϵc

1. Hence, no correct sources and
correct recipients (figures 2(c) and 2(d)) will have their guard σs

2
and σr

2 satisfied. However, σs
1 and σr

1 can be satisfied if the pub-

lisher takes a long time to trigger ϵ
p
1 . Consequently, correct partici-

pants can exit the swap. In both scenarios, correct sources would
not lock their assets and, these remain owned by their source. □

LEMMA B.2. When the coordinator is in “PUBLISHED” state, then
no assets initially owned by a correct source are available to their
recipient.

Formally: loc(c) = “PUBLISHED" =⇒ ∀a ∈Λs : loc(a) ∉Ar .

PROOF. When the coordinator is in “PUBLISHED” state, then
ϵ

p
1 has been triggered by the publisher in figure 2(e), allowing the

coordinator to change its state. Consequently, correct participants
will verify “Proof publish” and if the proof is valid, then correct
sources could lock their assets (executing ωs

2) and trigger ϵa
1 from

figure 2(a). Since the coordinator is in “PUBLISHED” state, neither
σc

2 nor σc
3 is satisfied. Thereby, no decision has been taken by the

coordinator. It is therefore not possible for an asset to be available
to the recipient as long as the coordinator is in the “PUBLISHED”
state. □

LEMMA B.3. When the coordinator gives a redeem decision, then
all assets are available to their recipient.

Formally: loc(c) = “OKRM" =⇒ ∀a ∈Λ : loc(a) ∈Ar .

PROOF. For the coordinator to make a redeem decision, σc
3

from figure 2(b) must be satisfied. ValidTransfer() is satisfied when
all sources have executed the action ϵs

3 from figure 2(c) and “Proof lock”
provided by the sources to the coordinator are correct and valid.
Consequently, satisfying σc

3 makes all assets accessible to their
recipients. Depending on the recipient behaviour, assets can stay
in “LOCKED” state or move to “OWR” state by using “Proof redeem”
to satisfy AuthoRM(). In both cases, the assets are available to their
recipient. If the recipient is correct, then its asset will eventually
be retrieved by executing ωr

5. □

LEMMA B.4. When the coordinator gives a refund decision, then
assets initially owned by a correct source are available to their
source.

Formally: loc(c) = “OKRF" =⇒ ∀a ∈Λs : loc(a) ∈As .

PROOF. For the coordinator to make a refund decision,σc
4 from

figure 2(b) must be satisfied. Hence, the conditions for AbortTrans-
fer() predicate are fulfilled. Namely, either a “Proof lock” provided
by a source has been proven invalid, or there exists a participant
who asks for a refund decision (triggering ϵs

5 if the participant is
a source or triggering ϵr

4 if the participant is a recipient). Conse-
quently, σc

4 is satisfied, and all assets initially owned by a correct
source are now available to their sources. Hence, depending on
source behaviour, assets can stay in “LOCKED” state or move to
“OWS” state by using “Proof refund” to satisfyAuthoRF(). Both cases
set the assets available to their source. If the source is correct, then
its asset will eventually be recovered by executing ωs

6. □

THEOREM B.5. For any correct source s1 of an edge e1 = (s1, a1,r1)
and correct recipient r2 of an edge e2 = (s2, a2,r2), at the end of their
execution, either s1 owns a1 or r2 owns a2.

PROOF. We have proven from Lemma B.1 that a correct source
s1 can timeout and finish its execution before locking its asset
a1. Consequently, a1 remains in “OWS” state. Lemma B.3 proves
that a correct recipient r2 can finish its execution by retrieving its
asset a2. The asset’s state changes to “OWR”. However, though r2
can timeout at the beginning of the swap (before the swap graph
publication), when the redeem decision is given, a2 is accessible
by the recipients and can retrieve a2 asynchronously since the
decision will always be available. From Lemma B.4, s1 finishes
its execution by recovering its asset. Consequently, a1’s state is
“OWS”.

We can see that we can extrapolate this result to all correct
sources and recipients from the swap.

From Lemma B.1, Lemma B.2 and Lemma B.4, we have proven
that no assets initially owned by a correct source can be available
to their recipient if no redeem authorisation is given. However,
an asset can be owned by a recipient if the source of that asset is
Byzantine. Indeed, a Byzantine source that behaves arbitrarily can
transfer its asset directly to the recipient; without waiting for the
coordinator decision. From Lemma B.3, we have proven that the
assets may be available to the recipients only when the coordinator

Nehaï, et al.

authorises the swap by giving the redeem decision. Moreover, this
decision is only possible if all the sources are correct up to the
moment of the locking assets.

Therefore, we proved that considering each possible end of
execution of s1 and r2; the outcome is that s1 owns its asset or
r2 owns its asset. Hence, the Consistency property of the swap is
proven. □

LEMMA B.6. If “Proofpublish” is valid and at least one partici-
pant is correct, then the coordinator eventually makes a decision.

Formally: ∃p ∈ Pc : Proof publish∧Pc ≠ {} =⇒ ♦(loc(c) = “OKRF"∨
l oc(c) = “OKRM")

PROOF. Once the swap graph is published and validated by the
correct participants, the coordinator has only two possibilities of
decision, redeem or refund. These two decisions are possible to
achieve depending on the actions of the participants. If the coordi-
nator is in “PUBLISHED” state for a while without evolving, then it
suffices to have only one correct participant to detect it. Assuming
this scenario, the correct participant; whether the source or the
recipient will be in “WAITFORD” state. After reaching the partici-
pant’s timeout, the predicate NoDecision() will be satisfied (σs

5 if
the participant is a source and σr

4 if the participant is a recipient).
Thereby, this allows the participant to request a refund decision
from the coordinator (ϵs

5 or ϵr
4). The operation of asking refund

satisfies the predicate AbortTransfer() and leads to the decision
of the coordinator for a refund authorisation. Moreover, if all par-
ticipants are correct, then all sources will lock their asset and will
give a valid “Proof lock” to the coordinator. Hence, conditions of
ValidTransfer() will be satisfied and lead to the authorisation of the
coordinator for a redeem decision.

□

LEMMA B.7. If the coordinator authorizes the refund, then no
asset initially owned by a correct source is ownerless forever.

Formally: loc(c) = “OKRF" =⇒ ∀a ∈Λs : ♦(loc(a)≠ “LOCKED")

PROOF. If the coordinator has authorised the refund, then the
predicate AbortTransfer() has been satisfied (see Lemma B.4). As
a result, assets return to their sources (ϵa

2 is satisfied); hence all
assets initially owned by a correct source become available to
their source. A correct source will retrieve from the coordinator
“Proof refund”. A valid proof satisfiesσs

6 and, a correct source will be
able to recover its assets by executing ωs

6 and become the owner
again. If the source is Byzantine, it might never recover its asset,
thus leaving the asset ownerless. In addition, the Byzantine source
could lock its asset out of the swap with no way to recover it. These
two situations are acceptable and satisfy the property. □

LEMMA B.8. If the coordinator authorises the redeem, then no
asset intended for a correct recipient is ownerless forever.

Formally: loc(c) = “OKRM" =⇒ ∀a ∈Λr : ♦(loc(a)≠ “LOCKED")

PROOF. If the coordinator has authorised the redeem, then the
predicate ValidTransfer() has been satisfied (see Lemma B.3). In
the redeeming case, all assets become available to the recipient.
A correct recipient will retrieve from the coordinator the proof
“Proof redeem”. A valid proof satisfies σr

5 and, a correct recipient

only has to retrieve the asset by executingωr
5 and making the asset

owned by the recipient (ϵa
3). However, if a Byzantine recipient

decides not to get its asset back, then that asset will be ownerless.
It is an acceptable situation and satisfies the property. □

THEOREM B.9. No asset owned initially by a correct source is
ownerless forever or no asset intended to be transferred to a correct
recipient is ownerless forever.

PROOF. From Lemma B.6 we have proven that, if “Proof publish”
is valid, it only takes one correct participant in our system for
the coordinator to end up issuing a decision. Moreover, if all
participants are Byzantine, then the theorem is satisfied. From
Lemma B.7, we have proven that correct sources will not lose their
asset. However, no conclusions are possible for assets owned by
Byzantine sources. From Lemma B.8 the same assumption has
been proven for assets intended for correct recipients. Likewise,
no conclusions are possible for assets intended for Byzantine re-
cipients. As a result, we have proven the Ownership property of
the swap. □

THEOREM B.10. If all participants are correct, then all recipients
will retrieve their intended assets.

PROOF. If all participants are correct, then they will all execute
their protocol within the bounded time limits. The swap graph
will be published and be correct (a valid “Proof publish”) and all
sources will request the coordinator for a redeem decision, pro-
viding a valid “Proof lock”. Consequently, the coordinator will au-
thorise the swap and recipients will eventually be redeemed using
“Proof redeem”. Moreover, if a subset of participants is Byzantine,
Pc =Πwill equal false. Since false implies true, the property is still
satisfied. □

C TLA+ CODE
1 −−−−−−−−−−−−−−−−− MODULE FaultyCrossChain−−−−−−−−−−−−−−−−−−−−
2 EXTENDS TLAPS, Integers, Sequences, TLC, FiniteSets
3 Integers == Nat \ {0}
4 CONSTANT NTxs, Correct
5
6 * NTxs is the number of transactions (number of traded assets)
7 * Correct is the number of correct participants
8
9 * AStates: asset’s states

10 * CStates: coordinator’s states
11 * PStates: Publisher’s states
12 * SwapStates: swap graph states
13 * AStates, AvailableR, CStates, PStates, SwapStates
14 * are DEFINITION for tlaps
15 * PublisherID is the identifier of the publisher
16 * CoordinatorID is the identifier of the coordinator
17
18 AStates == { "OwS", "OwR", "locked", "other" }
19 CStates == { "init", "published", "okRM", "okRF" }
20 PStates == { "init", "publish" }
21 SwapStates == { "init", "correct", "different" }
22 PublisherID == −1
23 CoordinatorID == 0
24
25 * Sources: the set of source’s id
26 * Assets: the set of asset’s id
27 * Recipients: the set of recipient’s id
28 * Pi: the set of all sources and recipients

A TLA+ Formal Proof of a Cross-Chain Swap

29 * Pc: the set of correct sources and recipients
30 * CSources: the set of correct sources
31 * CRecipients: the set of correct recipients
32 * BSources: the set of byzantine sources
33 * BRecipients: the set of byzantine recipients
34
35 Sources == {3*x−2 : x \in 1..NTxs}
36 Assets == {3*x−1 : x \in 1..NTxs}
37 Recipients == {3*x : x \in 1..NTxs}
38
39 Pi == Sources \cup Recipients
40 Pc == Pi \cap Correct
41
42 CSources == Pc \cap Sources
43 CRecipients == Pc \cap Recipients
44 BSources == Sources \ CSources
45 BRecipients == Recipients \ CRecipients
46
47 * AofS(x): function that gives the asset id of the source ’x’
48 * AofR(x): function that gives the asset id of the recipient ’x’
49 * SofA(x): function that gives the source id of the asset ’x’
50 * RofA(x): function that gives the recipient id of the asset ’x’
51 * AssetsFromCS: set of assets initially owned by a correct source
52 * AssetsForCR: set of assets intended for a correct recipient
53
54 AofS(x) == x + 1
55 AofR(x) == x − 1
56 SofA(x) == x − 1
57 RofA(x) == x + 1
58
59 AssetsFromCS == {AofS(x) : x \in CSources}
60 AssetsForCR == {AofR(x) : x \in CRecipients}
61
62 (*
63
64 −−fair algorithm ACC {
65
66 * assets: list of all assets initialise to "OwS" state
67 * pState: Publisher state initialises to "init"
68 * coordState: coordinator state initialises to "init"
69 * qrm: sequence of ask redeem call function
70 * qrf: sequence of ask refund call function
71 * swapGraph: swap graph state initialises to "init"
72 * ProofPublish, ProofLock, ProofOkRM and ProofOkRF are
73 * proof-of-action describes in the article
74 * assets, pState, coordState, qrm, qrf, swapGraph and
75 * proof-of-action are VARIABLES for tlaps
76
77 variable
78 assets = [a \in Assets |−> "OwS"],
79 pState = "init",
80 coordState = "init",
81 qrm = {},
82 qrf = FALSE,
83 swapGraph = "init",
84 ProofPublish = FALSE,
85 ProofLock =[c \in Sources |−> FALSE],
86 ProofOkRM = FALSE,
87 ProofOkRF = FALSE;
88
89 * the define block can be used in pluscal code and
90 * in properties
91 * The operator returns true if the expression is true
92 * ValidTransfer and AbortTransfer corresponds to the
93 * predicates of the same name in the article
94 * qrm = Sources -> all sources has been asked for
95 * a redeem authorisation
96 * qrf = true -> at least one participant has asked for
97 * a refund authorisation

98
99 define

100 {
101 ValidTransfer == qrm = Sources
102 AbortTransfer == qrf = TRUE
103 }
104
105
106 (**)
107 (* Macros are the general catch-all code inliner. *)
108 (* lockAsset(self): locks the asset of the source ’self’*)
109 (* and set to true the proof of action ProofLock[self] *)
110 (**)
111
112 macro lockAsset(self) {
113 if (ProofPublish = TRUE /\ self \in Sources /\
114 assets[AofS(self)] = "OwS")
115 assets[AofS(self)] := "locked";
116 ProofLock[self] := TRUE;}
117
118 (**)
119 (* askRM(self): When a source asks for a redeem *)
120 (* authorisation, its lock proof has to be valid and *)
121 (* the coordinator has to be in the published state *)
122 (**)
123
124 macro askRM(self) {
125 if (self \in Sources /\ ProofLock[self] = TRUE /\
126 coordState = "published")
127 qrm := qrm \union {self};}
128
129 (**)
130 (* retrievingAsset(self): the macro updates the assets’ *)
131 (* state to OwR *)
132 (**)
133
134 macro retrievingAsset(self) {
135 if (self \in Recipients /\ ProofOkRM = TRUE /\
136 assets[AofR(self)] = "locked")
137 assets[AofR(self)] := "OwR"}
138
139 (**)
140 (* askRF(self): any participant can ask for a refund *)
141 (* authorisation *)
142 (**)
143
144 macro askRF(self) {
145 if (coordState = "published")
146 qrf := TRUE;}
147
148 (**)
149 (* recoveringAsset(self): the macro updates the assets’ *)
150 (* state to OwS *)
151 (**)
152
153 macro recoveringAsset(self) {
154 if (self \in Sources /\ ProofOkRF = TRUE /\
155 assets[AofS(self)] ="locked")
156 assets[AofS(self)] := "OwS"}
157
158 (**)
159 (* other(self) and directToR(self) are actions that *)
160 (* byzantine can do *)
161 (* other(self) describes the behavior of a byzantine *)
162 (* where it can do anything with its asset. *)
163 (* directToR(self) describes the direct send of its asset*)
164 (* to the recipient without waiting for the coordinator’s*)
165 (* decision *)
166 (**)

Nehaï, et al.

167
168 macro other(self) {
169 if (self \in Sources /\ assets[AofS(self)] = "OwS")
170 assets[AofS(self)]:= "other";}
171
172 macro otherR(self) {
173 if (self \in Recipients /\ assets[AofR(self)] = "OwR")
174 assets[AofR(self)]:= "other";}
175
176 macro directToR(self) {
177 if (self \in Sources /\ assets[AofS(self)] = "OwS")
178 assets[AofS(self)]:= "OwR"}
179
180 macro directToS(self) {
181 if (self \in Recipients /\ assets[AofR(self)] = "OwR")
182 assets[AofR(self)]:= "OwS"}
183
184 (**)
185 (* We define the following processes: (1) the Publisher. *)
186 (* (2) the coordinator (3) correct sources, *)
187 (* (4) byzantine sources, (5) correct recipients and *)
188 (* (6) byzantine recipients *)
189 (* The Publisher has -1 as an random identifier,random *)
190 (* it publish the swap graph, by changing its state to *)
191 (* "publish". We assume that the publisher can be *)
192 (* byzantine. Hence, the graph is either correct or *)
193 (* different from the graph constructed by the *)
194 (* participants of the swap. *)
195 (* The publisher can halt, even if an action is enabled *)
196 (* stay in "init_p" forever and stutters. A process that *)
197 (* crashes is modelled by having stuttering steps *)
198 (**)
199
200 process (Publisher = PublisherID)
201 {
202 init_p :
203 either {
204 pState := "publish";
205 either swapGraph := "correct";
206 or swapGraph := "different";
207 }
208 or skip;
209 };
210
211 (**)
212 (* The coordinator has 0 as an random identifier *)
213 (* init_c : The coordinator waits for the Publisher to *)
214 (* publish the graph to updates its state. When the *)
215 (* state is updated, the proof of published is set to true*)
216 (* decision: the decision is either redeem (if *)
217 (* ValidTransfer is true) or the decision is refund (if *)
218 (* AbortTransfer is true). *)
219 (* decisionValid: the coordinator updates to okRM state *)
220 (* and the ProofOkRM is available for recipients to *)
221 (* retrieve their assets *)
222 (* decisionAbort: the coordinator updates to okRF state *)
223 (* and the ProofOkRF is available for sources to recover *)
224 (* their assets. *)
225 (* the coordinator is a correct entity. We add to the *)
226 (* process a fairness condition that the process cannot *)
227 (* stop at a non-blocking action. *)
228 (**)
229
230 fair process (Coordinator = CoordinatorID)
231 {
232 init_c:
233 await pState = "publish" /\ swapGraph # "init";
234 coordState := "published";
235 ProofPublish := TRUE;

236 decision:
237 either {
238 await ValidTransfer;
239 decisionValid:
240 coordState := "okRM";
241 ProofOkRM := TRUE;
242 goto Done;
243 }
244 or {
245 await AbortTransfer;
246 decisionAbort:
247 coordState := "okRF";
248 ProofOkRF := TRUE;
249 goto Done;
250 };
251 };
252
253 (**)
254 (* Source: multiprocess of CSources processes (correct sources*)
255 (* init_src: sources waits for the swap graph to be published *)
256 (* either the swap is different (in this case the source *)
257 (* leaves the swap) or the graph is correct and the *)
258 (* ProofPublish of the coordinator is valid *)
259 (* if the graph is correct, correct sources can lock their *)
260 (* asset (lock) and asks for a redeem decision (published). *)
261 (* waitForD: source waits for the coordinator decision *)
262 (* exit_src: when the decision is given, sources exit the swap*)
263 (**)
264
265 fair process (Source \in CSources)
266 {
267 init_src :
268 either { await swapGraph = "different" \/ TRUE;
269 goto Done;}
270 or { await ProofPublish = TRUE /\ swapGraph = "correct";
271 lock: lockAsset(self);
272
273 published: askRM(self);
274
275 waitForD: either { await ProofOkRM = TRUE;
276 goto Done;}
277 or { await ProofOkRF = TRUE;
278 recoveringAsset(self);
279 goto Done;}
280 or {* the case where NoDecision is true
281 await coordState = "published";
282 askRF(self);
283 goto waitForD;};
284 };
285 };
286
287 (**)
288 (* BSource is a multiprocess of BSources processes (byzantine *)

289 (* sources). Since a byzantine behavior cannot be predicted, *)
290 (* we use the either statement to express the non determinisme*)
291 (* of a byzantine. a byzantine can execute the actions of a *)
292 (* source in a completely random order in addition to the *)
293 (* actions directToR and other. *)
294 (* As a result, it has the ability to run the protocol *)
295 (* correctly and behaves as a correct source. The process is *)
296 (* unfair, thus we do not add the ’fair’ statement before *)
297 (* process. We assume that the process can crash at anytime *)
298 (**)
299
300 process (BSource \in BSources)
301 {
302 init_bsrc:
303 {

A TLA+ Formal Proof of a Cross-Chain Swap

304 either { BdirectToR: directToR(self); goto init_bsrc; }
305 or { Bother: other(self); goto init_bsrc; }
306 or {BaskRM: askRM(self); goto init_bsrc; }
307 or { BlockAsset: lockAsset(self); goto init_bsrc; }
308 or { BSaskRF: askRF(self); goto init_bsrc; }
309 or {BrecoveringAsset: recoveringAsset(self); goto init_bsrc;};
310 }
311 };
312
313 (**)
314 (* Recipient: multiprocess of CRecipients processes (correct *)
315 (* recipients) *)
316 (* init_rcp: either the swap is correct or different *)
317 (* waitForD_rcp: the recipient waits for the coordinator *)
318 (* decision. *)
319 (**)
320
321 fair process (Recipient \in CRecipients)
322 {
323 init_rcp :
324 either { await swapGraph = "different" \/ TRUE;
325 goto Done;}
326 or { await ProofPublish = TRUE /\ swapGraph = "correct";
327 waitForD_rcp:
328 either { await ProofOkRF = TRUE;
329 goto Done;}
330 or { await ProofOkRM = TRUE;
331 retrievingAsset(self);
332 goto Done;}
333 or { await coordState = "published";
334 askRF(self);
335 goto waitForD_rcp;};
336 };
337 };
338
339 (**)
340 (* BRecipient is a multiprocess of BRecipients processes *)
341 (* (byzantine recipient). As byzantine sources, a byzantine *)
342 (* recipient behavior cannot be predicted. a byzantine can *)
343 (* execute the actions of a recipient in a completely random *)
344 (* order in addition to the actions. *)
345 (* As a result, it has the ability to run the protocol *)
346 (* correctly and behaves as a correct recipient. The process *)
347 (* is unfair,thus we do not add the ’fair’ statement before *)
348 (* process. We assume that the process can crash at anytime *)
349 (**)
350
351 process (BRecipient \in BRecipients)
352 {
353 init_brcp:
354 either {BRaskRF: askRF(self); goto init_brcp;}
355 or {BRretrievingAsset: retrievingAsset(self); goto init_brcp;}
356 or {BRdirectToS: directToS(self); goto init_brcp;}
357 or {BRother: otherR(self); goto init_brcp;};
358 };
359 };
360 *)
361 * BEGIN TRANSLATION
362 VARIABLES assets, pState, coordState, qrm, qrf, swapGraph,
363 ProofPublish, ProofLock, ProofOkRM, ProofOkRF, pc
364
365 (* define statement *)
366 ValidTransfer == qrm = Sources
367 AbortTransfer == qrf = TRUE
368
369
370 vars == << assets, pState, coordState, qrm, qrf, swapGraph,
371 ProofPublish, ProofLock, ProofOkRM, ProofOkRF, pc >>
372

373 ProcSet == {PublisherID} \cup {CoordinatorID} \cup (CSources)
374 \cup (BSources) \cup (CRecipients) \cup (BRecipients)
375
376 Init == (* Global variables *)
377 /\ assets = [a \in Assets |−> "OwS"]
378 /\ pState = "init"
379 /\ coordState = "init"
380 /\ qrm = {}
381 /\ qrf = FALSE
382 /\ swapGraph = "init"
383 /\ ProofPublish = FALSE
384 /\ ProofLock = [c \in Sources |−> FALSE]
385 /\ ProofOkRM = FALSE
386 /\ ProofOkRF = FALSE
387 /\ pc = [self \in ProcSet |−>
388 CASE self = PublisherID −> "init_p"
389 [] self = CoordinatorID −> "init_c"
390 [] self \in CSources −> "init_src"
391 [] self \in BSources −> "init_bsrc"
392 [] self \in CRecipients −> "init_rcp"
393 [] self \in BRecipients −> "init_brcp"]
394
395 init_p == /\ pc[PublisherID] = "init_p"
396 /\ \/ /\ pState' = "publish"
397 /\ \/ /\ swapGraph' = "correct"
398 \/ /\ swapGraph' = "different"
399 \/ /\ TRUE
400 /\ UNCHANGED <<pState, swapGraph>>
401 /\ pc' = [pc EXCEPT ![PublisherID] = "Done"]
402 /\ UNCHANGED << assets, coordState, qrm, qrf,
403 ProofPublish, ProofLock, ProofOkRM, ProofOkRF >>
404
405 Publisher == init_p
406
407 init_c == /\ pc[CoordinatorID] = "init_c"
408 /\ pState = "publish" /\ swapGraph # "init"
409 /\ coordState' = "published"
410 /\ ProofPublish' = TRUE
411 /\ pc' = [pc EXCEPT ![CoordinatorID] = "decision"]
412 /\ UNCHANGED << assets, pState, qrm, qrf, swapGraph,
413 ProofLock, ProofOkRM, ProofOkRF >>
414
415 decision == /\ pc[CoordinatorID] = "decision"
416 /\ \/ /\ ValidTransfer
417 /\ pc' = [pc EXCEPT ![CoordinatorID] =
418 "decisionValid"]
419 \/ /\ AbortTransfer
420 /\ pc' = [pc EXCEPT ![CoordinatorID] =
421 "decisionAbort"]
422 /\ UNCHANGED << assets, pState, coordState,
423 qrm, qrf, swapGraph, ProofPublish, ProofLock,
424 ProofOkRM, ProofOkRF >>
425
426 decisionValid == /\ pc[CoordinatorID] = "decisionValid"
427 /\ coordState' = "okRM"
428 /\ ProofOkRM' = TRUE
429 /\ pc' = [pc EXCEPT ![CoordinatorID] = "Done"]
430 /\ UNCHANGED << assets, pState, qrm, qrf,
431 swapGraph, ProofPublish, ProofLock, ProofOkRF >>
432
433 decisionAbort == /\ pc[CoordinatorID] = "decisionAbort"
434 /\ coordState' = "okRF"
435 /\ ProofOkRF' = TRUE
436 /\ pc' = [pc EXCEPT ![CoordinatorID] = "Done"]
437 /\ UNCHANGED << assets, pState, qrm, qrf,
438 swapGraph, ProofPublish, ProofLock, ProofOkRM >>
439
440 Coordinator ==
441 init_c \/ decision \/ decisionValid \/ decisionAbort

Nehaï, et al.

442
443 init_src(self) == /\ pc[self] = "init_src"
444 /\ \/ /\ swapGraph = "different" \/ TRUE
445 /\ pc' = [pc EXCEPT ![self] = "Done"]
446 \/ /\ ProofPublish = TRUE
447 /\ swapGraph = "correct"
448 /\ pc' = [pc EXCEPT ![self] = "lock"]
449 /\ UNCHANGED << assets, pState, coordState,
450 qrm, qrf, swapGraph, ProofPublish, ProofLock,
451 ProofOkRM, ProofOkRF >>
452
453 lock(self) == /\ pc[self] = "lock"
454 /\ IF ProofPublish = TRUE /\ self \in Sources /\
455 assets[AofS(self)] = "OwS"
456 THEN /\ assets' =
457 [assets EXCEPT ![AofS(self)] = "locked"]
458 /\ ProofLock' =
459 [ProofLock EXCEPT ![self] = TRUE]
460 ELSE /\ TRUE
461 /\ UNCHANGED << assets, ProofLock >>
462 /\ pc' = [pc EXCEPT ![self] = "published"]
463 /\ UNCHANGED << pState, coordState, qrm, qrf,
464 swapGraph, ProofPublish, ProofOkRM, ProofOkRF >>
465
466 published(self) == /\ pc[self] = "published"
467 /\ IF self \in Sources
468 /\ ProofLock[self] = TRUE
469 /\ coordState = "published"
470 THEN /\ qrm' = (qrm \union {self})
471 ELSE /\ TRUE
472 /\ qrm' = qrm
473 /\ pc' = [pc EXCEPT ![self] = "waitForD"]
474 /\ UNCHANGED << assets, pState, coordState,
475 qrf, swapGraph, ProofPublish, ProofLock,
476 ProofOkRM, ProofOkRF >>
477
478 waitForD(self) == /\ pc[self] = "waitForD"
479 /\ \/ /\ ProofOkRM = TRUE
480 /\ pc' = [pc EXCEPT ![self] = "Done"]
481 /\ UNCHANGED <<assets, qrf>>
482 \/ /\ ProofOkRF = TRUE
483 /\ IF self \in Sources
484 /\ ProofOkRF = TRUE
485 /\ assets[AofS(self)] ="locked"
486 THEN /\ assets' =
487 [assets EXCEPT ![AofS(self)] = "OwS"]
488 ELSE /\ TRUE
489 /\ UNCHANGED assets
490 /\ pc' = [pc EXCEPT ![self] = "Done"]
491 /\ qrf' = qrf
492 \/ /\ coordState = "published"
493 /\ IF coordState = "published"
494 THEN /\ qrf' = TRUE
495 ELSE /\ TRUE
496 /\ qrf' = qrf
497 /\ pc' = [pc EXCEPT ![self] = "waitForD"]
498 /\ UNCHANGED assets
499 /\ UNCHANGED << pState, coordState, qrm,
500 swapGraph, ProofPublish, ProofLock, ProofOkRM,
501 ProofOkRF >>
502
503 Source(self) == init_src(self) \/ lock(self) \/ published(self)
504 \/ waitForD(self)
505
506 init_bsrc(self) ==
507 /\ pc[self] = "init_bsrc"
508 /\ \/ /\ pc' = [pc EXCEPT ![self] = "BdirectToR"]
509 \/ /\ pc' = [pc EXCEPT ![self] = "Bother"]
510 \/ /\ pc' = [pc EXCEPT ![self] = "BaskRM"]

511 \/ /\ pc' = [pc EXCEPT ![self] = "BlockAsset"]
512 \/ /\ pc' = [pc EXCEPT ![self] = "BSaskRF"]
513 \/ /\ pc' = [pc EXCEPT ![self] = "BrecoveringAsset"]
514 /\ UNCHANGED << assets, pState, coordState, qrm,
515 qrf, swapGraph, ProofPublish, ProofLock,
516 ProofOkRM, ProofOkRF >>
517
518 BdirectToR(self) == /\ pc[self] = "BdirectToR"
519 /\ IF self \in Sources
520 /\ assets[AofS(self)] = "OwS"
521 THEN /\ assets' =
522 [assets EXCEPT ![AofS(self)] = "OwR"]
523 ELSE /\ TRUE
524 /\ UNCHANGED assets
525 /\ pc' = [pc EXCEPT ![self] = "init_bsrc"]
526 /\ UNCHANGED << pState, coordState, qrm,
527 qrf, swapGraph, ProofPublish, ProofLock,
528 ProofOkRM, ProofOkRF >>
529
530 Bother(self) == /\ pc[self] = "Bother"
531 /\ IF self \in Sources
532 /\ assets[AofS(self)] = "OwS"
533 THEN /\ assets' =
534 [assets EXCEPT ![AofS(self)] = "other"]
535 ELSE /\ TRUE
536 /\ UNCHANGED assets
537 /\ pc' = [pc EXCEPT ![self] = "init_bsrc"]
538 /\ UNCHANGED << pState, coordState, qrm, qrf,
539 swapGraph, ProofPublish, ProofLock, ProofOkRM,
540 ProofOkRF >>
541
542 BaskRM(self) == /\ pc[self] = "BaskRM"
543 /\ IF self \in Sources
544 /\ ProofLock[self] = TRUE
545 /\ coordState = "published"
546 THEN /\ qrm' = (qrm \union {self})
547 ELSE /\ TRUE
548 /\ qrm' = qrm
549 /\ pc' = [pc EXCEPT ![self] = "init_bsrc"]
550 /\ UNCHANGED << assets, pState, coordState,
551 qrf, swapGraph, ProofPublish, ProofLock,
552 ProofOkRM, ProofOkRF >>
553
554 BlockAsset(self) == /\ pc[self] = "BlockAsset"
555 /\ IF ProofPublish = TRUE
556 /\ self \in Sources
557 /\ assets[AofS(self)] = "OwS"
558 THEN /\ assets' =
559 [assets EXCEPT ![AofS(self)] = "locked"]
560 /\ ProofLock' =
561 [ProofLock EXCEPT ![self] = TRUE]
562 ELSE /\ TRUE
563 /\ UNCHANGED << assets, ProofLock >>
564 /\ pc' = [pc EXCEPT ![self] = "init_bsrc"]
565 /\ UNCHANGED << pState, coordState, qrm,
566 qrf, swapGraph, ProofPublish, ProofOkRM,
567 ProofOkRF >>
568
569 BSaskRF(self) == /\ pc[self] = "BSaskRF"
570 /\ IF coordState = "published"
571 THEN /\ qrf' = TRUE
572 ELSE /\ TRUE
573 /\ qrf' = qrf
574 /\ pc' = [pc EXCEPT ![self] = "init_bsrc"]
575 /\ UNCHANGED << assets, pState, coordState,
576 qrm, swapGraph, ProofPublish, ProofLock,
577 ProofOkRM, ProofOkRF >>
578
579 BrecoveringAsset(self) == /\ pc[self] = "BrecoveringAsset"

A TLA+ Formal Proof of a Cross-Chain Swap

580 /\ IF self \in Sources
581 /\ ProofOkRF = TRUE
582 /\ assets[AofS(self)] ="locked"
583 THEN /\ assets' =
584 [assets EXCEPT ![AofS(self)] = "OwS"]
585 ELSE /\ TRUE
586 /\ UNCHANGED assets
587 /\ pc' =
588 [pc EXCEPT ![self] = "init_bsrc"]
589 /\ UNCHANGED << pState, coordState,
590 qrm, qrf, swapGraph, ProofPublish,
591 ProofLock, ProofOkRM, ProofOkRF >>
592
593 BSource(self) == init_bsrc(self) \/ BdirectToR(self)
594 \/ Bother(self) \/ BaskRM(self) \/ BlockAsset(self) \/
595 BSaskRF(self) \/ BrecoveringAsset(self)
596
597 init_rcp(self) == /\ pc[self] = "init_rcp"
598 /\ \/ /\ swapGraph = "different" \/ TRUE
599 /\ pc' = [pc EXCEPT ![self] = "Done"]
600 \/ /\ ProofPublish = TRUE
601 /\ swapGraph = "correct"
602 /\ pc' =
603 [pc EXCEPT ![self] = "waitForD_rcp"]
604 /\ UNCHANGED << assets, pState, coordState,
605 qrm, qrf, swapGraph, ProofPublish, ProofLock,
606 ProofOkRM, ProofOkRF >>
607
608 waitForD_rcp(self) == /\ pc[self] = "waitForD_rcp"
609 /\ \/ /\ ProofOkRF = TRUE
610 /\ pc' = [pc EXCEPT ![self] = "Done"]
611 /\ UNCHANGED <<assets, qrf>>
612 \/ /\ ProofOkRM = TRUE
613 /\ IF self \in Recipients
614 /\ ProofOkRM = TRUE
615 /\ assets[AofR(self)] = "locked"
616 THEN /\ assets' =
617 [assets EXCEPT ![AofR(self)] = "OwR"]
618 ELSE /\ TRUE
619 /\ UNCHANGED assets
620 /\ pc' = [pc EXCEPT ![self] = "Done"]
621 /\ qrf' = qrf
622 \/ /\ coordState = "published"
623 /\ IF coordState = "published"
624 THEN /\ qrf' = TRUE
625 ELSE /\ TRUE
626 /\ qrf' = qrf
627 /\ pc' =
628 [pc EXCEPT ![self] = "waitForD_rcp"]
629 /\ UNCHANGED assets
630 /\ UNCHANGED << pState, coordState, qrm,
631 swapGraph, ProofPublish, ProofLock,
632 ProofOkRM, ProofOkRF >>
633
634 Recipient(self) == init_rcp(self) \/ waitForD_rcp(self)
635
636 init_brcp(self) ==
637 /\ pc[self] = "init_brcp"
638 /\ \/ /\ pc' = [pc EXCEPT ![self] = "BRaskRF"]
639 \/ /\ pc' = [pc EXCEPT ![self] = "BRretrievingAsset"]
640 \/ /\ pc' = [pc EXCEPT ![self] = "BRdirectToS"]
641 \/ /\ pc' = [pc EXCEPT ![self] = "BRother"]
642 /\ UNCHANGED << assets, pState, coordState, qrm, qrf,
643 swapGraph, ProofPublish, ProofLock, ProofOkRM,
644 ProofOkRF >>
645
646 BRaskRF(self) == /\ pc[self] = "BRaskRF"
647 /\ IF coordState = "published"
648 THEN /\ qrf' = TRUE

649 ELSE /\ TRUE
650 /\ qrf' = qrf
651 /\ pc' = [pc EXCEPT ![self] = "init_brcp"]
652 /\ UNCHANGED << assets, pState, coordState, qrm,
653 swapGraph, ProofPublish, ProofLock,
654 ProofOkRM, ProofOkRF >>
655
656 BRretrievingAsset(self) == /\ pc[self] = "BRretrievingAsset"
657 /\ IF self \in Recipients
658 /\ ProofOkRM = TRUE
659 /\ assets[AofR(self)] = "locked"
660 THEN /\ assets' =
661 [assets EXCEPT ![AofR(self)] = "OwR"]
662 ELSE /\ TRUE
663 /\ UNCHANGED assets
664 /\ pc' =
665 [pc EXCEPT ![self] = "init_brcp"]
666 /\ UNCHANGED << pState, coordState,
667 qrm, qrf, swapGraph, ProofPublish,
668 ProofLock,ProofOkRM, ProofOkRF >>
669
670 BRdirectToS(self) == /\ pc[self] = "BRdirectToS"
671 /\ IF self \in Recipients
672 /\ assets[AofR(self)] = "OwR"
673 THEN /\ assets' =
674 [assets EXCEPT ![AofR(self)] = "OwS"]
675 ELSE /\ TRUE
676 /\ UNCHANGED assets
677 /\ pc' = [pc EXCEPT ![self] = "init_brcp"]
678 /\ UNCHANGED << pState, coordState, qrm,
679 qrf, swapGraph, ProofPublish, ProofLock,
680 ProofOkRM, ProofOkRF >>
681
682 BRother(self) == /\ pc[self] = "BRother"
683 /\ IF self \in Recipients
684 /\ assets[AofR(self)] = "OwR"
685 THEN /\ assets' =
686 [assets EXCEPT ![AofR(self)] = "other"]
687 ELSE /\ TRUE
688 /\ UNCHANGED assets
689 /\ pc' = [pc EXCEPT ![self] = "init_brcp"]
690 /\ UNCHANGED << pState, coordState, qrm,
691 qrf, swapGraph, ProofPublish, ProofLock,
692 ProofOkRM, ProofOkRF >>
693
694 BRecipient(self) == init_brcp(self) \/ BRaskRF(self)
695 \/ BRretrievingAsset(self) \/ BRdirectToS(self)
696 \/ BRother(self)
697
698 (* Allow infinite stuttering to prevent deadlock on termination*)
699 Terminating == /\ \A self \in ProcSet: pc[self] = "Done"
700 /\ UNCHANGED vars
701
702 Next == Publisher \/ Coordinator
703 \/ (\E self \in CSources: Source(self))
704 \/ (\E self \in BSources: BSource(self))
705 \/ (\E self \in CRecipients: Recipient(self))
706 \/ (\E self \in BRecipients: BRecipient(self))
707 \/ Terminating
708
709 Spec == /\ Init /\ [][Next]_vars
710 /\ WF_vars(Next)
711 /\ WF_vars(Coordinator)
712 /\ \A self \in CSources : WF_vars(Source(self))
713 /\ \A self \in CRecipients : WF_vars(Recipient(self))
714
715 Termination == <>(\A self \in ProcSet: pc[self] = "Done")
716
717 * END TRANSLATION

Nehaï, et al.

718
719 (**************** Liveness Property***************************)
720 (**************** Checked using Model-Checking****************)
721
722 AvailableS(a) == assets[a] = "OwS" \/
723 (ProofOkRF = TRUE /\ assets[a] = "locked")
724 AvailableR(a) == assets[a] = "OwR" \/
725 (ProofOkRM = TRUE /\ assets[a] = "locked")
726 AllParticipantsAreCorrect == (Pi = Pc) /\ swapGraph = "correct"
727
728 AtLeastOneCorrect == Pc # {} /\ (swapGraph \in SwapStates)
729 Finish(s,r) == pc[s] = "Done" /\ pc[r] = "Done"
730
731 OwnershipS == (\A s \in AssetsFromCS: AvailableS(s))
732 OwnershipR == (\A r \in AssetsForCR : AvailableR(r))
733 Ownership == AtLeastOneCorrect => <> (\/ OwnershipS
734 \/ OwnershipR)
735
736 Retrieving == AllParticipantsAreCorrect
737 ~> (\A r \in Recipients : assets[AofR(r)]= "OwR")
738
739 (***)
740 (***************** Consistency property*********************)
741
742 Consistency == \A s \in CSources, r \in CRecipients:
743 Finish(s,r) => AvailableS(AofS(s)) \/ AvailableR(AofR(r))
744
745 (**************** Safety ******************************)
746 (***************** Proved using TLAPS *******************)
747
748 * the following is a theorem about all sets of the model
749 * that are needed to ensure safety of our algorithm.
750
751 THEOREM SetsTheorem ==
752 /\ CoordinatorID # PublisherID
753 /\ \A a \in AssetsFromCS : a \in Assets
754 /\ \A a \in AssetsForCR : a \in Assets
755 /\ \A s \in Sources : s \in Pi
756 /\ \A r \in Recipients : r \in Pi
757 /\ \A p \in Pc: /\ p \in Pi
758 /\ \/ /\ p \in CSources
759 /\ p \in Sources
760 \/ /\ p \in CRecipients
761 /\ p \in Recipients
762 /\ p \notin BSources
763 /\ p \notin BRecipients
764 /\ \A s \in CSources : /\ s \in Sources
765 /\ s \in Pi
766 /\ s \in Pc
767 /\ s \notin BSources
768 /\ s # PublisherID
769 /\ s # CoordinatorID
770 /\ s \notin CRecipients
771 /\ s \notin Recipients
772 /\ s \notin BRecipients
773 /\ AofS(s) \in AssetsFromCS
774 /\ \A r \in CRecipients : /\ r \in Recipients
775 /\ r \in Pi
776 /\ r \in Pc
777 /\ r \notin BRecipients
778 /\ r # PublisherID
779 /\ r # CoordinatorID
780 /\ AofR(r) \in AssetsForCR
781 /\ SofA(AofR(r)) \in Sources
782 /\ \A bs \in BSources : /\ bs \in Pi
783 /\ bs \in Sources
784 /\ bs \notin CSources
785 /\ bs \notin Pc
786 /\ bs # PublisherID

787 /\ bs # CoordinatorID
788 /\ AofS(bs) \notin AssetsFromCS
789 /\ \A br \in BRecipients: /\ br \in Recipients
790 /\ br \in Pi
791 /\ br \notin Pc
792 /\ br \notin CRecipients
793 /\ br # PublisherID
794 /\ br # CoordinatorID
795 /\ AofR(br) \notin AssetsForCR
796 /\ ProcSet = {PublisherID} \cup {CoordinatorID} \cup
797 (CSources) \cup (BSources) \cup (CRecipients) \cup
798 (BRecipients)
799 /\ Pi = Sources \cup Recipients
800 /\ Pc = Pi \cap Correct
801 /\ CSources = Pc \cap Sources
802 /\ CRecipients = Pc \cap Recipients
803 /\ BSources = Sources \ CSources
804 /\ BRecipients = Recipients \ CRecipients
805 /\ BSources \cap CSources = {}
806 /\ BRecipients \cap CRecipients = {}
807 /\ AStates = {"OwS", "OwR", "locked", "other"}
808 /\ CStates = {"init", "published", "okRM", "okRF"}
809 /\ PStates = {"init", "publish"}
810 /\ SwapStates = {"init", "correct", "different"}
811 /\ \A s \in Sources: SofA(AofS(s)) = s
812 /\ \A s \in Recipients: RofA(AofR(s)) = s
813 /\ \A s \in Assets: AofS(SofA(s)) = s
814 /\ \A s \in Assets: AofR(RofA(s)) = s
815 /\ \A s \in Sources: AofS(s) \in Assets
816 /\ \A a \in Assets: SofA(a) \in Sources
817 BY DEF ProcSet, CSources, CRecipients, Sources, Recipients,
818 AssetsFromCS, Assets, AssetsForCR, AofS, AofR, SofA, RofA,
819 Pi, Pc, BSources, BRecipients, PublisherID, CoordinatorID,
820 AStates, CStates, PStates, SwapStates
821
822
823 * the following predicate is a type correctness invariant
824
825 TypeOk == /\ assets \in [Assets −> AStates]
826 /\ pState \in PStates
827 /\ coordState \in CStates
828 /\ ProofLock \in [Sources −> \in BOOLEAN]
829 /\ ProofPublish \in \in BOOLEAN
830 /\ ProofOkRM \in BOOLEAN
831 /\ ProofOkRF \in BOOLEAN
832 /\ qrm \subseteq Sources
833 /\ qrf \in \in BOOLEAN
834 /\ swapGraph \in SwapStates
835 /\ pc[CoordinatorID] \in
836 { "init_c", "decision", "decisionValid",
837 "decisionAbort", "Done" }
838 /\ pc[CoordinatorID] = "Done" =>
839 coordState \in { "okRM", "okRF" }
840 /\ pc \in [ProcSet −> { "init_c", "decision",
841 "decisionValid", "decisionAbort", "Done",
842 "init_p", "init_src" , "lock", "published",
843 "waitForD", "refunded", "Done", "init_bsrc",
844 "BdirectToR", "Bother", "BaskRM", "BlockAsset",
845 "BSaskRF", "BrecoveringAsset", "init_rcp",
846 "waitForD_rcp", "redeemed", "exit_rcp", "Done",
847 "init_brcp", "BRaskRF", "BRretrievingAsset",
848 "BRdirectToS", "BRother" }]
849
850 * the following predicates are needed to define the
851 * coordinator invariant
852
853 init_cInv ==
854 /\ coordState = "init"
855 /\ ProofOkRM = FALSE

A TLA+ Formal Proof of a Cross-Chain Swap

856 /\ ProofOkRF = FALSE
857 /\ ProofPublish = FALSE
858 /\ qrf = FALSE
859 /\ qrm = {}
860 /\ \A s \in Sources: ProofLock[s] = FALSE
861 /\ \A s \in CSources :
862 /\ pc[s] \in {"init_src", "Done"}
863 /\ ProofLock[s] = FALSE
864 /\ assets[AofS(s)] = "OwS"
865 /\ \A r \in CRecipients :
866 pc[r] \in {"init_rcp", "Done"}
867 /\ swapGraph = "init" => pState = "init"
868 /\ swapGraph ="correct" => pState = "publish"
869 /\ swapGraph = "different" => pState = "publish"
870 /\ \A a \in AssetsFromCS: assets[a] = "OwS"
871 /\ pState = "publish" => pc[PublisherID] = "Done"
872
873 decisionInv ==
874 /\ coordState = "published"
875 /\ pState \in {"publish", "Done"}
876 /\ ProofOkRM = FALSE
877 /\ ProofOkRF = FALSE
878 /\ ProofPublish = TRUE
879 /\ pc[PublisherID] = "Done"
880 /\ \A s \in Sources:
881 /\ s \in qrm => ProofLock[s] = TRUE
882 /\ ProofLock[s] = TRUE =>
883 assets[AofS(s)] = "locked"
884 /\ \A s \in CSources :
885 /\ pc[s] \in
886 {"published", "waitForD", "init_src", "lock", "Done"}
887 /\ pc[s] \in {"published", "waitForD"}
888 => /\ ProofLock[s] = TRUE
889 /\ assets[AofS(s)] = "locked"
890 /\ pc[s] \in {"init_src", "lock", "Done"}
891 => /\ ProofLock[s] = FALSE
892 /\ assets[AofS(s)] = "OwS"
893 /\ pc[s] \in
894 {"init_src", "lock", "Done", "published" }
895 => s \notin qrm
896 /\ s \in qrm => pc[s] = "waitForD"
897 /\ \A r \in CRecipients : pc[r] \in
898 {"init_rcp", "waitForD_rcp", "Done"}
899 /\ \A a \in AssetsFromCS: assets[a] \in
900 {"locked", "OwS"}
901
902 decisionValidInv ==
903 /\ coordState = "published"
904 /\ pState \in {"publish", "Done"}
905 /\ ProofOkRM = FALSE
906 /\ ProofOkRF = FALSE
907 /\ ProofPublish = TRUE
908 /\ pc[PublisherID] = "Done"
909 /\ qrm = Sources
910 /\ \A s \in Sources:
911 /\ ProofLock[s] = TRUE
912 /\ assets[AofS(s)] = "locked"
913 /\ \A s \in CSources: pc[s] \in {"waitForD"}
914 /\ \A r \in CRecipients :
915 /\ pc[r] \in
916 {"init_rcp", "waitForD_rcp", "Done"}
917 /\ assets[AofR(r)] = "locked"
918 /\ pc[r] = "init_src"
919 => assets[AofR(r)] = "locked"
920 /\ qrm = Sources
921 => \A a \in Assets : assets[a] = "locked"
922
923 decisionAbortInv ==
924 /\ coordState = "published"

925 /\ pState \in {"publish", "Done"}
926 /\ ProofOkRM = FALSE
927 /\ ProofOkRF = FALSE
928 /\ ProofPublish = TRUE
929 /\ pc[PublisherID] = "Done"
930 /\ qrf = TRUE
931 /\ \A s \in CSources :
932 /\ assets[AofS(s)] \in { "locked", "OwS" }
933 /\ pc[s] \in
934 {"init_src", "lock", "published", "waitForD", "Done"}
935 /\ pc[s] = "Done" => assets[AofS(s)] = "OwS"
936 /\ pc[s] = "init_src"
937 => assets[AofS(s)] = "OwS"
938 /\ \A a \in AssetsFromCS:
939 assets[a] \in {"locked", "OwS"}
940
941 okRMInv ==
942 /\ coordState = "okRM"
943 /\ ProofOkRM = TRUE
944 /\ ProofOkRF = FALSE
945 /\ ProofPublish = TRUE
946 /\ qrm = Sources
947 /\ pc[PublisherID] = "Done"
948 /\ \A s \in CSources:
949 pc[s] \in {"waitForD", "Done"}
950 /\ \A r \in CRecipients :
951 /\ pc[r] \in
952 {"init_rcp", "waitForD_rcp", "Done"}
953 /\ assets[AofR(r)] \in { "locked", "OwR" }
954 /\ pc[r] = "Done"
955 => assets[AofR(r)] \in {"OwR", "locked"}
956 /\ pc[r] \in { "init_rcp", "waitForD_rcp"}
957 => assets[AofR(r)] = "locked"
958 /\ pc[r] = "init_src"
959 => assets[AofR(r)] = "locked"
960 /\ qrm = Sources
961 => \A a \in AssetsForCR :
962 assets[a] \in {"locked", "OwR"}
963
964 okRFInv ==
965 /\ ProofOkRM = FALSE
966 /\ ProofOkRF = TRUE
967 /\ ProofPublish = TRUE
968 /\ pc[PublisherID] = "Done"
969 /\ qrf = TRUE
970 /\ \A s \in CSources :
971 /\ assets[AofS(s)] \in { "locked", "OwS" }
972 /\ pc[s] = "Done" => assets[AofS(s)] = "OwS"
973 /\ pc[s] = "init_src" => assets[AofS(s)] = "OwS"
974 /\ \A a \in AssetsFromCS:
975 assets[a] \in { "locked", "OwS" }
976
977 CoordInv2 ==
978 /\ pc[CoordinatorID] = "init_c" => init_cInv
979 /\ pc[CoordinatorID] = "decision" => decisionInv
980 /\ pc[CoordinatorID] = "decisionValid" => decisionValidInv
981 /\ pc[CoordinatorID] = "decisionAbort" => decisionAbortInv
982 /\ (pc[CoordinatorID] = "Done" /\ coordState = "okRM")
983 => okRMInv
984 /\ (pc[CoordinatorID] = "Done" /\ coordState = "okRF")
985 => okRFInv
986
987 (* the inductive invariant for proving the safety property*)
988 Inv == TypeOk /\ CoordInv2
989
990 THEOREM InitImpliesTypeOk ==
991 ASSUME Init
992 PROVE TypeOk
993 <1>1. assets \in [Assets −> AStates]

Nehaï, et al.

994 BY SetsTheorem DEF TypeOk, Init
995 <1>2. pState \in PStates
996 BY SetsTheorem DEF TypeOk, Init
997 <1>3. coordState \in CStates
998 BY SetsTheorem DEF TypeOk, Init
999 <1>4. ProofLock \in [Sources −> { TRUE, FALSE }]

1000 BY SetsTheorem DEF TypeOk, Init
1001 <1>5. ProofPublish \in { TRUE, FALSE }
1002 BY SetsTheorem DEF TypeOk, Init
1003 <1>6. ProofOkRM \in BOOLEAN
1004 BY SetsTheorem DEF TypeOk, Init
1005 <1>7. ProofOkRF \in BOOLEAN
1006 BY SetsTheorem DEF TypeOk, Init
1007 <1>8. qrm \subseteq Sources
1008 BY SetsTheorem DEF TypeOk, Init
1009 <1>9. qrf \in { TRUE, FALSE }
1010 BY SetsTheorem DEF TypeOk, Init
1011 <1>10. swapGraph \in SwapStates
1012 BY SetsTheorem DEF TypeOk, Init
1013 <1>11. pc[CoordinatorID] = "Done"
1014 => coordState \in { "okRM", "okRF" }
1015 BY SetsTheorem DEF TypeOk, Init
1016 <1>12. pc[CoordinatorID] \in { "init_c", "decision",
1017 "decisionValid", "decisionAbort", "Done" }
1018 BY SetsTheorem DEF TypeOk, Init
1019 <1>13. pc \in [ProcSet −> { "init_c", "decision",
1020 "decisionValid", "decisionAbort", "Done",
1021 "init_p", "init_src" , "lock", "published", "waitForD",
1022 "refunded", "Done", "init_bsrc" , "BdirectToR", "Bother",
1023 "BaskRM", "BlockAsset", "BSaskRF", "BrecoveringAsset",
1024 "init_rcp" , "waitForD_rcp", "redeemed", "exit_rcp",
1025 "Done", "init_brcp", "BRaskRF", "BRretrievingAsset",
1026 "BRdirectToS", "BRother" }]
1027 BY SetsTheorem DEF TypeOk, Init
1028 <1>14. QED
1029 BY <1>1, <1>10, <1>11, <1>12, <1>13, <1>2, <1>3,
1030 <1>4, <1>5, <1>6, <1>7, <1>8, <1>9 DEF TypeOk
1031
1032 THEOREM InitImpliesCoord ==
1033 ASSUME TypeOk,
1034 Init
1035 PROVE CoordInv2
1036 BY SetsTheorem DEF TypeOk, Init, CoordInv2, init_cInv
1037
1038 THEOREM InitImpliesInv ==
1039 ASSUME Init
1040 PROVE TypeOk /\ CoordInv2
1041 BY InitImpliesCoord, InitImpliesTypeOk
1042
1043 THEOREM TypeOkInvariant ==
1044 ASSUME TypeOk,
1045 Next
1046 PROVE TypeOk'
1047 <1>1. CASE Publisher
1048 BY <1>1, SetsTheorem DEF TypeOk, Publisher, init_p
1049 <1>2. CASE Coordinator
1050 <2>1. CASE init_c
1051 BY <2>1, <1>2, SetsTheorem DEF TypeOk, init_c
1052 <2>2. CASE decision
1053 BY <2>2, <1>2, SetsTheorem DEF TypeOk, decision
1054
1055 <2>3. CASE decisionValid
1056 BY <2>3, <1>2, SetsTheorem DEF TypeOk, decisionValid
1057 <2>4. CASE decisionAbort
1058 BY <2>4, <1>2, SetsTheorem DEF TypeOk, decisionAbort
1059 <2>7. QED
1060 BY <1>2, <2>1, <2>2, <2>3, <2>4 DEF Coordinator
1061
1062 <1>3. CASE \E self \in CSources: Source(self)

1063 <2> SUFFICES ASSUME NEW self \in CSources,
1064 Source(self)
1065 PROVE TypeOk'
1066 BY <1>3
1067 <2>1. CASE init_src(self)
1068 BY <2>1, <1>3, SetsTheorem DEF TypeOk, init_src
1069 <2>2. CASE lock(self)
1070 BY <2>2, <1>3, SetsTheorem DEF TypeOk, lock
1071 <2>3. CASE published(self)
1072 BY <2>3, <1>3, SetsTheorem DEF TypeOk, published
1073 <2>4. CASE waitForD(self)
1074 BY <2>4, <1>3, SetsTheorem DEF TypeOk, waitForD
1075 <2>7. QED
1076 BY <1>3, <2>1, <2>2, <2>3, <2>4 DEF Source
1077
1078 <1>4. CASE \E self \in BSources: BSource(self)
1079 <2> SUFFICES ASSUME NEW self \in BSources,
1080 BSource(self)
1081 PROVE TypeOk'
1082 BY <1>4
1083 <2>1. CASE init_bsrc(self)
1084 BY <2>1, <1>4, SetsTheorem DEF TypeOk, init_bsrc
1085 <2>2. CASE BdirectToR(self)
1086 BY <2>2, <1>4, SetsTheorem DEF TypeOk, BdirectToR
1087 <2>3. CASE Bother(self)
1088 BY <2>3, <1>4, SetsTheorem DEF TypeOk, Bother
1089 <2>4. CASE BaskRM(self)
1090 BY <2>4, <1>4, SetsTheorem DEF TypeOk, BaskRM
1091 <2>5. CASE BlockAsset(self)
1092 BY <2>5, <1>4, SetsTheorem DEF TypeOk, BlockAsset
1093 <2>6. CASE BSaskRF(self)
1094 BY <2>6, <1>4, SetsTheorem DEF TypeOk, BSaskRF
1095 <2>7. CASE BrecoveringAsset(self)
1096 BY <2>7, <1>4, SetsTheorem DEF TypeOk, BrecoveringAsset
1097 <2>8. QED
1098 BY <1>4, <2>1, <2>2, <2>3, <2>4, <2>5, <2>6, <2>7
1099 DEF BSource
1100
1101 <1>5. CASE \E self \in CRecipients: Recipient(self)
1102 <2> SUFFICES ASSUME NEW self \in CRecipients,
1103 Recipient(self)
1104 PROVE TypeOk'
1105 BY <1>5
1106 <2>1. CASE init_rcp(self)
1107 BY <2>1, <1>5, SetsTheorem DEF TypeOk, init_rcp
1108 <2>2. CASE waitForD_rcp(self)
1109 BY <2>2, <1>5, SetsTheorem DEF TypeOk, waitForD_rcp
1110 <2>5. QED
1111 BY <1>5, <2>1, <2>2 DEF Recipient
1112
1113 <1>6. CASE \E self \in BRecipients: BRecipient(self)
1114 <2> SUFFICES ASSUME NEW self \in BRecipients,
1115 BRecipient(self)
1116 PROVE TypeOk'
1117 BY <1>6
1118 <2>1. CASE init_brcp(self)
1119 BY <2>1, <1>6, SetsTheorem DEF TypeOk, init_brcp
1120 <2>2. CASE BRaskRF(self)
1121 BY <2>2, <1>6, SetsTheorem DEF TypeOk, BRaskRF
1122 <2>3. CASE BRretrievingAsset(self)
1123 BY <2>3, <1>6, SetsTheorem DEF TypeOk, BRretrievingAsset
1124 <2>4. CASE BRdirectToS(self)
1125 BY <2>4, <1>6, SetsTheorem DEF TypeOk, BRdirectToS
1126 <2>5. CASE BRother(self)
1127 BY <2>5, <1>6, SetsTheorem DEF TypeOk, BRother
1128 <2>6. QED
1129 BY <1>6, <2>1, <2>2, <2>3, <2>4, <2>5 DEF BRecipient
1130
1131 <1>7. CASE Terminating

A TLA+ Formal Proof of a Cross-Chain Swap

1132 BY <1>7 DEF TypeOk, Terminating, vars
1133 <1>8. QED
1134 BY <1>1, <1>2, <1>3, <1>4, <1>5, <1>6, <1>7 DEF Next
1135
1136
1137 THEOREM CoordInvariant ==
1138 ASSUME CoordInv2, TypeOk, TypeOk',
1139 Next
1140 PROVE CoordInv2'
1141 <1>1. CASE pc[CoordinatorID] = "init_c"
1142 <2>0. init_cInv
1143 BY <1>1 DEF CoordInv2
1144 <2>1. CASE Publisher
1145 BY <1>1, <2>0, <2>1, SetsTheorem DEF TypeOk, Publisher,
1146 init_p, init_cInv, CoordInv2
1147 <2>2. CASE Coordinator
1148 <3>1. CASE init_c
1149 <4>1. (pc[CoordinatorID] = "init_c" => init_cInv)'
1150 BY <2>0, <1>1, <3>1, <2>2, SetsTheorem DEF TypeOk,
1151 init_c, init_cInv
1152 <4>2. (pc[CoordinatorID] = "decision" => decisionInv)'
1153 BY <2>0, <1>1, <3>1, <2>2, SetsTheorem DEF TypeOk,
1154 init_c, init_cInv, decisionInv
1155 <4>3. (pc[CoordinatorID] = "decisionValid" =>
1156 decisionValidInv)'
1157 BY <2>0, <1>1, <3>1, <2>2, SetsTheorem DEF TypeOk,
1158 init_c, init_cInv
1159 <4>4. (pc[CoordinatorID] = "decisionAbort" =>
1160 decisionAbortInv)'
1161 BY <2>0, <1>1, <3>1, <2>2, SetsTheorem DEF TypeOk,
1162 init_c, init_cInv
1163 <4>5. ((pc[CoordinatorID] = "Done" /\ coordState="okRM")
1164 => okRMInv)'
1165 BY <1>1, <3>1, <2>2, SetsTheorem DEF TypeOk, init_c,
1166 init_cInv, CoordInv2
1167 <4>6. ((pc[CoordinatorID] = "Done" /\ coordState="okRF")
1168 => okRFInv)'
1169 BY <1>1, <3>1, <2>2, SetsTheorem DEF TypeOk, init_c,
1170 init_cInv, CoordInv2
1171 <4>7. QED
1172 BY <4>1, <4>2, <4>3, <4>4, <4>5, <4>6 DEF CoordInv2
1173 <3>2. CASE decision
1174 BY <1>1, <3>2, <2>2, SetsTheorem DEF TypeOk, decision
1175 <3>3. CASE decisionValid
1176 BY <1>1, <3>3, <2>2, SetsTheorem DEF TypeOk, decisionValid
1177 <3>4. CASE decisionAbort
1178 BY <1>1, <3>4, <2>2, SetsTheorem DEF TypeOk, decisionAbort
1179 <3>7. QED
1180 BY <2>2, <3>1, <3>2, <3>3, <3>4 DEF Coordinator
1181
1182 <2>3. CASE \E self \in CSources: Source(self)
1183 <3> SUFFICES ASSUME NEW self \in CSources,
1184 Source(self)
1185 PROVE CoordInv2'
1186 BY <2>3
1187 <3>1. CASE init_src(self)
1188 BY <3>1, <2>0, <1>1, <2>3, SetsTheorem DEF TypeOk,
1189 init_src, init_cInv, CoordInv2
1190 <3>2. CASE lock(self)
1191 BY <3>2, <2>0, <1>1, <2>3, SetsTheorem DEF TypeOk,
1192 lock, init_cInv, CoordInv2
1193 <3>3. CASE published(self)
1194 BY <3>3, <2>0, <1>1, <2>3, SetsTheorem DEF TypeOk,
1195 published, init_cInv, CoordInv2
1196 <3>4. CASE waitForD(self)
1197 BY <3>4, <2>0, <1>1, <2>3, SetsTheorem DEF TypeOk,
1198 waitForD, init_cInv, CoordInv2
1199 <3>7. QED
1200 BY <2>3, <3>1, <3>2, <3>3, <3>4 DEF Source

1201
1202 <2>4. CASE \E self \in BSources: BSource(self)
1203 <3> SUFFICES ASSUME NEW self \in BSources,
1204 BSource(self)
1205 PROVE CoordInv2'
1206 BY <2>4
1207 <3>1. CASE init_bsrc(self)
1208 BY <3>1, <2>0, <1>1, <2>4, SetsTheorem DEF TypeOk,
1209 init_bsrc, init_cInv, CoordInv2
1210 <3>2. CASE BdirectToR(self)
1211 BY <3>2, <2>0, <1>1, <2>4, SetsTheorem DEF TypeOk,
1212 BdirectToR, init_cInv, CoordInv2
1213 <3>3. CASE Bother(self)
1214 BY <3>3, <2>0, <1>1, <2>4, SetsTheorem DEF TypeOk,
1215 Bother, init_cInv, CoordInv2
1216 <3>4. CASE BaskRM(self)
1217 BY <3>4, <2>0, <1>1, <2>4, SetsTheorem DEF TypeOk,
1218 BaskRM, init_cInv, CoordInv2
1219 <3>5. CASE BlockAsset(self)
1220 BY <3>5, <2>0, <1>1, <2>4, SetsTheorem DEF TypeOk,
1221 BlockAsset, init_cInv, CoordInv2
1222 <3>6. CASE BSaskRF(self)
1223 BY <3>6, <2>0, <1>1, <2>4, SetsTheorem DEF TypeOk,
1224 BSaskRF, init_cInv, CoordInv2
1225 <3>7. CASE BrecoveringAsset(self)
1226 BY <3>7, <2>0, <1>1, <2>4, SetsTheorem DEF TypeOk,
1227 BrecoveringAsset, init_cInv, CoordInv2
1228 <3>8. QED
1229 BY <2>4, <3>1, <3>2, <3>3, <3>4, <3>5, <3>6, <3>7
1230 DEF BSource
1231
1232 <2>5. CASE \E self \in CRecipients: Recipient(self)
1233 <3> SUFFICES ASSUME NEW self \in CRecipients,
1234 Recipient(self)
1235 PROVE CoordInv2'
1236 BY <2>5
1237 <3>1. CASE init_rcp(self)
1238 BY <3>1, <1>1, <2>0,<2>5, SetsTheorem DEF TypeOk,
1239 init_rcp, init_cInv, CoordInv2
1240 <3>2. CASE waitForD_rcp(self)
1241 BY <3>2, <1>1, <2>0,<2>5, SetsTheorem DEF TypeOk,
1242 waitForD_rcp, init_cInv, CoordInv2
1243 <3>5. QED
1244 BY <2>5, <3>1, <3>2 DEF Recipient
1245
1246 <2>6. CASE \E self \in BRecipients: BRecipient(self)
1247 <3> SUFFICES ASSUME NEW self \in BRecipients,
1248 BRecipient(self)
1249 PROVE CoordInv2'
1250 BY <2>6
1251 <3>1. CASE init_brcp(self)
1252 BY <3>1, <1>1, <2>0,<2>6, SetsTheorem DEF TypeOk,
1253 init_brcp, init_cInv, CoordInv2
1254 <3>2. CASE BRaskRF(self)
1255 BY <3>2, <1>1, <2>0,<2>6, SetsTheorem DEF TypeOk,
1256 BRaskRF, init_cInv, CoordInv2
1257 <3>3. CASE BRretrievingAsset(self)
1258 BY <3>3, <1>1, <2>0,<2>6, SetsTheorem DEF TypeOk,
1259 BRretrievingAsset, init_cInv, CoordInv2
1260 <3>4. CASE BRdirectToS(self)
1261 BY <3>4, <1>1, <2>0,<2>6, SetsTheorem DEF TypeOk,
1262 BRdirectToS, init_cInv, CoordInv2
1263 <3>5. CASE BRother(self)
1264 BY <3>5, <1>1, <2>0,<2>6, SetsTheorem DEF TypeOk,
1265 BRother, init_cInv, CoordInv2
1266 <3>6. QED
1267 BY <2>6, <3>1, <3>2, <3>3, <3>4, <3>5 DEF BRecipient
1268
1269 <2>7. CASE Terminating

Nehaï, et al.

1270 BY <1>1, <2>0,<2>7, SetsTheorem DEF TypeOk, Terminating,
1271 CoordInv2
1272 <2>8. QED
1273 BY <2>1, <2>2, <2>3, <2>4, <2>5, <2>6, <2>7 DEF Next
1274
1275 <1>2. CASE pc[CoordinatorID] = "decision"
1276 <2>0. decisionInv
1277 BY <1>2 DEF CoordInv2
1278 <2>1. CASE Publisher
1279 BY <1>2, <2>0, <2>1, SetsTheorem DEF TypeOk, Publisher,
1280 init_p, decisionInv, CoordInv2
1281 <2>2. CASE Coordinator
1282 <3>1. CASE init_c
1283 BY <1>2, <3>1, <2>2, SetsTheorem DEF TypeOk, init_c
1284 <3>2. CASE decision
1285 <4>1. (pc[CoordinatorID] = "init_c" => init_cInv)'
1286 BY <2>0, <1>2, <3>2, <2>2, SetsTheorem DEF TypeOk,
1287 decision
1288 <4>2. (pc[CoordinatorID] = "decision" => decisionInv)'
1289 BY <2>0, <1>2, <3>2, <2>2, SetsTheorem DEF TypeOk,
1290 decision, decisionInv
1291 <4>3. (pc[CoordinatorID] = "decisionValid" =>
1292 decisionValidInv)'
1293 BY <2>0, <1>2, <3>2, <2>2, SetsTheorem DEF TypeOk,
1294 decision, decisionInv, ValidTransfer, decisionValidInv
1295 <4>4. (pc[CoordinatorID] = "decisionAbort" =>
1296 decisionAbortInv)'
1297 BY <2>0, <1>2, <3>2, <2>2, SetsTheorem DEF TypeOk,
1298 decision, decisionInv, AbortTransfer, decisionAbortInv
1299 <4>5. ((pc[CoordinatorID] = "Done" /\ coordState = "okRM")
1300 => okRMInv)'
1301 BY <2>0, <1>2, <3>2, <2>2, SetsTheorem DEF TypeOk,
1302 decision
1303 <4>6. ((pc[CoordinatorID] = "Done" /\ coordState = "okRF")
1304 => okRFInv)'
1305 BY <2>0, <1>2, <3>2, <2>2, SetsTheorem DEF TypeOk,
1306 decision
1307 <4>7. QED
1308 BY <4>1, <4>2, <4>3, <4>4, <4>5, <4>6 DEF CoordInv2
1309
1310 <3>3. CASE decisionValid
1311 BY <1>2, <3>3, <2>2, SetsTheorem DEF TypeOk, decisionValid
1312 <3>4. CASE decisionAbort
1313 BY <1>2, <3>4, <2>2, SetsTheorem DEF TypeOk, decisionAbort
1314 <3>7. QED
1315 BY <2>2, <3>1, <3>2, <3>3, <3>4 DEF Coordinator
1316
1317 <2>3. CASE \E self \in CSources: Source(self)
1318 <3> SUFFICES ASSUME NEW self \in CSources,
1319 Source(self)
1320 PROVE CoordInv2'
1321 BY <2>3
1322 <3>1. CASE init_src(self)
1323 BY <3>1, <2>0, <1>2, <2>3, SetsTheorem DEF TypeOk,
1324 init_src, decisionInv, CoordInv2
1325 <3>2. CASE lock(self)
1326 <4>0. assets' = [assets EXCEPT ![AofS(self)] = "locked"]
1327 BY <3>2, <2>0, <1>2, <2>3, SetsTheorem DEF TypeOk,
1328 lock, decisionInv
1329 <4>1. (pc[CoordinatorID] = "init_c" => init_cInv)'
1330 BY <3>2, <2>0, <1>2, <2>3, SetsTheorem DEF TypeOk,
1331 lock, decisionInv
1332 <4>2. (pc[CoordinatorID] = "decision" => decisionInv)'
1333 BY <3>2, <2>0, <1>2, <2>3, <4>0, SetsTheorem
1334 DEF TypeOk, lock, decisionInv
1335 <4>3. (pc[CoordinatorID] = "decisionValid" =>
1336 decisionValidInv)'
1337 BY <3>2, <2>0, <1>2, <2>3, SetsTheorem DEF TypeOk,
1338 lock, decisionInv, decisionValidInv

1339 <4>4. (pc[CoordinatorID] = "decisionAbort" =>
1340 decisionAbortInv)'
1341 BY <3>2, <2>0, <1>2, <2>3, SetsTheorem DEF TypeOk,
1342 lock, decisionInv, decisionValidInv
1343 <4>5. ((pc[CoordinatorID] = "Done" /\ coordState="okRM")
1344 => okRMInv)'
1345 BY <3>2, <2>0, <1>2, <2>3, SetsTheorem DEF TypeOk,
1346 lock, decisionInv
1347 <4>6. ((pc[CoordinatorID] = "Done" /\ coordState="okRF")
1348 => okRFInv)'
1349 BY <3>2, <2>0, <1>2, <2>3, SetsTheorem DEF TypeOk,
1350 lock, decisionInv
1351 <4>7. QED
1352 BY <4>1, <4>2, <4>3, <4>4, <4>5, <4>6 DEF CoordInv2
1353
1354 <3>3. CASE published(self)
1355 BY <3>3, <2>0, <1>2, <2>3, SetsTheorem DEF TypeOk,
1356 published, decisionInv, CoordInv2
1357 <3>4. CASE waitForD(self)
1358 <4>1. (pc[CoordinatorID] = "init_c" => init_cInv)'
1359 BY <3>4, <2>0, <1>2, <2>3, SetsTheorem DEF TypeOk,
1360 waitForD, decisionInv
1361 <4>2. (pc[CoordinatorID] = "decision" => decisionInv)'
1362 BY <3>4, <2>0, <1>2, <2>3, SetsTheorem DEF TypeOk,
1363 waitForD, decisionInv
1364 <4>3. (pc[CoordinatorID] = "decisionValid" =>
1365 decisionValidInv)'
1366 BY <3>4, <2>0, <1>2, <2>3, SetsTheorem DEF TypeOk,
1367 waitForD, decisionInv, decisionValidInv
1368 <4>4. ((pc[CoordinatorID] = "Done" /\ coordState="okRM")
1369 => okRMInv)'
1370 BY <3>4, <2>0, <1>2, <2>3, SetsTheorem DEF TypeOk,
1371 waitForD, decisionInv
1372 <4>5. (pc[CoordinatorID] = "decisionAbort" =>
1373 decisionAbortInv)'
1374 BY <3>4, <2>0, <1>2, <2>3, SetsTheorem DEF TypeOk,
1375 waitForD, decisionInv, decisionValidInv
1376 <4>6. ((pc[CoordinatorID] = "Done" /\ coordState="okRF")
1377 => okRFInv)'
1378 BY <3>4, <2>0, <1>2, <2>3, SetsTheorem DEF TypeOk,
1379 waitForD, decisionInv
1380 <4>7. QED
1381 BY <4>1, <4>2, <4>3, <4>4, <4>5, <4>6 DEF CoordInv2
1382 <3>7. QED
1383 BY <2>3, <3>1, <3>2, <3>3, <3>4 DEF Source
1384
1385 <2>4. CASE \E self \in BSources: BSource(self)
1386 <3> SUFFICES ASSUME NEW self \in BSources,
1387 BSource(self)
1388 PROVE CoordInv2'
1389 BY <2>4
1390 <3>1. CASE init_bsrc(self)
1391 BY <3>1, <2>0, <1>2, <2>4, SetsTheorem DEF TypeOk,
1392 init_bsrc, decisionInv, CoordInv2
1393 <3>2. CASE BdirectToR(self)
1394 <8>1. CASE assets[AofS(self)] = "OwS"
1395 <9>1. assets' = [assets EXCEPT ![AofS(self)] = "OwR"]
1396 BY <8>1, <3>2, <2>0, <1>2, <2>4, SetsTheorem
1397 DEF TypeOk, BdirectToR, decisionInv, CoordInv2
1398 <9>2. QED
1399 BY <9>1, <8>1, <3>2, <2>0, <1>2, <2>4, SetsTheorem
1400 DEF TypeOk, BdirectToR, decisionInv, CoordInv2
1401 <8>2. CASE assets[AofS(self)] # "OwS"
1402 BY <8>2, <3>2, <2>0, <1>2, <2>4, SetsTheorem
1403 DEF TypeOk, BdirectToR, decisionInv, CoordInv2
1404 <8>3. QED
1405 BY <8>1, <8>2
1406 <3>3. CASE Bother(self)
1407 <8>1. CASE assets[AofS(self)] = "OwS"

A TLA+ Formal Proof of a Cross-Chain Swap

1408 <9>1. assets' = [assets EXCEPT ![AofS(self)] = "other"]
1409 BY <8>1, <3>3, <2>0, <1>2, <2>4, SetsTheorem
1410 DEF TypeOk, Bother, decisionInv, CoordInv2
1411 <9>2. QED
1412 BY <9>1, <8>1, <3>3, <2>0, <1>2, <2>4, SetsTheorem
1413 DEF TypeOk, Bother, decisionInv, CoordInv2
1414 <8>2. CASE assets[AofS(self)] # "OwS"
1415 BY <8>2, <3>3, <2>0, <1>2, <2>4, SetsTheorem
1416 DEF TypeOk, Bother, decisionInv, CoordInv2
1417 <8>3. QED
1418 BY <8>1, <8>2
1419 <3>4. CASE BaskRM(self)
1420 BY <3>4, <2>0, <1>2, <2>4, SetsTheorem DEF TypeOk,
1421 BaskRM, decisionInv, CoordInv2
1422
1423 <3>5. CASE BlockAsset(self)
1424 <8>1. CASE (ProofPublish = TRUE /\
1425 assets[AofS(self)] = "OwS")
1426 <9>1. assets' =
1427 [assets EXCEPT ![AofS(self)] = "locked"]
1428 BY <8>1, <3>5, <2>0, <1>2, <2>4, SetsTheorem
1429 DEF TypeOk, BlockAsset, decisionInv, CoordInv2
1430 <9>2. QED
1431 BY <9>1, <8>1, <3>5, <2>0, <1>2, <2>4, SetsTheorem
1432 DEF TypeOk, BlockAsset, decisionInv, CoordInv2
1433 <8>2. CASE ~(ProofPublish = TRUE /\
1434 assets[AofS(self)] = "OwS")
1435 BY <8>2, <3>5, <2>0, <1>2, <2>4, SetsTheorem
1436 DEF TypeOk, BlockAsset, decisionInv, CoordInv2
1437 <8>3. QED
1438 BY <8>1, <8>2
1439 <3>6. CASE BSaskRF(self)
1440 BY <3>6, <2>0, <1>2, <2>4, SetsTheorem DEF TypeOk,
1441 BSaskRF, decisionInv, CoordInv2
1442 <3>7. CASE BrecoveringAsset(self)
1443 BY <3>7, <2>0, <1>2, <2>4, SetsTheorem DEF TypeOk,
1444 BrecoveringAsset, decisionInv, CoordInv2
1445 <3>8. QED
1446 BY <2>4, <3>1, <3>2, <3>3, <3>4, <3>5, <3>6, <3>7
1447 DEF BSource
1448
1449 <2>5. CASE \E self \in CRecipients: Recipient(self)
1450 <3> SUFFICES ASSUME NEW self \in CRecipients,
1451 Recipient(self)
1452 PROVE CoordInv2'
1453 BY <2>5
1454 <3>1. CASE init_rcp(self)
1455 BY <3>1, <1>2, <2>0,<2>5, SetsTheorem DEF TypeOk,
1456 init_rcp, decisionInv, CoordInv2
1457 <3>2. CASE waitForD_rcp(self)
1458 BY <3>2, <1>2, <2>0,<2>5, SetsTheorem DEF TypeOk,
1459 waitForD_rcp, decisionInv, CoordInv2
1460 <3>5. QED
1461 BY <2>5, <3>1, <3>2 DEF Recipient
1462
1463 <2>6. CASE \E self \in BRecipients: BRecipient(self)
1464 <3> SUFFICES ASSUME NEW self \in BRecipients,
1465 BRecipient(self)
1466 PROVE CoordInv2'
1467 BY <2>6
1468 <3>1. CASE init_brcp(self)
1469 BY <3>1, <1>2, <2>0,<2>6, SetsTheorem DEF TypeOk,
1470 init_brcp, decisionInv, CoordInv2
1471 <3>2. CASE BRaskRF(self)
1472 BY <3>2, <1>2, <2>0,<2>6, SetsTheorem DEF TypeOk,
1473 BRaskRF, decisionInv, CoordInv2
1474 <3>3. CASE BRretrievingAsset(self)
1475 BY <3>3, <1>2, <2>0,<2>6, SetsTheorem DEF TypeOk,
1476 BRretrievingAsset, decisionInv, CoordInv2

1477 <3>4. CASE BRdirectToS(self)
1478 BY <3>4, <1>2, <2>0,<2>6, SetsTheorem DEF TypeOk,
1479 BRdirectToS, decisionInv, CoordInv2
1480 <3>5. CASE BRother(self)
1481 BY <3>5, <1>2, <2>0,<2>6, SetsTheorem DEF TypeOk,
1482 BRother, decisionInv, CoordInv2
1483 <3>6. QED
1484 BY <2>6, <3>1, <3>2, <3>3, <3>4, <3>5 DEF BRecipient
1485
1486 <2>7. CASE Terminating
1487 BY <1>2, <2>0,<2>7, SetsTheorem DEF TypeOk,
1488 Terminating, CoordInv2
1489 <2>8. QED
1490 BY <2>1, <2>2, <2>3, <2>4, <2>5, <2>6, <2>7 DEF Next
1491
1492 <1>4. CASE pc[CoordinatorID] = "decisionValid"
1493 <2>0. decisionValidInv
1494 BY <1>4 DEF CoordInv2
1495 <2>1. CASE Publisher
1496 BY <1>4, <2>0, <2>1, SetsTheorem DEF TypeOk, Publisher,
1497 init_p, decisionValidInv, CoordInv2
1498 <2>2. CASE Coordinator
1499 <3>1. CASE init_c
1500 BY <1>4, <3>1, <2>2, SetsTheorem DEF TypeOk, init_c
1501 <3>2. CASE decision
1502 BY <1>4, <3>2, <2>2, SetsTheorem DEF TypeOk, decision
1503
1504 <3>3. CASE decisionValid
1505 <4>1. (pc[CoordinatorID] = "init_c" => init_cInv)'
1506 BY <2>0, <1>4, <3>3, <2>2, SetsTheorem DEF TypeOk,
1507 decisionValid
1508 <4>2. (pc[CoordinatorID] = "decision" => decisionInv)'
1509 BY <2>0, <1>4, <3>3, <2>2, SetsTheorem DEF TypeOk,
1510 decisionValid
1511 <4>3. (pc[CoordinatorID] = "decisionValid" =>
1512 decisionValidInv)'
1513 BY <2>0, <1>4, <3>3, <2>2, SetsTheorem DEF TypeOk,
1514 decisionValid, decisionValidInv
1515 <4>4. ((pc[CoordinatorID] = "Done" /\ coordState = "okRM")
1516 => okRMInv)'
1517 BY <2>0, <1>4, <3>3, <2>2, SetsTheorem DEF TypeOk,
1518 decisionValid, decisionValidInv, okRMInv
1519 <4>5. (pc[CoordinatorID] = "decisionAbort" =>
1520 decisionAbortInv)'
1521 BY <2>0, <1>4, <3>3, <2>2, SetsTheorem DEF TypeOk,
1522 decisionValid, decisionValidInv
1523 <4>6. ((pc[CoordinatorID] = "Done" /\ coordState = "okRF")
1524 => okRFInv)'
1525 BY <2>0, <1>4, <3>3, <2>2, SetsTheorem DEF TypeOk,
1526 decisionValid, decisionValidInv, okRMInv
1527 <4>7. QED
1528 BY <4>1, <4>2, <4>3, <4>4,<4>5,<4>6 DEF CoordInv2
1529 <3>4. CASE decisionAbort
1530 BY <1>4, <3>4, <2>2, SetsTheorem DEF TypeOk, decisionAbort
1531 <3>7. QED
1532 BY <2>2, <3>1, <3>2, <3>3, <3>4 DEF Coordinator
1533
1534 <2>3. CASE \E self \in CSources: Source(self)
1535 <3> SUFFICES ASSUME NEW self \in CSources,
1536 Source(self)
1537 PROVE CoordInv2'
1538 BY <2>3
1539 <3>1. CASE init_src(self)
1540 BY <3>1, <2>0, <1>4, <2>3, SetsTheorem DEF TypeOk,
1541 init_src, decisionValidInv, CoordInv2
1542 <3>2. CASE lock(self)
1543 <4>0. assets' = [assets EXCEPT ![AofS(self)] = "locked"]
1544 BY <3>2, <2>0, <1>4, <2>3, SetsTheorem DEF TypeOk,
1545 lock, decisionValidInv

Nehaï, et al.

1546 <4>1. (pc[CoordinatorID] = "init_c" => init_cInv)'
1547 BY <3>2, <2>0, <1>4, <2>3, SetsTheorem DEF TypeOk,
1548 lock, decisionValidInv
1549 <4>2. (pc[CoordinatorID] = "decision" => decisionInv)'
1550 BY <3>2, <2>0, <1>4, <2>3, <4>0, SetsTheorem
1551 DEF TypeOk, lock, decisionValidInv
1552 <4>3. (pc[CoordinatorID] = "decisionValid" =>
1553 decisionValidInv)'
1554 BY <3>2, <2>0, <1>4, <2>3, SetsTheorem DEF TypeOk,
1555 lock, decisionValidInv, decisionValidInv
1556 <4>4. ((pc[CoordinatorID] = "Done" /\ coordState="okRM")
1557 => okRMInv)'
1558 BY <3>2, <2>0, <1>4, <2>3, SetsTheorem DEF TypeOk,
1559 lock, decisionValidInv
1560 <4>5. (pc[CoordinatorID] = "decisionAbort" =>
1561 decisionAbortInv)'
1562 BY <3>2, <2>0, <1>4, <2>3, SetsTheorem DEF TypeOk,
1563 lock, decisionValidInv, decisionValidInv
1564 <4>6. ((pc[CoordinatorID] = "Done" /\ coordState="okRF")
1565 => okRFInv)'
1566 BY <3>2, <2>0, <1>4, <2>3, SetsTheorem DEF TypeOk,
1567 lock, decisionValidInv
1568 <4>7. QED
1569 BY <4>1, <4>2, <4>3, <4>4, <4>5, <4>6 DEF CoordInv2
1570
1571 <3>3. CASE published(self)
1572 BY <3>3, <2>0, <1>4, <2>3, SetsTheorem DEF TypeOk,
1573 published, decisionValidInv, CoordInv2
1574 <3>4. CASE waitForD(self)
1575 <4>1. (pc[CoordinatorID] = "init_c" => init_cInv)'
1576 BY <3>4, <2>0, <1>4, <2>3, SetsTheorem DEF TypeOk,
1577 waitForD, decisionValidInv
1578 <4>2. (pc[CoordinatorID] = "decision" => decisionInv)'
1579 BY <3>4, <2>0, <1>4, <2>3, SetsTheorem DEF TypeOk,
1580 waitForD, decisionValidInv
1581 <4>3. (pc[CoordinatorID] = "decisionValid" =>
1582 decisionValidInv)'
1583 BY <3>4, <2>0, <1>4, <2>3, SetsTheorem DEF TypeOk,
1584 waitForD, decisionValidInv, decisionValidInv
1585 <4>4. ((pc[CoordinatorID] = "Done" /\ coordState="okRM")
1586 => okRMInv)'
1587 BY <3>4, <2>0, <1>4, <2>3, SetsTheorem DEF TypeOk,
1588 waitForD, decisionValidInv
1589 <4>5. (pc[CoordinatorID] = "decisionAbort" =>
1590 decisionAbortInv)'
1591 BY <3>4, <2>0, <1>4, <2>3, SetsTheorem DEF TypeOk,
1592 waitForD, decisionValidInv, decisionValidInv
1593 <4>6. ((pc[CoordinatorID] = "Done" /\ coordState="okRF")
1594 => okRFInv)'
1595 BY <3>4, <2>0, <1>4, <2>3, SetsTheorem DEF TypeOk,
1596 waitForD, decisionValidInv
1597 <4>7. QED
1598 BY <4>1, <4>2, <4>3, <4>4, <4>5, <4>6 DEF CoordInv2
1599 <3>7. QED
1600 BY <2>3, <3>1, <3>2, <3>3, <3>4 DEF Source
1601
1602 <2>4. CASE \E self \in BSources: BSource(self)
1603 <3> SUFFICES ASSUME NEW self \in BSources,
1604 BSource(self)
1605 PROVE CoordInv2'
1606 BY <2>4
1607 <3>1. CASE init_bsrc(self)
1608 BY <3>1, <2>0, <1>4, <2>4, SetsTheorem DEF TypeOk,
1609 init_bsrc, decisionValidInv, CoordInv2
1610 <3>2. CASE BdirectToR(self)
1611 <8>1. CASE assets[AofS(self)] = "OwS"
1612 <9>1. assets' = [assets EXCEPT ![AofS(self)] = "OwR"]
1613 BY <8>1, <3>2, <2>0, <1>4, <2>4, SetsTheorem
1614 DEF TypeOk, BdirectToR, decisionValidInv, CoordInv2

1615 <9>2. QED
1616 BY <9>1, <8>1, <3>2, <2>0, <1>4, <2>4, SetsTheorem
1617 DEF TypeOk, BdirectToR, decisionValidInv, CoordInv2
1618 <8>2. CASE assets[AofS(self)] # "OwS"
1619 BY <8>2, <3>2, <2>0, <1>4, <2>4, SetsTheorem
1620 DEF TypeOk, BdirectToR, decisionValidInv, CoordInv2
1621 <8>3. QED
1622 BY <8>1, <8>2
1623 <3>3. CASE Bother(self)
1624 <8>1. CASE assets[AofS(self)] = "OwS"
1625 <9>1. assets' = [assets EXCEPT ![AofS(self)] = "other"]
1626 BY <8>1, <3>3, <2>0, <1>4, <2>4, SetsTheorem
1627 DEF TypeOk, Bother, decisionValidInv, CoordInv2
1628 <9>2. QED
1629 BY <9>1, <8>1, <3>3, <2>0, <1>4, <2>4, SetsTheorem
1630 DEF TypeOk, Bother, decisionValidInv, CoordInv2
1631 <8>2. CASE assets[AofS(self)] # "OwS"
1632 BY <8>2, <3>3, <2>0, <1>4, <2>4, SetsTheorem
1633 DEF TypeOk, Bother, decisionValidInv, CoordInv2
1634 <8>3. QED
1635 BY <8>1, <8>2
1636 <3>4. CASE BaskRM(self)
1637 <4>1. qrm = qrm \union { self }
1638 BY <3>4, <2>0, <1>4, <2>4, SetsTheorem DEF TypeOk,
1639 decisionValidInv
1640 <4>2. qrm' = qrm
1641 BY <4>1 , <3>4 DEF BaskRM
1642 <4>3. QED
1643 BY <4>2, <3>4, <2>0, <1>4, <2>4, SetsTheorem
1644 DEF TypeOk, BaskRM, decisionValidInv, CoordInv2
1645
1646 <3>5. CASE BlockAsset(self)
1647 <8>1. CASE (ProofPublish = TRUE /\
1648 assets[AofS(self)] = "OwS")
1649 <9>1. assets' =
1650 [assets EXCEPT ![AofS(self)] = "locked"]
1651 BY <8>1, <3>5, <2>0, <1>4, <2>4, SetsTheorem
1652 DEF TypeOk, BlockAsset, decisionValidInv, CoordInv2
1653 <9>2. QED
1654 BY <9>1, <8>1, <3>5, <2>0, <1>4, <2>4, SetsTheorem
1655 DEF TypeOk, BlockAsset, decisionValidInv, CoordInv2
1656 <8>2. CASE ~(ProofPublish = TRUE /\
1657 assets[AofS(self)] = "OwS")
1658 BY <8>2, <3>5, <2>0, <1>4, <2>4, SetsTheorem
1659 DEF TypeOk, BlockAsset, decisionValidInv, CoordInv2
1660 <8>3. QED
1661 BY <8>1, <8>2
1662 <3>6. CASE BSaskRF(self)
1663 BY <3>6, <2>0, <1>4, <2>4, SetsTheorem DEF TypeOk,
1664 BSaskRF, decisionValidInv, CoordInv2
1665 <3>7. CASE BrecoveringAsset(self)
1666 BY <3>7, <2>0, <1>4, <2>4, SetsTheorem DEF TypeOk,
1667 BrecoveringAsset, decisionValidInv, CoordInv2
1668 <3>8. QED
1669 BY <2>4, <3>1, <3>2, <3>3, <3>4, <3>5, <3>6, <3>7
1670 DEF BSource
1671
1672 <2>5. CASE \E self \in CRecipients: Recipient(self)
1673 <3> SUFFICES ASSUME NEW self \in CRecipients,
1674 Recipient(self)
1675 PROVE CoordInv2'
1676 BY <2>5
1677 <3>1. CASE init_rcp(self)
1678 BY <3>1, <1>4, <2>0,<2>5, SetsTheorem DEF TypeOk,
1679 init_rcp, decisionValidInv, CoordInv2
1680 <3>2. CASE waitForD_rcp(self)
1681 BY <3>2, <1>4, <2>0,<2>5, SetsTheorem DEF TypeOk,
1682 waitForD_rcp, decisionValidInv, CoordInv2
1683 <3>5. QED

A TLA+ Formal Proof of a Cross-Chain Swap

1684 BY <2>5, <3>1, <3>2 DEF Recipient
1685
1686 <2>6. CASE \E self \in BRecipients: BRecipient(self)
1687 <3> SUFFICES ASSUME NEW self \in BRecipients,
1688 BRecipient(self)
1689 PROVE CoordInv2'
1690 BY <2>6
1691 <3>1. CASE init_brcp(self)
1692 BY <3>1, <1>4, <2>0,<2>6, SetsTheorem DEF TypeOk,
1693 init_brcp, decisionValidInv, CoordInv2
1694 <3>2. CASE BRaskRF(self)
1695 BY <3>2, <1>4, <2>0,<2>6, SetsTheorem DEF TypeOk,
1696 BRaskRF, decisionValidInv, CoordInv2
1697 <3>3. CASE BRretrievingAsset(self)
1698 BY <3>3, <1>4, <2>0,<2>6, SetsTheorem DEF TypeOk,
1699 BRretrievingAsset, decisionValidInv, CoordInv2
1700 <3>4. CASE BRdirectToS(self)
1701 BY <3>4, <1>4, <2>0,<2>6, SetsTheorem DEF TypeOk,
1702 BRdirectToS, decisionValidInv, CoordInv2
1703 <3>5. CASE BRother(self)
1704 BY <3>5, <1>4, <2>0,<2>6, SetsTheorem DEF TypeOk,
1705 BRother, decisionValidInv, CoordInv2
1706 <3>6. QED
1707 BY <2>6, <3>1, <3>2, <3>3, <3>4, <3>5 DEF BRecipient
1708
1709 <2>7. CASE Terminating
1710 BY <1>4, <2>0,<2>7, SetsTheorem DEF TypeOk,
1711 Terminating, CoordInv2
1712 <2>8. QED
1713 BY <2>1, <2>2, <2>3, <2>4, <2>5, <2>6, <2>7 DEF Next
1714
1715 <1>6. CASE pc[CoordinatorID] = "decisionAbort"
1716 <2>0. decisionAbortInv
1717 BY <1>6 DEF CoordInv2
1718 <2>1. CASE Publisher
1719 BY <1>6, <2>0, <2>1, SetsTheorem DEF TypeOk, Publisher,
1720 init_p, decisionAbortInv, CoordInv2
1721 <2>2. CASE Coordinator
1722 <3>1. CASE init_c
1723 BY <1>6, <3>1, <2>2, SetsTheorem DEF TypeOk, init_c
1724 <3>2. CASE decision
1725 BY <1>6, <3>2, <2>2, SetsTheorem DEF TypeOk, decision
1726
1727 <3>3. CASE decisionAbort
1728 <4>1. (pc[CoordinatorID] = "init_c" => init_cInv)'
1729 BY <2>0, <1>6, <3>3, <2>2, SetsTheorem DEF TypeOk,
1730 decisionAbort
1731 <4>2. (pc[CoordinatorID] = "decision" => decisionInv)'
1732 BY <2>0, <1>6, <3>3, <2>2, SetsTheorem DEF TypeOk,
1733 decisionAbort
1734 <4>3. (pc[CoordinatorID] = "decisionValid" =>
1735 decisionValidInv)'
1736 BY <2>0, <1>6, <3>3, <2>2, SetsTheorem DEF TypeOk,
1737 decisionAbort, decisionAbortInv
1738 <4>4. ((pc[CoordinatorID] = "Done" /\ coordState = "okRM")
1739 => okRMInv)'
1740 BY <2>0, <1>6, <3>3, <2>2, SetsTheorem DEF TypeOk,
1741 decisionAbort, decisionAbortInv, okRMInv
1742 <4>5. (pc[CoordinatorID] = "decisionAbort" =>
1743 decisionAbortInv)'
1744 BY <2>0, <1>6, <3>3, <2>2, SetsTheorem DEF TypeOk,
1745 decisionAbort, decisionAbortInv
1746 <4>6. ((pc[CoordinatorID] = "Done" /\ coordState = "okRF")
1747 => okRFInv)'
1748 BY <2>0, <1>6, <3>3, <2>2, SetsTheorem DEF TypeOk,
1749 decisionAbort, okRFInv, decisionAbortInv
1750
1751 <4>7. QED
1752 BY <4>1, <4>2, <4>3, <4>4,<4>5,<4>6 DEF CoordInv2

1753 <3>4. CASE decisionValid
1754 BY <1>6, <3>4, <2>2, SetsTheorem DEF TypeOk, decisionValid
1755 <3>7. QED
1756 BY <2>2, <3>1, <3>2, <3>3, <3>4 DEF Coordinator
1757
1758 <2>3. CASE \E self \in CSources: Source(self)
1759 <3> SUFFICES ASSUME NEW self \in CSources,
1760 Source(self)
1761 PROVE CoordInv2'
1762 BY <2>3
1763 <3>1. CASE init_src(self)
1764 <4>1. (pc[CoordinatorID] = "init_c" => init_cInv)'
1765 BY <3>1, <2>0, <1>6, <2>3, SetsTheorem DEF TypeOk,
1766 init_src, decisionAbortInv, CoordInv2
1767 <4>2. (pc[CoordinatorID] = "decision" => decisionInv)'
1768 BY <3>1, <2>0, <1>6, <2>3, SetsTheorem DEF TypeOk,
1769 init_src, decisionAbortInv, CoordInv2
1770 <4>3. (pc[CoordinatorID] = "decisionValid" =>
1771 decisionValidInv)'
1772 BY <3>1, <2>0, <1>6, <2>3, SetsTheorem DEF TypeOk,
1773 init_src, decisionAbortInv, CoordInv2
1774 <4>4. (pc[CoordinatorID] = "decisionAbort" =>
1775 decisionAbortInv)'
1776 BY <3>1, <2>0, <1>6, <2>3, SetsTheorem DEF TypeOk,
1777 init_src, decisionAbortInv, CoordInv2
1778 <4>5. ((pc[CoordinatorID] = "Done" /\ coordState = "okRM")
1779 => okRMInv)'
1780 BY <3>1, <2>0, <1>6, <2>3, SetsTheorem DEF TypeOk,
1781 init_src, decisionAbortInv, CoordInv2
1782 <4>6. ((pc[CoordinatorID] = "Done" /\ coordState = "okRF")
1783 => okRFInv)'
1784 BY <3>1, <2>0, <1>6, <2>3, SetsTheorem DEF TypeOk,
1785 init_src, decisionAbortInv, CoordInv2
1786 <4>7. QED
1787 BY <4>1, <4>2, <4>3, <4>4, <4>5, <4>6 DEF CoordInv2
1788
1789 <3>2. CASE lock(self)
1790 <4>0. assets' = [assets EXCEPT ![AofS(self)] = "locked"]
1791 BY <3>2, <2>0, <1>6, <2>3, SetsTheorem DEF TypeOk,
1792 lock, decisionAbortInv
1793 <4>1. (pc[CoordinatorID] = "init_c" => init_cInv)'
1794 BY <3>2, <2>0, <1>6, <2>3, SetsTheorem DEF TypeOk,
1795 lock, decisionAbortInv
1796 <4>2. (pc[CoordinatorID] = "decision" => decisionInv)'
1797 BY <3>2, <2>0, <1>6, <2>3, <4>0, SetsTheorem
1798 DEF TypeOk, lock, decisionAbortInv
1799 <4>3. (pc[CoordinatorID] = "decisionValid" =>
1800 decisionValidInv)'
1801 BY <3>2, <2>0, <1>6, <2>3, SetsTheorem DEF TypeOk,
1802 lock, decisionAbortInv, decisionAbortInv
1803 <4>4. ((pc[CoordinatorID] = "Done" /\ coordState="okRM")
1804 => okRMInv)'
1805 BY <3>2, <2>0, <1>6, <2>3, SetsTheorem DEF TypeOk,
1806 lock, decisionAbortInv
1807 <4>5. (pc[CoordinatorID] = "decisionAbort" =>
1808 decisionAbortInv)'
1809 BY <3>2, <2>0, <1>6, <2>3, SetsTheorem DEF TypeOk,
1810 lock, decisionAbortInv, decisionAbortInv
1811 <4>6. ((pc[CoordinatorID] = "Done" /\ coordState="okRF")
1812 => okRFInv)'
1813 BY <3>2, <2>0, <1>6, <2>3, SetsTheorem DEF TypeOk,
1814 lock, decisionAbortInv
1815 <4>7. QED
1816 BY <4>1, <4>2, <4>3, <4>4, <4>5, <4>6 DEF CoordInv2
1817
1818 <3>3. CASE published(self)
1819 BY <3>3, <2>0, <1>6, <2>3, SetsTheorem DEF TypeOk,
1820 published, decisionAbortInv, CoordInv2
1821 <3>4. CASE waitForD(self)

Nehaï, et al.

1822 <4>0. pc'[CoordinatorID] = pc[CoordinatorID] /\
1823 pc'[PublisherID] = pc[PublisherID]
1824 BY <3>4, <2>0, <1>6, <2>3, SetsTheorem DEF TypeOk,
1825 waitForD
1826 <4>1. (pc[CoordinatorID] = "init_c" => init_cInv)'
1827 BY <4>0, <1>6
1828 <4>2. (pc[CoordinatorID] = "decision" => decisionInv)'
1829 BY <4>0, <1>6
1830 <4>3. (pc[CoordinatorID] = "decisionValid" =>
1831 decisionValidInv)'
1832 BY <4>0, <1>6
1833 <4>4. ((pc[CoordinatorID] = "Done" /\ coordState="okRM")
1834 => okRMInv)'
1835 BY <4>0, <1>6
1836 <4>5. (pc[CoordinatorID] = "decisionAbort" =>
1837 decisionAbortInv)'
1838 BY <4>0, <3>4, <2>0, <1>6, <2>3, SetsTheorem
1839 DEF TypeOk, waitForD, decisionAbortInv
1840 <4>6. ((pc[CoordinatorID] = "Done" /\ coordState="okRF")
1841 => okRFInv)'
1842 BY <4>0, <1>6
1843 <4>7. QED
1844 BY <4>1, <4>2, <4>3, <4>4, <4>5, <4>6 DEF CoordInv2
1845 <3>7. QED
1846 BY <2>3, <3>1, <3>2, <3>3, <3>4 DEF Source
1847
1848 <2>4. CASE \E self \in BSources: BSource(self)
1849 <3> SUFFICES ASSUME NEW self \in BSources,
1850 BSource(self)
1851 PROVE CoordInv2'
1852 BY <2>4
1853 <3>1. CASE init_bsrc(self)
1854 BY <3>1, <2>0, <1>6, <2>4, SetsTheorem DEF TypeOk,
1855 init_bsrc, decisionAbortInv, CoordInv2
1856 <3>2. CASE BdirectToR(self)
1857 <8>1. CASE assets[AofS(self)] = "OwS"
1858 <9>1. assets' = [assets EXCEPT ![AofS(self)] = "OwR"]
1859 BY <8>1, <3>2, <2>0, <1>6, <2>4, SetsTheorem
1860 DEF TypeOk, BdirectToR, decisionAbortInv, CoordInv2
1861 <9>2. QED
1862 BY <9>1, <8>1, <3>2, <2>0, <1>6, <2>4, SetsTheorem
1863 DEF TypeOk, BdirectToR, decisionAbortInv, CoordInv2
1864 <8>2. CASE assets[AofS(self)] # "OwS"
1865 BY <8>2, <3>2, <2>0, <1>6, <2>4, SetsTheorem
1866 DEF TypeOk, BdirectToR, decisionAbortInv, CoordInv2
1867 <8>3. QED
1868 BY <8>1, <8>2
1869 <3>3. CASE Bother(self)
1870 <8>1. CASE assets[AofS(self)] = "OwS"
1871 <9>1. assets' = [assets EXCEPT ![AofS(self)] = "other"]
1872 BY <8>1, <3>3, <2>0, <1>6, <2>4, SetsTheorem
1873 DEF TypeOk, Bother, decisionAbortInv, CoordInv2
1874 <9>2. QED
1875 BY <9>1, <8>1, <3>3, <2>0, <1>6, <2>4, SetsTheorem
1876 DEF TypeOk, Bother, decisionAbortInv, CoordInv2
1877 <8>2. CASE assets[AofS(self)] # "OwS"
1878 BY <8>2, <3>3, <2>0, <1>6, <2>4, SetsTheorem
1879 DEF TypeOk, Bother, decisionAbortInv, CoordInv2
1880 <8>3. QED
1881 BY <8>1, <8>2
1882 <3>4. CASE BaskRM(self)
1883 BY <3>4, <2>0, <1>6, <2>4, SetsTheorem DEF TypeOk,
1884 BaskRM, decisionAbortInv, CoordInv2
1885
1886 <3>5. CASE BlockAsset(self)
1887 <8>1. CASE (ProofPublish = TRUE /\
1888 assets[AofS(self)] = "OwS")
1889 <9>1. assets' =
1890 [assets EXCEPT ![AofS(self)] = "locked"]

1891 BY <8>1, <3>5, <2>0, <1>6, <2>4, SetsTheorem
1892 DEF TypeOk, BlockAsset, decisionAbortInv, CoordInv2
1893 <9>2. QED
1894 BY <9>1, <8>1, <3>5, <2>0, <1>6, <2>4, SetsTheorem
1895 DEF TypeOk, BlockAsset, decisionAbortInv, CoordInv2
1896 <8>2. CASE ~(ProofPublish = TRUE /\
1897 assets[AofS(self)] = "OwS")
1898 BY <8>2, <3>5, <2>0, <1>6, <2>4, SetsTheorem
1899 DEF TypeOk, BlockAsset, decisionAbortInv, CoordInv2
1900 <8>3. QED
1901 BY <8>1, <8>2
1902 <3>6. CASE BSaskRF(self)
1903 BY <3>6, <2>0, <1>6, <2>4, SetsTheorem DEF TypeOk,
1904 BSaskRF, decisionAbortInv, CoordInv2
1905 <3>7. CASE BrecoveringAsset(self)
1906 BY <3>7, <2>0, <1>6, <2>4, SetsTheorem DEF TypeOk,
1907 BrecoveringAsset, decisionAbortInv, CoordInv2
1908 <3>8. QED
1909 BY <2>4, <3>1, <3>2, <3>3, <3>4, <3>5, <3>6, <3>7
1910 DEF BSource
1911
1912 <2>5. CASE \E self \in CRecipients: Recipient(self)
1913 <3> SUFFICES ASSUME NEW self \in CRecipients,
1914 Recipient(self)
1915 PROVE CoordInv2'
1916 BY <2>5
1917 <3>1. CASE init_rcp(self)
1918 BY <3>1, <1>6, <2>0,<2>5, SetsTheorem DEF TypeOk,
1919 init_rcp, decisionAbortInv, CoordInv2
1920 <3>2. CASE waitForD_rcp(self)
1921 <4>1. (pc[CoordinatorID] = "init_c" => init_cInv)'
1922 BY <3>2, <1>6, <2>0,<2>5, SetsTheorem DEF TypeOk,
1923 waitForD_rcp, decisionAbortInv, CoordInv2
1924 <4>2. (pc[CoordinatorID] = "decision" => decisionInv)'
1925 BY <3>2, <1>6, <2>0,<2>5, SetsTheorem DEF TypeOk,
1926 waitForD_rcp, decisionAbortInv, CoordInv2
1927 <4>3. (pc[CoordinatorID] = "decisionValid" =>
1928 decisionValidInv)'
1929 BY <3>2, <1>6, <2>0,<2>5, SetsTheorem DEF TypeOk,
1930 waitForD_rcp, decisionAbortInv, CoordInv2
1931 <4>4. (pc[CoordinatorID] = "decisionAbort" =>
1932 decisionAbortInv)'
1933 BY <3>2, <1>6, <2>0,<2>5, SetsTheorem DEF TypeOk,
1934 waitForD_rcp, decisionAbortInv, CoordInv2
1935 <4>5. ((pc[CoordinatorID] = "Done" /\ coordState = "okRM")
1936 => okRMInv)'
1937 BY <3>2, <1>6, <2>0,<2>5, SetsTheorem DEF TypeOk,
1938 waitForD_rcp, decisionAbortInv, CoordInv2
1939 <4>6. ((pc[CoordinatorID] = "Done" /\ coordState = "okRF")
1940 => okRFInv)'
1941 BY <3>2, <1>6, <2>0,<2>5, SetsTheorem DEF TypeOk,
1942 waitForD_rcp, decisionAbortInv, CoordInv2
1943 <4>7. QED
1944 BY <4>1, <4>2, <4>3, <4>4, <4>5, <4>6 DEF CoordInv2
1945
1946 <3>5. QED
1947 BY <2>5, <3>1, <3>2 DEF Recipient
1948
1949 <2>6. CASE \E self \in BRecipients: BRecipient(self)
1950 <3> SUFFICES ASSUME NEW self \in BRecipients,
1951 BRecipient(self)
1952 PROVE CoordInv2'
1953 BY <2>6
1954 <3>1. CASE init_brcp(self)
1955 BY <3>1, <1>6, <2>0,<2>6, SetsTheorem DEF TypeOk,
1956 init_brcp, decisionAbortInv, CoordInv2
1957 <3>2. CASE BRaskRF(self)
1958 BY <3>2, <1>6, <2>0,<2>6, SetsTheorem DEF TypeOk,
1959 BRaskRF, decisionAbortInv, CoordInv2

A TLA+ Formal Proof of a Cross-Chain Swap

1960 <3>3. CASE BRretrievingAsset(self)
1961 BY <3>3, <1>6, <2>0,<2>6, SetsTheorem DEF TypeOk,
1962 BRretrievingAsset, decisionAbortInv, CoordInv2
1963 <3>4. CASE BRdirectToS(self)
1964 BY <3>4, <1>6, <2>0,<2>6, SetsTheorem DEF TypeOk,
1965 BRdirectToS, decisionAbortInv, CoordInv2
1966 <3>5. CASE BRother(self)
1967 BY <3>5, <1>6, <2>0,<2>6, SetsTheorem DEF TypeOk,
1968 BRother, decisionAbortInv, CoordInv2
1969 <3>6. QED
1970 BY <2>6, <3>1, <3>2, <3>3, <3>4, <3>5 DEF BRecipient
1971
1972 <2>7. CASE Terminating
1973 BY <1>6, <2>0,<2>7, SetsTheorem DEF TypeOk,
1974 Terminating, CoordInv2
1975 <2>8. QED
1976 BY <2>1, <2>2, <2>3, <2>4, <2>5, <2>6, <2>7 DEF Next
1977
1978 <1>3. CASE pc[CoordinatorID] = "Done" /\ coordState = "okRM"
1979 <2>0. okRMInv
1980 BY <1>3 DEF CoordInv2
1981 <2>1. CASE Publisher
1982 BY <1>3, <2>0, <2>1, SetsTheorem DEF TypeOk, Publisher,
1983 init_p, okRMInv, CoordInv2
1984 <2>2. CASE Coordinator
1985 <3>1. CASE init_c
1986 BY <1>3, <3>1, <2>2, SetsTheorem DEF TypeOk, init_c
1987 <3>2. CASE decision
1988 BY <1>3, <3>2, <2>2, SetsTheorem DEF TypeOk, decision,
1989 CoordInv2
1990 <3>3. CASE decisionValid
1991 BY <1>3, <3>3, <2>2, SetsTheorem DEF TypeOk, decisionValid
1992 <3>4. CASE decisionAbort
1993 BY <1>3, <3>4, <2>2, SetsTheorem DEF TypeOk, decisionAbort
1994 <3>7. QED
1995 BY <2>2, <3>1, <3>2, <3>3, <3>4 DEF Coordinator
1996
1997 <2>3. CASE \E self \in CSources: Source(self)
1998 <3> SUFFICES ASSUME NEW self \in CSources,
1999 Source(self)
2000 PROVE CoordInv2'
2001 BY <2>3
2002 <3>1. CASE init_src(self)
2003 BY <3>1, <2>0, <1>3, <2>3, SetsTheorem DEF TypeOk,
2004 init_src, okRMInv, CoordInv2
2005 <3>2. CASE lock(self)
2006 BY <3>2, <2>0, <1>3, <2>3, SetsTheorem DEF TypeOk,
2007 lock, okRMInv, CoordInv2
2008
2009 <3>3. CASE published(self)
2010 BY <3>3, <2>0, <1>3, <2>3, SetsTheorem DEF TypeOk,
2011 published, okRMInv, CoordInv2
2012 <3>4. CASE waitForD(self)
2013 BY <3>4, <2>0, <1>3, <2>3, SetsTheorem DEF TypeOk,
2014 waitForD, okRMInv, CoordInv2
2015
2016 <3>7. QED
2017 BY <2>3, <3>1, <3>2, <3>3, <3>4 DEF Source
2018
2019 <2>4. CASE \E self \in BSources: BSource(self)
2020 <3> SUFFICES ASSUME NEW self \in BSources,
2021 BSource(self)
2022 PROVE CoordInv2'
2023 BY <2>4
2024 <3>1. CASE init_bsrc(self)
2025 BY <3>1, <2>0, <1>3, <2>4, SetsTheorem DEF TypeOk,
2026 init_bsrc, okRMInv, CoordInv2
2027 <3>2. CASE BdirectToR(self)
2028 BY <3>2, <2>0, <1>3, <2>4, SetsTheorem DEF TypeOk,

2029 BdirectToR, okRMInv, CoordInv2
2030 <3>3. CASE Bother(self)
2031 BY <3>3, <2>0, <1>3, <2>4, SetsTheorem DEF TypeOk,
2032 Bother, okRMInv, CoordInv2
2033 <3>4. CASE BaskRM(self)
2034 BY <3>4, <2>0, <1>3, <2>4, SetsTheorem DEF TypeOk,
2035 BaskRM, okRMInv, CoordInv2
2036
2037 <3>5. CASE BlockAsset(self)
2038 BY <3>5, <2>0, <1>3, <2>4, SetsTheorem DEF TypeOk,
2039 BlockAsset, okRMInv, CoordInv2
2040 <3>6. CASE BSaskRF(self)
2041 BY <3>6, <2>0, <1>3, <2>4, SetsTheorem DEF TypeOk,
2042 BSaskRF, okRMInv, CoordInv2
2043 <3>7. CASE BrecoveringAsset(self)
2044 BY <3>7, <2>0, <1>3, <2>4, SetsTheorem DEF TypeOk,
2045 BrecoveringAsset, okRMInv, CoordInv2
2046 <3>8. QED
2047 BY <2>4, <3>1, <3>2, <3>3, <3>4, <3>5, <3>6, <3>7
2048 DEF BSource
2049
2050 <2>5. CASE \E self \in CRecipients: Recipient(self)
2051 <3> SUFFICES ASSUME NEW self \in CRecipients,
2052 Recipient(self)
2053 PROVE CoordInv2'
2054 BY <2>5
2055 <3>1. CASE init_rcp(self)
2056 BY <3>1, <1>3, <2>0,<2>5, SetsTheorem DEF TypeOk,
2057 init_rcp, okRMInv, CoordInv2
2058 <3>2. CASE waitForD_rcp(self)
2059 BY <3>2, <1>3, <2>0,<2>5, SetsTheorem DEF TypeOk,
2060 waitForD_rcp, okRMInv, CoordInv2
2061 <3>5. QED
2062 BY <2>5, <3>1, <3>2 DEF Recipient
2063
2064 <2>6. CASE \E self \in BRecipients: BRecipient(self)
2065 <3> SUFFICES ASSUME NEW self \in BRecipients,
2066 BRecipient(self)
2067 PROVE CoordInv2'
2068 BY <2>6
2069 <3>1. CASE init_brcp(self)
2070 BY <3>1, <1>3, <2>0,<2>6, SetsTheorem DEF TypeOk,
2071 init_brcp, okRMInv, CoordInv2
2072 <3>2. CASE BRaskRF(self)
2073 BY <3>2, <1>3, <2>0,<2>6, SetsTheorem DEF TypeOk,
2074 BRaskRF, okRMInv, CoordInv2
2075 <3>3. CASE BRretrievingAsset(self)
2076 BY <3>3, <1>3, <2>0,<2>6, SetsTheorem DEF TypeOk,
2077 BRretrievingAsset, okRMInv, CoordInv2
2078 <3>4. CASE BRdirectToS(self)
2079 BY <3>4, <1>3, <2>0,<2>6, SetsTheorem DEF TypeOk,
2080 BRdirectToS, okRMInv, CoordInv2
2081 <3>5. CASE BRother(self)
2082 BY <3>5,<1>3, <2>0,<2>6, SetsTheorem DEF TypeOk,
2083 BRother, okRMInv, CoordInv2
2084 <3>6. QED
2085 BY <2>6, <3>1, <3>2, <3>3, <3>4, <3>5 DEF BRecipient
2086
2087 <2>7. CASE Terminating
2088 BY <1>3, <2>0,<2>7, SetsTheorem DEF TypeOk,
2089 Terminating, vars, CoordInv2, init_cInv, decisionInv,
2090 okRMInv, decisionValidInv
2091 <2>8. QED
2092 BY <2>1, <2>2, <2>3, <2>4, <2>5, <2>6, <2>7 DEF Next
2093
2094 <1>5. CASE (pc[CoordinatorID] = "Done" /\ coordState = "okRF")
2095 <2>0. okRFInv
2096 BY <1>5 DEF CoordInv2
2097 <2>1. CASE Publisher

Nehaï, et al.

2098 BY <1>5, <2>0, <2>1, SetsTheorem DEF TypeOk, Publisher,
2099 init_p, okRFInv, CoordInv2
2100 <2>2. CASE Coordinator
2101 <3>1. CASE init_c
2102 BY <1>5, <3>1, <2>2, SetsTheorem DEF TypeOk, init_c
2103 <3>2. CASE decision
2104 BY <1>5, <3>2, <2>2, SetsTheorem DEF TypeOk, decision,
2105 CoordInv2
2106 <3>3. CASE decisionValid
2107 BY <1>5, <3>3, <2>2, SetsTheorem DEF TypeOk, decisionValid
2108 <3>4. CASE decisionAbort
2109 BY <1>5, <3>4, <2>2, SetsTheorem DEF TypeOk, decisionAbort
2110 <3>7. QED
2111 BY <2>2, <3>1, <3>2, <3>3, <3>4 DEF Coordinator
2112
2113 <2>3. CASE \E self \in CSources: Source(self)
2114 <3> SUFFICES ASSUME NEW self \in CSources,
2115 Source(self)
2116 PROVE CoordInv2'
2117 BY <2>3
2118 <3>1. CASE init_src(self)
2119 BY <3>1, <2>0, <1>5, <2>3, SetsTheorem DEF TypeOk,
2120 init_src, okRFInv, CoordInv2
2121 <3>2. CASE lock(self)
2122 BY <3>2, <2>0, <1>5, <2>3, SetsTheorem DEF TypeOk,
2123 lock, okRFInv, CoordInv2
2124 <3>3. CASE published(self)
2125 BY <3>3, <2>0, <1>5, <2>3, SetsTheorem DEF TypeOk,
2126 published, okRFInv, CoordInv2
2127 <3>4. CASE waitForD(self)
2128 BY <3>4, <2>0, <1>5, <2>3, SetsTheorem DEF TypeOk,
2129 waitForD, okRFInv, CoordInv2
2130
2131 <3>7. QED
2132 BY <2>3, <3>1, <3>2, <3>3, <3>4 DEF Source
2133
2134 <2>4. CASE \E self \in BSources: BSource(self)
2135 <3> SUFFICES ASSUME NEW self \in BSources,
2136 BSource(self)
2137 PROVE CoordInv2'
2138 BY <2>4
2139 <3>1. CASE init_bsrc(self)
2140 BY <3>1, <2>0, <1>5, <2>4, SetsTheorem DEF TypeOk,
2141 init_bsrc, okRFInv, CoordInv2
2142 <3>2. CASE BdirectToR(self)
2143 BY <3>2, <2>0, <1>5, <2>4, SetsTheorem DEF TypeOk,
2144 BdirectToR, okRFInv, CoordInv2
2145 <3>3. CASE Bother(self)
2146 BY <3>3, <2>0, <1>5, <2>4, SetsTheorem DEF TypeOk,
2147 Bother, okRFInv, CoordInv2
2148 <3>4. CASE BaskRM(self)
2149 BY <3>4, <2>0, <1>5, <2>4, SetsTheorem DEF TypeOk,
2150 BaskRM, okRFInv, CoordInv2
2151
2152 <3>5. CASE BlockAsset(self)
2153 BY <3>5, <2>0, <1>5, <2>4, SetsTheorem DEF TypeOk,
2154 BlockAsset, okRFInv, CoordInv2
2155 <3>6. CASE BSaskRF(self)
2156 BY <3>6, <2>0, <1>5, <2>4, SetsTheorem DEF TypeOk,
2157 BSaskRF, okRFInv, CoordInv2
2158 <3>7. CASE BrecoveringAsset(self)
2159 BY <3>7, <2>0, <1>5, <2>4, SetsTheorem DEF TypeOk,
2160 BrecoveringAsset, okRFInv, CoordInv2
2161 <3>8. QED
2162 BY <2>4, <3>1, <3>2, <3>3, <3>4, <3>5, <3>6, <3>7
2163 DEF BSource
2164
2165 <2>5. CASE \E self \in CRecipients: Recipient(self)
2166 <3> SUFFICES ASSUME NEW self \in CRecipients,

2167 Recipient(self)
2168 PROVE CoordInv2'
2169 BY <2>5
2170 <3>1. CASE init_rcp(self)
2171 BY <3>1, <1>5, <2>0,<2>5, SetsTheorem DEF TypeOk,
2172 init_rcp, okRFInv, CoordInv2
2173 <3>2. CASE waitForD_rcp(self)
2174 BY <3>2, <1>5, <2>0,<2>5, SetsTheorem DEF TypeOk,
2175 waitForD_rcp, okRFInv, CoordInv2
2176 <3>5. QED
2177 BY <2>5, <3>1, <3>2 DEF Recipient
2178
2179 <2>6. CASE \E self \in BRecipients: BRecipient(self)
2180 <3> SUFFICES ASSUME NEW self \in BRecipients,
2181 BRecipient(self)
2182 PROVE CoordInv2'
2183 BY <2>6
2184 <3>1. CASE init_brcp(self)
2185 BY <3>1, <1>5, <2>0,<2>6, SetsTheorem DEF TypeOk,
2186 init_brcp, okRFInv, CoordInv2
2187 <3>2. CASE BRaskRF(self)
2188 BY <3>2, <1>5, <2>0,<2>6, SetsTheorem DEF TypeOk,
2189 BRaskRF, okRFInv, CoordInv2
2190 <3>3. CASE BRretrievingAsset(self)
2191 BY <3>3, <1>5, <2>0,<2>6, SetsTheorem DEF TypeOk,
2192 BRretrievingAsset, okRFInv, CoordInv2
2193 <3>4. CASE BRdirectToS(self)
2194 BY <3>4, <1>5, <2>0,<2>6, SetsTheorem DEF TypeOk,
2195 BRdirectToS, okRFInv, CoordInv2
2196 <3>5. CASE BRother(self)
2197 BY <3>5, <1>5, <2>0,<2>6, SetsTheorem DEF TypeOk,
2198 BRother, okRFInv, CoordInv2
2199 <3>6. QED
2200 BY <2>6, <3>1, <3>2, <3>3, <3>4, <3>5 DEF BRecipient
2201
2202 <2>7. CASE Terminating
2203 BY <1>5, <2>0,<2>7, SetsTheorem DEF TypeOk,
2204 Terminating, vars, CoordInv2, init_cInv, decisionInv,
2205 okRFInv, decisionValidInv
2206 <2>8. QED
2207 BY <2>1, <2>2, <2>3, <2>4, <2>5, <2>6, <2>7 DEF Next
2208
2209 <1>7. QED
2210 BY <1>1, <1>2, <1>3, <1>4, <1>5, <1>6 DEF TypeOk, CStates
2211
2212
2213
2214 THEOREM InvInvariant ==
2215 ASSUME Inv, Next
2216 PROVE Inv'
2217 BY TypeOkInvariant, CoordInvariant DEF Inv, TypeOk, CoordInv2, Next
2218
2219
2220 THEOREM InvImpliesConsistency ==
2221 ASSUME TypeOk /\ CoordInv2
2222 PROVE Consistency
2223 <1> USE DEF Finish, AvailableS, AvailableR
2224 <1>1. CASE pc[CoordinatorID] = "init_c"
2225 BY <1>1, SetsTheorem DEF CoordInv2, init_cInv, Consistency
2226 <1>2. CASE pc[CoordinatorID] = "decision"
2227 <2>1. \A a \in AssetsFromCS: assets[a] \in {"locked", "OwS"}
2228 BY <1>2, SetsTheorem DEF CoordInv2, decisionInv, Consistency
2229 <2>2. \A s \in CSources: assets[AofS(s)] \in {"locked", "OwS"}
2230 BY <1>2, SetsTheorem DEF CoordInv2, decisionInv, Consistency
2231 <2>3. \A s \in CSources: pc[s] = "Done" =>
2232 assets[AofS(s)] = "OwS"
2233 BY <1>2, SetsTheorem DEF CoordInv2, decisionInv, Consistency
2234 <2>4. QED
2235 BY <2>1, <2>2, <2>3 DEF Consistency

A TLA+ Formal Proof of a Cross-Chain Swap

2236 <1>3. CASE pc[CoordinatorID] = "decisionValid"
2237 <2>1. \A a \in Assets: assets[a] = "locked"
2238 BY <1>3, SetsTheorem DEF CoordInv2, decisionValidInv,
2239 Consistency
2240 <2>2. \A a \in AssetsFromCS: assets[a] = "locked"
2241 BY <1>3, SetsTheorem DEF CoordInv2, decisionValidInv,
2242 Consistency
2243 <2>3. \A s \in CSources: pc[s] # "Done"
2244 BY <1>3, SetsTheorem DEF CoordInv2, decisionValidInv,
2245 Consistency
2246 <2>4. QED
2247 BY <2>1, <2>2, <2>3 DEF Consistency
2248 <1>4. CASE pc[CoordinatorID] = "decisionAbort"
2249 <2>1. \A a \in AssetsFromCS: assets[a] \in {"locked", "OwS"}
2250 BY <1>4, SetsTheorem DEF CoordInv2, decisionAbortInv,
2251 Consistency
2252 <2>2. \A s \in CSources: assets[AofS(s)] \in
2253 { "locked", "OwS"}
2254 BY <1>4, SetsTheorem DEF CoordInv2, decisionAbortInv,
2255 Consistency
2256 <2>3. \A s \in CSources: pc[s] = "Done" =>
2257 assets[AofS(s)] = "OwS"
2258 BY <1>4, SetsTheorem DEF CoordInv2, decisionAbortInv,
2259 Consistency
2260 <2>4 QED
2261 BY <2>1, <2>2, <2>3 DEF Consistency
2262 <1>5. CASE (pc[CoordinatorID] ="Done" /\ coordState ="okRM")
2263 <2>1. ProofOkRM = TRUE => \A a \in AssetsForCR: assets[a]
2264 \in {"locked", "OwR"}
2265 BY <1>5, SetsTheorem DEF CoordInv2, okRMInv, Consistency
2266 <2>2. \A r \in CRecipients : pc[r] = "Done" =>
2267 assets[AofR(r)] \in {"OwR", "locked"}
2268 BY <1>5, SetsTheorem DEF CoordInv2, okRMInv, Consistency
2269 <2>3. ProofOkRM = TRUE
2270 BY <1>5, SetsTheorem DEF CoordInv2, okRMInv, Consistency
2271 <2>4 QED
2272 BY <2>1, <2>2, <2>3 DEF Consistency
2273 <1>6. CASE (pc[CoordinatorID] = "Done" /\ coordState ="okRF")
2274 <2>1. \A a \in AssetsFromCS: assets[a] \in {"locked", "OwS"}
2275 BY <1>6, SetsTheorem DEF CoordInv2, okRFInv, Consistency
2276 <2>2. \A s \in CSources: pc[s] = "Done" =>
2277 assets[AofS(s)] = "OwS"
2278 BY <1>6, SetsTheorem DEF CoordInv2, okRFInv, Consistency
2279 <2>3 QED
2280 BY <2>1, <2>2 DEF Consistency
2281 <1>7. QED
2282 BY <1>1, <1>2, <1>3, <1>4, <1>5, <1>6 DEF TypeOk
2283
2284 THEOREM Safety2 == Spec => [] Consistency
2285 <1>1. Init => Inv
2286 BY InitImpliesInv, SMT DEF Inv
2287 <1>2. Inv /\ [Next]_vars => Inv'
2288 <2> SUFFICES ASSUME Inv,
2289 [Next]_vars
2290 PROVE Inv'
2291 OBVIOUS
2292 <2>1. CASE Next
2293 BY <2>1, SMTT(60), InvInvariant DEF vars
2294 <2>2. CASE UNCHANGED vars
2295 BY <2>2, SMTT(60) DEF vars, Inv, TypeOk, CoordInv2, okRFInv,
2296 okRMInv, decisionAbortInv, decisionValidInv, init_cInv,
2297 decisionInv
2298 <2>3. QED
2299 BY <2>1, <2>2
2300
2301 <1>3. Inv => Consistency
2302 BY SMT, InvImpliesConsistency DEFS Consistency, Inv
2303 <1>4. QED
2304 BY ONLY <1>1,<1>2,<1>3,PTL DEF Spec

2305
2306 ===

	Abstract
	1 Introduction
	2 Problem Specification
	3 Protocol Specification
	3.1 Representation of Asset's States in a Swap
	3.2 The Abstract Protocol Pswap
	3.3 Detailed Description of the Protocol Pswap

	4 TLA+ Implementation
	4.1 Functions and predicates
	4.2 Byzantine model
	4.3 Proof of the Safety Property
	4.4 Proof of the Liveness Properties

	5 The Instantiated Protocol Pinst
	5.1 Instantiation of Pswap

	6 State of the Art
	7 Conclusion
	References
	A Results of the Retrieving model-checking
	B Manual Proof
	C TLA+ code

