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Abstract. Combining countermeasures against side-channel attacks rep-
resents a promising approach to defend against powerful attackers. Ex-
isting works on this topic show that the hope for a significant increase
of security is sometimes fulfilled, although not always. In this paper, we
consider the combination of two hiding countermeasures, namely loop
shuffling and code polymorphism. We study the combination on a cus-
tom implementation of AES, tailored to ease shuffling while providing a
balance between performance and RAM usage. Our experimental study
exploits real-world traces and simulated noiseless traces. On real-world
traces, we show that code polymorphism effectively mitigates leakage
stemming from the permutation variable employed for loop shuffling, and
that both countermeasures resist surprisingly well to a deep learning at-
tack that showed great success against code polymorphism in a former
work. On simulated traces, we show that combining the countermeasures
complicates both a simple CPA and a deep learning attack. As is, the
combination of these countermeasures seems beneficial and should be
particularly relevant in any context where loop shuffling benefits vanish
due to the leakage of its permutation variables.

Keywords: side-channel attacks, countermeasures, hiding, loop shuf-
fling, code polymorphism, aes, deep learning

1 Introduction

Side-channel attacks threaten the security of embedded systems and IoT devices.
In particular, they are famous for how easily they break unprotected cryptogra-
phy implementations. As the confidentiality of cryptographic keys is critical for
the whole security of such systems, there is a strong need for countermeasures.

Two classes of countermeasures have emerged from this need: masking coun-
termeasures and hiding countermeasures [19]. Masking countermeasures rely on
the idea of secret-sharing, applied to all sensitive variables manipulated by the
implementation. Hiding countermeasures leverage various techniques in order
to lower the signal-to-noise ratio, but usually do not involve a modification of



variables manipulated by the implementation. Despite the large number of coun-
termeasures developed along the years, side-channel analysis remains an active
area of research.

While many hiding countermeasures have been explored and attacked, they
have been studied mostly in isolation: the interest of their combination in gen-
eral is still an open question. We notice in particular that code polymorphism
and loop shuffling seem complementary from a theoretical point of view, as they
operate on different scales: loop shuffling shuffles large sequences of instructions
without modifying them, while code polymorphism acts by inserting, replacing,
and shuffling instructions without being able to shuffle very large sequences.
Moreover, attacks against loop shuffling frequently exploit leakage of the per-
mutation used, and we believe that code polymorphism could help hiding this
leakage. In this paper, we ask whether these remarks translate into a security
gain in practice, i.e., whether code polymorphism and loop shuffling actually
benefit from each other. As such, we propose to combine both countermeasures
to protect an AES implementation.

Contributions

– We study this combination on a custom implementation of AES that fea-
tures an execution-time faster than by-the-book 8-bit implementations while
having a lower memory usage than T-table implementations.

– We pinpoint the interest of having dynamic code transformations in order to
make loop iterations length less consistent, and propose the use of dynamic
variants in code polymorphism as a response.

– We show that code polymorphism effectively hides the leakage of loop shuf-
fling parameters.

– We consider both real-world traces as well as simulated noiseless traces to
study the countermeasures’ response to CPA and to a deep learning attack,
and notice (1) how both countermeasures resist surprisingly well to the deep
learning attack in the real-world setting, either alone or combined, (2) how
combining the countermeasures increases the difficulty of both the CPA and
the deep learning attack in the simulation setting.

– We release the dataset used for deep learning along with our paper, to allow
future work to continue comparing the security of the different implementa-
tions considered.

2 Background & Related Work

2.1 Loop shuffling

Loop shuffling consists in executing independent loop iterations in a random
order. Different strategies can be used for this purpose: (1) using a random
start index [28], (2) performing a random walk [23], (3) generating a random
permutation [28].



In the random start index strategy, one random number is drawn and the
loop iterations are executed starting from this number. The ith iteration index
is given by i + s mod b, where s is the random start index and b is the loop
bound. This strategy has a low randomness cost, at the price of a low number of
achievable permutations. For a loop iterating 2k times, this strategy only gives
2k variants.

The random walk strategy extends the random start index strategy by using
a more complex formula for iterating, while still using few random numbers. For
instance, a random increment can be drawn as long as it is co-prime with the
number of loop iterations. The ith iteration index is given by i · c + s mod b,
where c is the random increment, s is the random start index and b is the loop
bound. This strategy keeps a low randomness cost, while increasing notably the
number of achievable permutations. For a loop iterating 2k times, this strategy
gives 2k · 2(k−1) variants, as all odd numbers can be used as increments.

Finally, the random permutation strategy consists in drawing a random per-
mutation among all possible ones, e.g. using Fisher-Yates algorithm. While this
strategy is costly in terms of randomness in general, it is the only one that
reaches the maximum number of variants. For a loop iterating 2k times, this
strategy gives 2k! variants.

2.2 Code polymorphism

Code polymorphism consists in varying the sensitive code from one execution
to another. Its effectiveness relies on several principles: (1) introduce temporal
desynchronisation between the attacker’s traces, (2) modify the leakage profile,
(3) increase noise.

The countermeasure was first proposed by Amarilli et al. [5], using a program
graph that guides a dynamic rewriting process to shuffle independent operations.
In the same vein, Luo et al. [17] proposed later on a method to detect the in-
dependence between statements and to automatically shuffle them, this time
without any rewriting. Malagón et al. [18] proposed to generate several versions
of a same function using slightly varying compiler optimisation options, and to
randomly choose between them at runtime. Meanwhile, Agosta et al. [3] pro-
posed the use of dynamic code morphing engine to make the code vary using
various code transformations. Couroussé et al. [14,9] later on followed a similar
idea, using dynamic code generators. Agosta et al. [4] also proposed the use of
switch statements generated statically in the code and controlled dynamically
by random variables in order to avoid any dynamic code modification. Finally,
Antognazza et al. [6] proposed a hardware approach to morph the code without
any software change and with a smaller execution time overhead.

In this paper, we follow and extend the method proposed by Belleville et
al. [9], based on dynamic code generation, that we present in more details be-
low. Figure 1 presents the application flow of the countermeasure when using
this approach. The countermeasure is automatically applied at compilation time
on any function labelled as sensitive by the developer. The source-to-source com-
piler Odo is in charge of transforming the code for this purpose. Odo replaces any
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Fig. 1: Compilation flow and runtime code execution for a polymorphic AES,
similar to [9]. Odo is a compiler that automatically applies code polymorphism.
SGPC is a runtime generator of polymorphic code.

labelled function by a wrapper and a specialized generator of polymorphic code
(SGPC), whose behaviour will be explained later on. At run time, the wrapper
intercepts any call to the labelled function. The wrapper calls the SGPC to gen-
erate the new code in memory, and then calls the generated code (a.k.a. the
polymorphic instance). At every call, the polymorphic instance is different
from one another as the SGPC generates the code applying various code transfor-
mations guided by randomness. The SGPC has inherent knowledge of a reference
assembly code, and generates variants of that code. It supports the following
code transformations:

– Random register permutation: the SGPC draws a random permutation among
the general purpose registers (except registers used for argument passing).
For instance, the SGPC could emit an instruction using R11 instead of R5.
The change is global for all instructions to preserve the program semantics.

– Instruction shuffling : the SGPC randomly chooses the order of instructions
that are independent of each other.

– Semantic variants: for some instructions, the SGPC knows several semanti-
cally equivalent sequences of instructions. The SGPC randomly chooses one
of them. As an example, a xor can be replaced by a sequence of an and, an
or, and a xor: a⊕ b = (a ∧ b)⊕ (a ∨ b).

– Noise instructions: the SGPC inserts a random number of useless instructions
in between useful instructions. The noise instructions are randomly chosen
among various frequently-used instructions.

– Dynamic noise: the SGPC sometimes inserts a sequence of contiguous noise
instructions preceded by a branch instruction that will randomly jump inside
the sequence during the execution of the polymorphic instance. A register is
reserved to hold random data that is used at runtime to determine the branch
offsets. This register value is updated throughout the execution by noise
instructions, and is saved and restored between calls to make code execution
different from one execution to the next. Dynamic noise’s purpose is to partly



decorrelate what happens during code generation and code execution, and
to maintain code variability even in between calls to the SGPC when the code
generation is done less frequently for performance reasons.

The granularity of these transformations differs from the one of loop shuffling:
they cannot permute large code sequences as a whole such as loop iterations,
but they can largely impact the assembly instructions executed.

The code polymorphism countermeasure can be configured to use any subset
of these code transformations, and some code transformations have an unlim-
ited number of possible configurations: for noise instructions, the probability
distribution used to decide how many noise instructions to insert can be tuned.
For the rest of this paper, we will consider all transformations are enabled and
code is regenerated before every execution. Also, we will use this probability
law to determine how many noise instructions are inserted in between useful
instructions:

P [X = 0] =
7

8
+

1

64

∀i ∈ [1, 7], P [X = i] =
1

64

2.3 Attacks against loop shuffling and code polymorphism

To the best of our knowledge, most attacks against shuffling rely on template
attacks [28,13,27], although some recent work uses neural networks [22]. The
proposed attacks either sequentially exploit leakages from the permutation and
the secret-related intermediate variables, or jointly exploit their leakages.

Attacks against code-polymorphism attempt to limit the effects of desyn-
chronization through various ways: (1) pattern extraction using correlation to
extract SBox related code [2], (2) re-alignment techniques combined with CPA
or with template attacks [21], and (3) use of shift-invariant deep neural networks
like convolutional neural networks [21]. The latter deep neural network approach
stands out for its efficiency: once trained, about 10-20 traces were enough to find
all key bytes on the considered AES implementation on a low-noise platform,
while several hundreds of thousands of traces were needed with re-aligned CPA
or template attacks. From this work, we additionally note that the trace ampli-
tude changes when executing code in flash (before polymorphic instance) and
in RAM (the polymorphic instances). It is probable that clear patterns visi-
ble during polymorphic instance execution are due to data flash access to the
SBox [20, Fig. 7.10, p. 121]. They are the only flash accesses performed as in-
struction fetch loads the polymorphic instance code from RAM. Such flaw could
have been implicitly leveraged by the trained model.

3 Countermeasures combination

Approaches combining countermeasures share a common goal, and so does our
paper: find whether combining the countermeasures improves significantly secu-
rity. Rivain et al. first showed that masking and shuffling could be advantageously



combined [25]. This idea was extended by Azouaoui et al. that compared the var-
ious possibilities of shuffling enabled by higher-order masking, and showed as a
result that the security gain from shuffling could be amplified [7]. With affine
masking, Fumaroli et al. combined multiplicative masking and Boolean masking
and suggested this combination leads to much improved resistance to higher-
order attacks [15]. Affine masking was latter on combined with shuffling [11,10].
Finally, Udvarhelyi et al. examined the combination of rekeying with masking
and shuffling for ISAP cipher and showed that such combination hardly leads to
any significant security improvement on low noise platforms [27].

4 Approach

Our main idea is to combine loop shuffling with code polymorphism in order to
strengthen security. This approach builds onto the difference between both coun-
termeasures. On the one hand, code polymorphism introduces desynchronization
and alters leakage at instruction level. On the other hand, it is not able to re-
order large code blocks such as loop iterations, while loop shuffling enables this
possibility. As a result, the desynchronization obtained from the combination of
both countermeasures is expected be much stronger. In addition, the fine-grain
effect provided by code-polymorphism should prevent any easy recovering of
loop shuffling parameters. For this study, we choose AES as a benchmark, and
develop a custom implementation for this purpose.

4.1 AES implementation

We propose in this paper an AES implementation with less memory usage than
T-tables implementations, while being faster than an 8bits by-the-book imple-
mentation. Our AES implementation exploits the following principles:

– Round functions are combined to avoid useless (and leaky) reads and writes
of the state bytes in memory.

– The AES state is duplicated: during each round, we have different arrays
for input state and output state, which enables the combination of all round
functions, shiftRows included.

– We leverage parallelism as much as possible by doing computations in 32-bit
words for mixColumns and addRoundKey.

– The key schedule is precomputed.
– SBox is stored in RAM: (1) RAM access are faster than flash accesses, (2)

flash memory accesses induce clearly visible leakage when executing poly-
morphic instances as code is stored in RAM, (3) memory usage of our AES
implementation is limited and having the SBox in RAM is not prohibitive.

The AES function first calls addRoundKey, that is performed word by word,
then calls the combined round function SR_SB_MC_ARK, presented in Listing 1,
once for each round, except for the last round where a similar function is called,
without the mixColumns steps. The combined round function first performs the
shiftRows and subBytes on state bytes, then packs all bytes from a column into
a 32-bit word, and performs mixColumns and addRoundKey on 32-bit words.



1 #define ROR(in, a) (((in) >> (a)) ^ ((in) << (32 - (a))))

2

3 // gives shiftRows input index from an output index.

4 // shiftRows would map state[input_SR(i)] to state[i]

5 uint32_t input_SR(uint32_t dest) {

6 return (dest + ((dest & 3) << 2)) & 15;

7 }

8

9 void SR_SB_MC_ARK(const uint8_t state_in [16],

10 uint32_t state_out [4], const uint32_t key [4]) {

11 for(int column = 0; column < 4; column ++) {

12 int i = column << 2;

13 // perform shiftRows (sr) and subBytes (sb)

14 uint8_t byte_sr_sb_0 = sbox[state_in[input_SR(i)]];

15 uint8_t byte_sr_sb_1 = sbox[state_in[input_SR(i+1) ]];

16 uint8_t byte_sr_sb_2 = sbox[state_in[input_SR(i+2) ]];

17 uint8_t byte_sr_sb_3 = sbox[state_in[input_SR(i+3) ]];

18 // pack all bytes together

19 uint32_t column = byte_sr_sb_0 ^ byte_sr_sb_1 <<8

20 ^ byte_sr_sb_2 <<16 ^ byte_sr_sb_3 <<24;

21

22 // ------- mixColumns parallel computation --------

23 // serial mixColumns would compute each byte with:

24 // out_0 = in1 ^ in2 ^ in3 ^ xtime(in0 ^ in1);

25 // in0 corresponds to byte_sr_sb_0 , etc ...

26 // This parallel implementation follows the same formula.

27 // We call xor3 the result of in1 ^ in2 ^ in3 ,

28 // xor2 the result of in0 ^ in1 , and xt_xor2 the

29 // result of xtime(in0 ^ in1).

30 uint32_t xor2 = column ^ ROR(column , 8);

31 uint32_t xor3 = ROR(xor2 ^ ROR(column , 16), 8);

32 // ------- xtime parallel computation --------

33 // first we keep only the MSB of each byte

34 uint32_t msbs = xor_two_bytes & 0x80808080;

35 // MSB >>7 == 0 if no reduction is needed , 1 otherwise.

36 uint32_t reduc_bool = msbs >> 7;

37 // adding 0x1F gives 0x1F if no reduction is needed ,

38 // 0x20 otherwise. Then the NOT gives 0b11011111 if a

39 // reduction is needed , and 0b11100000 otherwise.

40 uint32_t reduc_mask = ~( reduc_bool + 0x1F1F1F1F);

41 // AND with 0x1B to get 0x1B if a reduction is needed

42 uint32_t reducer = reduc_mask & 0x1B1B1B1B;

43 // shift left least significant bits and reduce

44 uint32_t xt_xor2 = ((xor2 & 0x7F7F7F7F) << 1) ^ reducer;

45

46 uint32_t mixcolumn_result = xor3 ^ xt_xor2;

47 // perform addRoundKey on 32bits and store back result

48 state_out[column] = mixcolumn_result ^ key[column ];

49 }

50 }

Listing 1: Implementation of AES round function that performs subBytes,
shiftRows, mixColumns and addRoundKey in one loop.



1 uint8_t perm [24] = {0x1b , 0x1e , 0x27 , 0x2d , 0x36 , 0x39 ,

2 0x4b , 0x4e , 0x63 , 0x6c , 0x72 , 0x78 , 0x87 , 0x8d , 0x93 ,

3 0x9c , 0xb1 , 0xb4 , 0xc6 , 0xc9 , 0xd2 , 0xd8 , 0xe1 , 0xe4};

Listing 2: Table containing byte encodings of all possible permutations between
numbers strictly lower than 4. Each permutation of 4 2-bits values is encoded in
one byte consisting of the concatenation of the 4 values.

4.2 Loop shuffling

The loop shuffling countermeasure consists in executing loop iterations in a
random order. As explained in Section 2.1, loop shuffling can be implemented
through the use of random start index, random walks, or random permutations.
The random permutations strategy gives the largest amount of possibilities, at
the cost of being more costly to implement in general.

As we iterate on columns, the opportunities of loop shuffling are reduced
compared to a loop iterating on all bytes of the state. In order to maximise as
much as possible the countermeasure impact, despite the low number of itera-
tions, we decided to use a random permutation strategy, and to randomly shuffle
as well the memory accesses and computations done for each of the 4 bytes used
within the loop. This shuffles the use of the 4 bytes within the shiftRows and
subBytes steps, while the mixColumns and addRoundKey still operates on the 4
bytes at once, packed in a 32bits word.

Such strategy gives 4!×(4!)4 = 331, 776 different possibilities when the whole
loop is considered, as we make a first permutation choice for the loop iterations,
and we then choose again how to shuffle the bytes 4 times (once per iteration).

Random permutation generation. Random permutation generation is costly
in general but the restricted number of iterations and bytes to shuffle gives an op-
portunity to have a much faster permutation generation. We propose to tabulate
all 4! = 24 possible permutations. Such a table makes permutation generation
very simple: a random number in [0, 24[ is drawn, and the corresponding permu-
tation in the table is chosen.

We generate the random number in [0, 24[ as follows: we draw a random
number on 32bits, discard the 2 most significant bits, and consider the remaining
bits as a fixed point decimal value in the range [0, 8[, with 3 bits encoding the
integer part and 27 bits encoding the decimal part. Multiplying this value by
3, which can be done in one instruction by adding the value with a shifted
version of itself in ARM-Thumb2, gives us a fixed point decimal value in the
range [0, 24[, with 5 bits encoding the integer part and 27 bits encoding the
decimal part. Keeping 5 most significant bits then gives us an integer in [0, 24[.
Such technique allows a good trade-off between speed and statistical uniformity,
as all possible resulting integers probabilities can differ only by approximately
2−27 ≈ 10−8. It also avoids the use of a costly modulo.



The table storing permutations encodes permutations as bytes. Each byte
contains 4 2-bits integers, that give the list of 4 permuted values. More for-
mally, for any permutation p ={a,b,c,d} of 2-bits integers, the encoding used
is: (a<<6)^(b<<4)^(c<<2)^d. Listing 2 shows the obtained permutation table.
Once one permutation byte is drawn from the table, the index of each iteration is
obtained by extracting successively the 4 2-bits values composing the encoding.

Impact on AES implementation. The AES implementation with shuffling
closely follows the implementation described in Section 4.1. In particular, all the
mixColumns parallel computation remains unchanged. Compared to Listing 1,
the following changes are done to enable shuffling:

– The loop on columns (line 11) iterates following a randomly drawn index
permutation.

– Input state indexes (i, i+1 etc, lines 14 to 17) are shuffled using a randomly
drawn permutation. A new permutation is drawn at each loop iteration.

– The packed column representation (column, line 11) is computed by shifting
each byte according to its line index: a byte corresponding to a line index j
is shifted left by 8 ∗ j.

4.3 Code polymorphism

The code polymorphism countermeasure is implemented as proposed in [9]. This
approach is presented in Section 2.2.

We propose to adapt the countermeasure in order to better hide loop iter-
ations. Indeed, dynamic noise set apart, the code executed remains the same
during consecutive loop iterations. Such constant behaviour could be used to
construct attacks that work across loop iterations, as all samples from different
iterations would be vertically aligned. Such attacks on loops have been demon-
strated to recover masks during masked table precomputation [26], and could
maybe translate to column permutation index recovery.

In order to have different behaviour during loop iterations, random branches
are needed. Dynamic noise can fulfil this goal. While it was proposed to decor-
relate what happens during generation and execution and to lower code gener-
ation frequency, the random branches it creates do decorrelate loop iterations.
Dynamic noise works thanks to a reserved register that holds a random data at
runtime, which is updated by some noise instructions, as explained in Section 2.2.

We extend the use of random branches to semantic variants, and propose
the use of dynamic variants in combination of dynamic noise. As explained in
Section 2.2, the use of semantic variants consists in randomly choosing during
code generation a variant among several code sequences that all are semantically
equivalent. When using dynamic variants, the code generator no longer chooses
a variant, but instead generates a switch-case containing all variants. Such ap-
proach is inspired by the MEET approach, that leverages such mechanism to
implement code polymorphism without code generation [4].



...

va
ria

nt
 1

va
ria

nt
 2

va
ria

nt
 3

va
ria

nt
 4

br
an

ch

br
an

ch

br
an

ch

tb
b 

of
fs

et
s

 

ch
oo

se
 v

ar
ia

nt
fro

m
 ra

nd
 re

g.

up
da

te
 ra

nd
re

gi
st

er

ta
bl

e-
ba

se
d

br
an

ch
 (t

bb
)

...

Fig. 2: Code structure of a dynamic variant. First, the random register is value
is updated. Then, the variant to execute is randomly chosen. Then, the tbb

instruction branches to the selected variant. Finally, after the variant is executed,
the execution continues with the code right after the dynamic variant sequence.

Both dynamic noise and dynamic variants are implemented using the table-
based branch ARM-Thumb2 instruction (tbb). This instruction consists in a
PC-relative branch whose offset is stored in a table. Having different offsets
in the table and accessing the table at random indexes results in an efficient
random switch-case implementation. Concerning dynamic noise, the use of this
instruction lowers the overhead compared to [9].

Figure 2 shows how a dynamic variant is structured. The dynamic variant is
implemented by having a preamble responsible from selecting randomly a vari-
ant, then a tbb instruction (”table-based branch” in Figure 2) that jumps to
different offsets (”tbb offsets” in Figure 2) depending on the random variable
value, then the supported variants (”variant 1-4” in Figure 2). Branch instruc-
tions are inserted between variants to continue execution after one variant is
executed.

As in dynamic noise, the switch-case used for dynamic variants is controlled
by the random register, allowing the random choice of a variant during execu-
tion. The random register value may not change sufficiently along the execution
depending on the noise instructions inserted. In particular, if several dynamic
variants are inserted consecutively, the probability of absence of noise instruc-
tion updating the random register in between can be high. To solve this issue,
we propose to update the register value before any dynamic variant (”update
rand register” in Figure 2). We use the following formula: r=r+ROR(r,7). While
it is not a pseudo random number generator (PRNG) with good statistical prop-
erties, one instruction is sufficient to implement it in ARM-Thumb2 assembly,
hence its choice. The only fixed point is 0, and the rotate right allows making
most-significant bits impact the least-significant bits of the next random num-
bers. This choice is motivated by use of the least-significant bits in dynamic
variants.

Dynamic variants require developing several instruction sequences semanti-
cally equivalent, which can be difficult for some instructions. As such, not all
instructions are converted to a dynamic variant. In order to assess the cover-
age of our supported variants, we measure how many instructions of the AES
implementation presented in Section 4.1 are supported: for the reference imple-



mentation, 75 out of 117 instructions are supported, while for the implementation
with loop shuffling, 106 out of 202 instructions are supported.

5 Experimental results

This section aims at evaluating how the combination of countermeasures behaves
compared to implementations featuring only one countermeasure.

5.1 Experimental setup

We use a STM32 Nucleo-144 development board featuring a STM32F756ZG with
an ARM Cortex-M7 core. We capture electromagnetic emission using a Langer
RF-B 3-2 electromagnetic probe, a Langer preamplifier PA 303 and a picoscope
5244B. The sampling resolution is set to 8bits, and the sampling frequency is set
to 500Msamples/s. The STM32F7 CPU frequency is set to 166.666MHz to cap-
ture exactly 3 samples per clock cycle to ease traces analysis. A trigger is placed
right before the call to the AES polymorphic instance to ease synchronisation
(right before step 4 of Figure 1).

The electromagnetic probe is manually placed at a position where instruc-
tions boundaries and shapes are clearly visible on the oscilloscope measurements.
This setup is validated by performing a non-specific t-test on the unprotected
AES implementation, with 50k traces in each class. We obtain a maximal tvalue
of 223.90, indicating strong leakage, hence a good probe placement.

Unprotected AES C code is compiled with Odo with the following options:
-O2 -target thumb-none-eabi -mcpu=cortex-m7. C code is compiled using
arm-none-eabi-gcc, with the following options: -O2 -Wno-unused-function

-mcpu=cortex-m7 -mthumb -static. Memory usage is measured using arm-none-
eabi-size on a minimally working elf file.

5.2 Performance, table size and code size

Our evaluation starts by validating the interest of our custom AES implemen-
tation compared to an 8-bits and a T-table implementation. Then, the impact
of the countermeasures is studied.

Comparison of our AES implementation w.r.t. 8bits and T-table. We
compare the execution time, table size, and code size for unprotected AES imple-
mentations. We use: (1) an 8-bits by-the-book implementation, (2) a T-table im-
plementation from Mbed TLS library [1], (3) our implementation (Section 4.1).
All implementations have constant tables in RAM to improve performance, and
have the key schedule precomputed. Table 1 presents the results, with execution
time averaged over 1000 executions. Our implementation is 1.88× slower than
T-table implementation, while being 3.64× faster than 8-bits implementation.
Meanwhile, its tables’ size is only 16 bytes larger than 8-bits implementation,



Table 1: Comparison of execution time, table size, and code size for 3 unprotected
AES implementations. We measure .text section to get code size.

Implementations Execution time Tables size in bytes Code size
(unprotected) in clock cycles SBox/T-tables State(s) in bytes

8-bits (by the book) 13834 256 16 564
T-table (Mbed TLS) 2017 4096 32 960
Ours (Section 4.1) 3800 256 32 536

Table 2: Execution time and size of our AES implementation presented in Sec-
tion 4.1 with each countermeasure configuration considered.

Configuration
Execution time Size in bytes

Clock cycles Overhead .text .data .bss Total Overhead

Unprotected 2710 baseline 536 512 788 1836 baseline
Loop shuffling 3925 ×1.45 884 540 788 2212 ×1.20
Code polymorphism 9128 ×3.37 23008 1364 7748 32120 ×17.49
All countermeasures 11620 ×4.29 27120 1392 9620 38132 ×20.77

but is 3840 bytes smaller than T-table implementation. In addition, our imple-
mentation has the lowest code size. All in all, our implementation represents a
performance vs. size trade-off well positioned w.r.t other implementations con-
sidered.

Countermeasures overhead. We pursue our experiments by measuring the
impact of countermeasures on execution time and code size. Table 2 presents
the measurements obtained. Execution time is averaged over 1000 executions.
Both countermeasures have a significant overhead, reaching a 4.28× increase
of execution time and 20.77× increase of size when combined. The large size
increase is mainly due to code polymorphism that embeds the code generator and
related functions in .text section and allocates a large buffer for the polymorphic
instances in .bss. We note that even with such a large increase, the flash and
RAM size in absolute remain low enough for many embedded systems, even for
the implementation with combined countermeasures.

5.3 Security evaluation on STM32F7 traces

While each countermeasure’s effect on security has already been studied, the ef-
fect of their combination is unknown. We ask whether the security obtained with
combined countermeasures is higher than the security obtained with either coun-
termeasure taken alone. As code polymorphism is slightly modified compared to
previous work, we start by highlighting the effect of this modification. Then, we
study how code polymorphism hides leakage of the loop shuffling permutation
index. Finally, we assess how countermeasures resist to CPA with integration,
and to the deep-learning attack from [21], that previously showed great success
against code polymorphism.



(a) Unprotected.

(b) Loop shuffling only.

(c) All countermeasures. No dynamic noise, no dynamic variants.

(d) All countermeasures. Dynamic noise and dynamic variants enabled.

Fig. 3: Electromagnetic traces obtained for different AES. The figure shows in
grey in the background an average trace obtained by averaging 1000 execu-
tions with identical PRNG seed. The figure shows in blue the average trace
post-processed using a moving average with a window of 3 samples. Repeating
patterns are framed in rectangles, and their length in samples is indicated in
red.

Impact of dynamic transformations on loop iterations. First, the inter-
est of dynamic transformations put forward in this paper needs to be checked.
As their goal is to induce variations in loop iterations, we inspect loop patterns
in side-channel traces. For this purpose, a favourable setting is used: traces are
averaged over 1000 executions. Randomness seeds are reset to ensure identical
PRNG outputs for all the 1000 executions, and thus the identical code paths. In
addition, traces undergo a moving average of 3 samples to further aid visualisa-
tion of repeating patterns. Figure 3 shows cropped parts of the resulting traces,
for the different AES configuration we consider. Without dynamic transforma-
tion, we notice loop patterns whose size is constant, except for the first iteration
with code polymorphism, which is a bit longer than the others. This may be due
to cache misses. As expected, the implementation with code polymorphism with
dynamic transformations enabled exhibits iterations with consistently varying
size. Variance of iteration size could be further increased by choosing longer
variants or longer dynamic noise sequences.



(a) Loop shuffling only. (b) With code polymorphism.

Fig. 4: Non specific t-tests (50k vs. 50k traces) targeting leakage from the per-
mutation variable used to shuffle loops, with code polymorphism disabled (left)
or enabled (right). Red lines indicate the 4.5 leakage detection threshold.

Impact of code polymorphism on loop shuffling security. Template at-
tacks are frequently the attack of choice against loop shuffling, as explained
in Section 2.3. Such attack starts with a point-of-interest extraction. We ask
whether code polymorphism could harden such step, hiding the points of in-
terest. To check this hypothesis, we perform a non-specific t-test targeting all
permutation variables. For this purpose, we use a PRNG dedicated to the ran-
dom permutation choice, whose seed is initialised in a fixed-vs.-random way. We
collect 50k traces for both classes. Figure 4 shows the results of the t-tests, with
and without code polymorphism. Without code polymorphism, strong leakage is
visible: the t-value is above the 4.5 threshold for numerous samples, and reaches
values as high as 79.30. With code polymorphism, the t-value is well contained
in the [−4.5, 4.5] range. As a result, no point of interest stands out from the
analysed traces. As such, template attacks against the permutation index seem
impractical.

Resistance of considered implementations against a CPA with inte-
gration. We first attack all implementations using a CPA with integration [25].
Integration is beneficial even for the unprotected implementation due to inher-
ent jitter caused by our target platform. We determined an integration window
of 24 samples was appropriate for this purpose. Changing the size of the in-
tegration window did not lead to any improvement, even in presence of code
polymorphism. Hence, we kept the window of 24 for all implementations. The
CPA results are presented in Table 3. The CPA easily finds all key bytes to the
unprotected implementation and the implementation with shuffling only: 6, 000
traces and 50, 000 traces respectively are enough for the attack to succeed. How-
ever, it fails within 500, 000 traces for both implementations that feature code
polymorphism.



Table 3: Results of CPA with integration on all considered implementations.
Table reports number of traces to disclosure, for each of the target key byte.
Table reports ✗ when the attack fails with 500k traces.

Target key byte
Configuration

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Unprotected 3k 6k 1k 2k 3k 2k 4k 1k 2k 3k 2k 4k 4k 3k 4k 2k
Loop shuffling 28k 32k 35k 18k 38k 28k 42k 45k 20k 18k 35k 20k 35k 40k 50k 45k
Code polymorphism ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

All countermeasures ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
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Fig. 5: Average rank of the right key vs. number of traces for all 16 key bytes
using a deep learning attack against all considered implementations.

Resistance of considered implementations against a deep learning at-
tack. As deep learning attacks are state-of-the-art attacks against code poly-
morphism [21], it is a natural candidate for a potential adversary against the
enhanced version of code polymorphism combined with loop shuffling consid-
ered in this paper. As the target platform used in this paper slightly differs from
the one used in [21], the neural network parameters require some modifications.
Indeed, our clock frequency is much faster than the one of the STM32F3 used
in [21], resulting in a lower number of samples per clock cycle (from 50 in [21]
to 3 here). Accordingly, we remove the first layer that was specifically designed
to handle the large number of samples per clock cycle. Apart from that, we keep
the same hyper-parameters as in [21]: the filter size and the pooling size are
respectively w = 11, p = 5, the number of convolution filters per layer is k0 = 10
at the first layer, and doubles at every layer. Given the size of the traces, the
number of convolutional layers is set to 3. The network is trained with the Adam
optimiser [16] during 100 epochs on the Pytorch framework [24], with batch size
equal to 32 traces. Given that a data-set of 100, 000 traces has been measured, we
split it into 80, 000 training traces, and 20, 000 validation traces. Hence, there
are 80, 000/32 = 2500 iterations per epoch. Once the training is finished, we
run a key recovery attack by plugging the model’s predictions into a maximum
likelihood distinguisher. More precisely, we compute the cumulative sum of the
log probabilities returned by the trained model for each trace from the valida-



tion set. Based on the cumulative scores, we may compute the rank of the right
key. We repeat the procedure 50 times, by shuffling the order of the validation
traces. This re-sampling (a.k.a. bootstrapping) method allows avoiding sampling
50 new validation datasets of 20, 000 traces each, although at the cost of a biased
measure of the guessing entropy when the considered number of attack traces
becomes close to the size of the validation set.

Figure 5 presents the attack results for all considered implementations. First,
we notice that for 12 out of the 16 target bytes, the attacks succeeds in lower-
ing the average rank of the right key significantly enough for a key enumera-
tion, within 40 traces for the baseline (unprotected) implementation. Consid-
ering other implementations, none of them depicts a convincing key recovery.
The curve diverging towards different key ranks on the right side of Figures 5b,
5c and 5d may be due to the bias induced by the re-sampling method. This
suggests anyway that 20, 000 traces were not sufficient to observe the guessing
entropy converging towards 0 with confidence. It is worth noticing the failed
attack against loop shuffling alone, especially as we could succeed a CPA with
integration to find all key bytes. We note some much more complex trained
models have been shown efficient against shuffling [22]. Nevertheless, the lat-
ter models were not specifically designed against code polymorphism, hence we
kept a neural network architecture close to the one of [21] as a baseline. Studying
much heavier architectures that have been shown efficient against shuffling on
polymorphic implementations remains an open problem, and is left for further
works.

Likewise, code polymorphism seems to exhibit a better resistance than in [21].
This may be due to the difference of platform and implementation, including the
storage of the SBox in RAM to avoid loads from flash. Finally, the combination
of both countermeasures shows similar trend. Overall, these experiments are not
sufficient to prove the security of the enhanced code polymorphism combined
with loop shuffling with overwhelmingly high confidence. Yet, they provide sig-
nificant empirical evidences that the baseline attacks from [21] may not straight-
forwardly apply, and that a successful adversary, should it exist, would be much
more involved. In order to challenge this conjecture, we release our dataset along
with the paper: https://zenodo.org/records/10650737.

5.4 Security evaluation on simulated noiseless traces

As our security evaluation on real-world traces is insufficient to compare security
of combined countermeasures w.r.t. code polymorphism alone, we pursue our
security evaluation by simulating a perfect noiseless setting to ease attacks.

Traces simulation. Our simulation framework builds upon QEMU simula-
tor [8]. We instruct QEMU to execute the program by steps of 1 assembly in-
struction. For each assembly instruction executed, our simulation framework
outputs 2 samples: one that sums the Hamming Weights of the input operands
before the instruction, and one that contains the Hamming Weight of the out-
put operand after the instruction. No noise is added to the samples. We use this

https://zenodo.org/records/10650737


Table 4: Results of CPA on simulated noiseless traces for all considered imple-
mentations. Table reports number of traces to disclosure, for each of the target
key byte. Traces are simulated using the Hamming Weight model on registers
used by each executed assembly instruction.

Target key byte
Config.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Unprotect. 8 9 9 8 8 8 8 11 8 8 8 10 12 7 8 8
Loop shuf. 1165 921 707 713 1030 1186 1268 615 1104 1060 838 1047 891 604 234 1280
Code poly. 41k 41k 47k 61k 29k 25k 35k 55k 39k 42k 25k 85k 23k 24k 25k 50k
All 595k 215k 752k 369k >1M 767k 998k 744k >1M 592k 703k 747k 848k 588k 763k 735k
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Fig. 6: Average rank of the right key vs. number of traces for all 16 key bytes
using a deep learning attack against all considered implementations, on simulated
traces.

framework to simulate traces for all the considered countermeasure configura-
tions.

Resistance of considered implementations against a CPA on simulated
noiseless traces. We perform a CPA [12] on the simulated traces. We note such
setting is particularly favourable, as the employed Hamming weight model for
simulation is the same as the one employed for the leakage estimation of the
CPA. The results are presented in Table 4. As expected, we notice that the at-
tack is much faster than in the real-world setting. The attack succeeds on all
configurations. The added value of combined countermeasure is clearly visible,
as the CPA requires in average 17× more traces for the implementation with
combined countermeasures compared to the implementation with code polymor-
phism alone.

Resistance of considered implementations against a deep learning at-
tack on simulated noiseless traces. In order to consolidate the CPA results
on simulation, we also re-trained our deep learning models on the noiseless sim-
ulated traces. The training procedure remains the same, in particular we used
the same number of training and attack traces as in Figure 5. The results are



given in Figure 6, which depicts the average rank of the right key byte with
respect to the number of attack traces. We can see on the one hand in particular
on Figures 6a and 6b that the deep-learning attack succeeds in recovering the
right key within a few traces. On the other hand, on Figure 6c the key-rank
curves are much slower to converge towards 0 (in a few hundreds of traces), and
converge only for a few bytes, meaning that the attack did not always succeed.
More interestingly, Figure 6d shows that no key recovery has been successful
within 20, 000 attack traces after a profiling step. This empirically confirms the
relevance of combining both shuffling and code polymorphism.

6 Conclusion

In this paper, we investigated the combination of two hiding countermeasures,
namely loop shuffling and code polymorphism, to protect an AES implementa-
tion. Considering loop shuffling, we extended the countermeasure by shuffling
as well the memory accesses within the loop, and we selected a random permu-
tation among all possible ones using simple computation tricks to extend the
number of possibilities w.r.t. classical random start index and random walk ap-
proaches. Considering code polymorphism, we stressed the interest of dynamic
transformations in presence of loops, and proposed the use of dynamic variants,
which is complementary to already existing dynamic noise. We considered both
real-world traces and simulated noiseless traces for the experiments. Our security
experimental evaluation showed that: (1) the use of dynamic transformation ful-
fils its role of making loop iteration length variable, but the use of longer variants
may be needed to induce larger differences, (2) the loop shuffling permutation
leakage are well mitigated by code polymorphism, (3) with sufficient noise or suf-
ficiently low signal, code polymorphism resistance against deep learning attack
seems greatly increased, (4) the combination of both countermeasures clearly
increases security against CPA and against the considered deep learning attack,
as shown in the noiseless simulated setting.

Such combination is thus worthy, especially in contexts where loop shuffling’s
main flaw is due to the leakage of its permutation variables. In particular, an
interesting future work could be the combination with masking countermeasure,
along several axes: (1) exploiting shuffling opportunities offered by masking as
in [7], (2) better secure masked table computation, as shuffling alone was shown
insufficient in this regard [26].
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2. Abdellatif, K.M., Couroussé, D., Potin, O., Jaillon, P.: Filtering-based CPA: A
successful side-channel attack against desynchronization countermeasures. In: Pro-
ceedings of the Fourth Workshop on Cryptography and Security in Computing
Systems. p. 29–32. CS2 ’17, Association for Computing Machinery (2017)

3. Agosta, G., Barenghi, A., Pelosi, G.: A code morphing methodology to automate
power analysis countermeasures. In: DAC. pp. 77–82 (2012)

4. Agosta, G., Barenghi, A., Pelosi, G., Scandale, M.: The MEET approach: Securing
cryptographic embedded software against side channel attacks. IEEE TCAD 34(8),
1320–1333 (2015)

5. Amarilli, A., Müller, S., Naccache, D., Page, D., Rauzy, P., Tunstall, M.: Can code
polymorphism limit information leakage? In: Ardagna, C.A., Zhou, J. (eds.) Infor-
mation Security Theory and Practice. Security and Privacy of Mobile Devices in
Wireless Communication. pp. 1–21. Springer Berlin Heidelberg, Berlin, Heidelberg
(2011)

6. Antognazza, F., Barenghi, A., Pelosi, G.: Metis: An integrated morphing engine
cpu to protect against side channel attacks. IEEE Access 9, 69210–69225 (2021).
https://doi.org/10.1109/ACCESS.2021.3077977

7. Azouaoui, M., Bronchain, O., Grosso, V., Papagiannopoulos, K., Standaert, F.X.:
Bitslice masking and improved shuffling:: How and when to mix them in software?
IACR Transactions on Cryptographic Hardware and Embedded Systems 2022(2),
140–165 (Feb 2022)

8. Bellard, F.: Qemu, a fast and portable dynamic translator. In: Proceedings of the
Annual Conference on USENIX Annual Technical Conference. p. 41. ATEC ’05,
USENIX Association, USA (2005)
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