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Abstract — This article presents an experimental demon-
stration of a hybrid FeRAM/RRAM synapse circuit imple-
mented at the 130nm node. The circuit incorporates Metal-
Ferroelectric-Metal (MFM) stacks, which exhibit FeRAM
capacitor behavior when no filament formation occurs and
function as RRAM after undergoing a forming operation.
By leveraging the unique advantages of FeRAMs, such as
ultra-low power consumption, in combination with the non-
disruptive (infinite) reading capability of RRAMs, this circuit
enables efficient on-chip inference and learning at the Edge.

I. INTRODUCTION

The rapid advancement of artificial intelligence has fueled
the development of powerful algorithms that enable machines
to learn from experience and interact autonomously with their
environment [1]. However, implementing intelligent machines
is hindered by hardware constraints like energy consumption
and memory size. To overcome these challenges, researchers
have explored in-memory computing architectures that utilize
embedded memory devices for both processing and data
storage. Recent progress has been made in on-chip inference
[2][3], but achieving on-chip learning requires an ultra-low
switching energy and exceptional endurance. Additionally, the
vast amount of data to be processed by an inference chip
implies the need of quasi infinitive reading endurance and non-
destructive reading operations. Despite extensive efforts in the
past decade, attaining such memory remains elusive.

In the pursuit of an embedded memory solution with ultra-
low power consumption and outstanding endurance for on-
chip learning, one transistor-one capacitor (1T-1C) structures
based on ferroelectric materials (FERAMs) have emerged as
promising candidates [4]. However, the data-destructive read-
ing operation of FeERAMs poses challenges for implementing
inference applications. On the other hand, resistive switching
devices (RRAM) offer non-disruptive reading operations, mak-
ing them highly suitable for inference engines [5]. However,
limited writing endurance and increased programming power
limit RRAM’s effectiveness for learning [6].

In this paper, we introduce a novel memory stack based
on ferroelectric Si-doped hafnium oxide, enabling the co-
integration of RRAM and FeRAM memories in the same
Back End of Line (BEOL) of 130nm CMOS technology.
This integration is achieved without the need for additional

masks, simplifying the manufacturing process by combining
both technologies into a single memory stack [7]. Leveraging
this innovative technology, we designed, fabricated, and tested
a new hybrid FERAM/OxRAM synapse circuit. This circuit en-
ables on-chip learning of Binarized Neural Networks (BNNs),
where each weight is associated with a hidden value used only
during the training phase and a binary value for the inference
phase [8]. FeERAMs store the hidden weights, while RRAMs
store the binary weights. We apply this approach to perform
heartbeat arrhythmia detection, demonstrating compatibility
with hardware constraints. This advancement paves the way
for energy-efficient learning and inference at the edge, address-
ing the challenges posed by existing memory technologies.

II. METAL-FERROELECTRIC-METAL STACKS

TiN/Ti/Si:HfOo/TiN  Metal-Ferroelectric-Metal  (MFM)
structures were successfully integrated into the BEOL of
a 130nm CMOS technology, positioned between M4 and
M5 (Figllp,c) [9]. A Ti scavenging layer was deposited by
PVD at the top interface, without any air break between the
Ti and TiN top electrode (Fig[Id). The presence of the Ti
layer serves a dual purpose: it enhances the ferroelectricity
of the structure, resulting in a higher remanent polarization
in the ferroelectric capacitor, and increases the concentration
of oxygen vacancies (V,) at the interface. This enables the
creation of a purposeful V,-filament within the ferroelectric
layer, facilitating the operation of a resistive memory.

ITII. 1T-1C FERAM ARRAY PERFORMANCES

We fabricated 16kbit 1T-1C FeRAM arrays with 0.36 um?
MFM capacitors and sense amplifiers [10]. Our experimen-
tal results demonstrated a fully opened memory window of
120mV (FigP). To evaluate the switching efficiency of the
1T-1C cells, we employed 3 V-2 ps reading pulses with a fixed
reference voltage (V;..; =0.56 V). Fig[3] illustrates the trade-
off between pulse width and amplitude for programming a 0
(SL pulse) or a 1 (BL pulse) in a cell that was initially set to the
opposite state. Based on this investigation, we identified three
programming conditions (A, B, and C') for evaluating power
consumption and endurance. Notably, programming condition
C achieved a switching energy lower than 200 fJ/bit (FigH).
Higher programming voltages and longer programming times
(condition A) enhance the Memory Window (MW) (Fig[j),



they come at the expense of increased Bit Error Rate (BER)
after cycling (Fig[6). Therefore, for the remainder of this paper,
condition C' has been selected for programming the FeERAMs.

IV. 1T-1R FERROELECTRIC RRAM ARRAY

We integrated the same 0.36 um? MFM stack into 16kbit
IT-1R arrays on the same wafer, along with 1T-1C FeRAM:s.
Following the forming step, the array underwent cycling
under various programming conditions to minimize Bit Error
Rate (BER) and enhance MW (Fig[7). The optimal RESET
condition was achieved at Vgr =3.0V and Vi =3.1V,
while for binary operation, the optimal SET condition utilized
a programming current of I.. =67uA. For Multi-Level Cell
(MLC) operation, a range of I.. from approximately 261A to
67pA can be employed (Figl[T0). Furthermore, Figl§] demon-
strates the distributions of the Low Conductance State (LCS)
and High Conductance State (HCS) after multiple cycling
phases, providing the first array-level evidence supporting the
use of a ferroelectric material as a resistive switching layer
in RRAMs. To address the conductance instability relaxation
issue observed at low programming currents [11], we verified
the stability over time of the array programmed with 67uA
(Fig[9). MLC programming was achieved using an iterative
programming scheme [11], with the programming conditions
depicted in Fig[IT] The results of MLC programming for 4
and 8 levels per cell are shown in Figll2]

V. HYBRID FERAM/RRAM SYNAPSE FOR ON-CHIP
LEARNING AND INFERENCE

We present a novel hybrid FERAM/RRAM synaptic array
that combines the strengths of both technologies, enabling
efficient edge inference and learning. Our design incorpo-
rates the Metal-Ferroelectric-Metal stack technology discussed
earlier, utilizing ultra-low power FeRAMs for training and
non-disruptive RRAMs for inference. Our hybrid synapse
consists of a group of n 1T-1C cells, where the bitline (BL)
is connected to the wordline (WL) of a single 1T-1R cell.
This connection forms a Transfer Line (TL), enabling direct
and analog data transfer from n FERAMs to a single RRAM
without the need for intermediate circuits (see Fig[I3). The
parallel reading of all FeERAM elements within the hybrid
synapse involves loading the parasitic capacitance of the TL
to an analog voltage, representing the sum of 1’ stored
in the 1T-1C cells. This FeRAM-data-dependent voltage is
then utilized to set the RRAM compliance current, effectively
adjusting the device’s conductance. We implemented an array
of N=128 TLs, with each TL connecting N FeRAMs to
M=16 RRAMs. Ideally, each TL is utilized for 16 synapses,
with n=8 (see Fig[I4). An optical microscopy photograph
of the fabricated hybrid array and its peripheral circuitry is
shown in Fig[I5] Experimental results (Fig[I6) demonstrate
the relationship between the TL voltage and the number of
activated FeRAM wordlines (W Lr.) when the corresponding
source lines (SLp.) are pulsed. The voltage difference of
approximately 200mV between devices at 0 and 1 states
aligns with the required programming range for multi-level

operation in RRAMs (Figl[7). For a given n, the voltage
level of the TL is determined by the number of programmed
17 states (Ngyw ) in the FeERAMs and the amplitude of the
SLp. reading pulse. Additionaly, by fixing the RRAM BL
voltage during the transfer operation, the gate-source voltage
of the RRAM access transistor can be controlled, thereby
matching the required RRAM programming voltages (Fig[I8).
Fig[T9illustrates the measured data transfer from the FeRAM
data to the RRAM cells for n=8. The programmed RRAM
conductance shows a direct proportionality to the number of
1 FeRAM states.

We implemented a 2-layer fully connected Binarized Neural
Network (BNN) with on-chip learning for heart arrhythmia
detection using the proposed FeERAM/OXxRAM synapse [12].
The BNN training process involves assigning a real value to
each synapse, which accumulates loss gradients using binary
weights and a Stochastic Gradient Descent-like algorithm [7].
The real value, known as the hidden value (W},), remains
unused during inference, where only its sign is employed to
obtain the binary weight (W}, = £1) used during inference. To
address this, we utilize FeRAM cells to store the W), values
as an integer number of 2 (n=4), 3 (n=8) or 4 bits (n=16) and
RRAM to store the W}, values. During learning, W, values are
updated based on W}, values using our analog transfer tech-
nique (Fig[I9). The RRAM stored data is binarized through a
low-power binary reading operation to obtain binary weights.
Fig. 20b presents a schematic representation of the training
algorithm. During forward and backward propagation for each
input sample, the binarized weights stored in the RRAM array
are read to evaluate activations and gradients. These calculated
gradients are then used to update the hidden weights stored
in the FeRAMs accordingly. The FeRAM update is performed
using a probabilistic programming scheme (Fig[2T)). FeRAMs
are updated for each input sample, while the transfer operation
into binary weights stored in the RRAMs is performed every
K = 100 samples. Once training is completed, only the
binarized weights are used for model evaluation and infer on
previously unseen samples. The network achieves an inference
accuracy of 88% with n=8 (Fig[22). These results validate the
potential of the proposed circuit in enabling on-chip learning
and inference.

VI. CONCLUSIONS

Our novel hybrid FeERAM/RRAM synapse circuit success-
fully combines the ultra-low power consumption of FeRAMs
for on-chip learning with the non-disruptive reading capabil-
ity of RRAMs for in-memory computing during inference.
This technological breakthrough holds significant promise for
neural network implementation and design. When coupled
with advanced algorithms that address issues like catastrophic
forgetting and enable continuous learning [13], this technology
will enable the development of future intelligent devices and
applications.

Acknowledgment. This work is supported by the ERC
consolidator grant DIVERSE (101043854) and from a France
2030 government grant (ANR-22-PEEL-0010).



INTRODUCTION

o BEOL
FeRAM RRAM FeRAM RRAM
Prog. Energy ~100fJ ~100p) Learning N TE TE = 112
Ti 4nm
Prog. Endurance >107 ~10° SET ' SET
Read Energy  ~100)  ~100f) HIO,Si | 10 nm <y et £
. RESET orming RESET
Read Endurance >10 = TiN BE BE BE BE
Non-destructive Read ~ No Yes  nference N Tk damsis Oxygen Vacancies VO**
(a) (b)

p—

130 fim CMOS ]
+4 metal lines

©

(d)

Fig. 1. (a) Performance comparison of state of the art HfO2 based FeERAMs and RRAMs. (b) The Metal-Ferroelectric-Metal (TiN/HfO2:Si/Ti/TiN) structure,
integrated into the BEOL of 130nm CMOS, functions as a FERAM when integrated into 1T1C bit-cells, and as a RRAM when integrated as a 1T1R structure.
(c) Tilted SEM view with FIB cross section of 0.36 um? TiN/HfOo:Si/Ti/TiN stacks integrated above M4 of 130 nm CMOS, after memory stack etch. (d)
HRTEM cross section illustrating 10nm Si:HfO2 film crystallization in the presence of Ti scavenging layer.
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Fig. 2. Distribution of 0 and 1
states in a 16kbit 1T1C FeERAM
array, measured at 3V after
wake-up cycling with 102 pulses
(BV-2ps).

Fig. 3. Array-level switching efficiency measured for pro- Fig. 4. Switching energy per bit.
gramming 0 (a) and 1 (b) states using different pulse widths MWy . is the Memory Window
and amplitudes. A fixed reference voltage (V,..y =0.56 V) at 0o, Cp =9.5fF the dielectric
is utilized for reading. Three programming conditions (A, capacitance, and Cpy, =188 fF.
B, and C) are highlighted in green.

Fig. 5. Measured Memory
Window at Oc as a function
of cycling. The same condi-
tions are utilized for reading.

[ 1T1R FERROELECTRIC RRAM ARRAY PERFORMANCES

7 | Cond.C
I I @ 107 cycles

l ."I Cond. A
o 0 I l | @ 107 cycles
N
l l Il v 0 State
4 ! ] e 1 State
0.4 0.6 0.8 1.0
Vet (V)

Fig. 6. Distributions of 0 and 1 states
in 16kbit 1T1C FeRAM arrays, mea-
sured after 107 endurance cycles, for
programming conditions A and C.
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Fig. 15. Optical microscopy photograph of the die
of the hybrid synapse array and peripheral circuitry,
which includes line scan chains, drivers, sense am-
plifiers and output scan chain for the FeRAM array,

the surface, Vs, e the read voltage, and Ngyy the number of array via TLs. Here, N=128 control scan chain and timing block for the internal
capacitors at a ratio of 1 over n. and M=16. pulse generator.
2.0 2.0 2.0 80.0
—¥— All0s (a) n=4
1.8; —e— Allls 1.8 1.8 66.6
L6 1.6 ViLRe > V1L = Vi 55T min
g » AV =206 mV § VBL.Re < V1L = Ve, SET|max
g 1.4 -,40.0
> £
12 AV =231 mV - =
e Lol = j/‘ VeLre (V) 25.8
1.0 ’ 25— 28
—— 26— 29
1.0 i
08 —— 27— 30 AVy= 170 mV
4 8 12 16 1 2 3 4 2 4 6 8 009]0 0.50 0.86 1.03
n (#) Nsw (#) Nsw (#) V1L - VaLre (V)
Fig. 16. Average TL voltage measured Fig. 17. Average TL voltage for n=4 (a) and n=8 (b) as a function Fig. 18. Simulated RRAM program-

as a function of the number of activated
FeRAM WLs (n). The measurements
have been repeated over 126 synapse cir-

cuits.
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Fig. 19. Measured data transfer from 8 FeRAM
to one RRAM cell. Median and inter-quartile
ranges are shown as boxplots for 107 synaptic
circuits. By thresholding the RRAM conduc-
tance, the transfer implements a sign fuction.
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on n=8 FeRAM cells using a probabilistic pro-
gramming scheme. The blue lines represent the
weight read before being updated, while the
black lines represent the weight updated blindly.

of the number of 1 states programmed in the FeRAM, Ngy . The
measurements have been repeated for different SL pulse amplitudes.
Vertical lines correspond to the standard deviation at 1o measured over
126 synaptic circuits.
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ming current as a function of its gate-
source voltage, defined as Vrr-VBL Re-
VBL,Re can be adjusted to match the
RRAM requirements and facilitate the

data transfer from FeERAMs to RRAM.
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Fig. 20. (a) Example of an ECG signal converted into 64 features through Fast Fourier Transform (FFT),
which are used as input for a two-layer fully connected neural network (64-512-1). (b) Detailed schematic of
the training algorithm implementation using the hybrid synapse array concept shown in Fig@ the FeRAM
array is utilized to store the hidden values (W},) used during training, while the RRAM array is used for
the binary weights (W5).

Test Accuracy (%)

Training strategy

n=4 n=8 n=16
Online (Read & Update) 87,48 + 1,89 89,03 + 1,08 89,30 + 0,89
Online (Blind Update) 85,23 + 3,82 88,04 + 1,42 89,15+ 1,22

Fig. 22. Summary of the mean and standard deviation of the simulated test accuracies over 10 runs.
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