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Abstract 
The low temperature operation of quantum computing devices 

implies developing characterization protocols, from extensive 

statistical tests to targeted device screening at cryogenic temperature. 

This paper reviews major integration constraints arising in linear Si 

quantum dots arrays and their implication on both the device 

operation and electrical characterization.  
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Introduction 
 Si spin qubits are a solution investigated by multiple teams 

across the world to serve as core quantum chip [1][2][3][4]. One 

major advantage of Si quantum dots (QD) is their natural ability to 

scale to large arrays, with fabrication processes very similar to 

CMOS technology. An example of such linear QD array is presented 

in Fig. 1. Compared to transistors, characterizing QD arrays requires 

dedicated test procedures. This is mainly due to the low temperature 

of operation of quantum devices. To this end, a three steps 

characterization protocol is ideal (Fig. 2) to monitor relevant figures 

of merit at the considered temperature and characterization speed. 

QD arrays also differs from transistors at the design level, as they 

require single charge detection. Multiple detection schemes exist [5], 

yielding various device designs (Fig. 3) for which additional modules 

are required. In the development phase, to fairly benchmark this set 

of layouts with significant impact on the device operation, a neat 

optimization of the process is required. This paper reviews the 

associated characterization and electrical validation protocols. 

Linear gate arrays 

 The linear arrangement of gates constitutes a first major 

difference. While unitary transistors are surrounded by source-drain 

regions, the inter-gate regions of linear quantum dot arrays need to 

remain intrinsic to allow direct tunnel coupling between neighbor QD. 

Coupling to charges reservoirs also requires optimized junction 

engineering or additional access gates to help device initialization 

and readout. Operating a QD array as a standard transistor may 

consist in biasing it as one single gate device (Fig. 4) where all front 

gates (or plunger gates) are swept at the same time. In that case, 

significant variability in threshold voltage (Vth) and subthreshold 

slope (SS) is observed. Performing finer analysis of each gate reveals 

the source of such variability. Fig. 5 shows the behavior of each of 

the four front gates (FG) swept individually. While inner gates (G2 

& G3) have state-of-the art figures of merit, their outer counterparts 

(G1 & G4) exhibit clearly larger Vth and SS spread, (Fig. 6). This is 

attributed to their proximity with junctions, leading electron density 

below outer gates to depend on dopant concentration as confirmed 

by TCAD simulation (Fig. 7). As a result, a larger variability is 

expected on outer gates due to random dopant fluctuations. Thus, 

operating outer gates as access gates –rather than to confine QDs 

enables to alleviate variability originating from edge effects. It is also 

an interesting lever to tune electrically dot coupling to the reservoirs. 

Overlay in split gates designs 

 The split-gate design (Fig. 3) on FDSOI substrate offers 

versatile operability of QD arrays, enabling to work both in the 

exchange and readout regimes [4]. This face-to-face arrangement of 

the front gates is obtained by a dedicated “cut” lithography. Fig.8 

shows the IdVg characteristics of two front gates facing each other. 

Shifted transfer curves are a clear indication of a physical asymmetry 

at the morphological level. In this case, a smaller (larger) coverage 

of the qubit layer by the right (left) front gate is expected, due to 

misalignment of the cut lithography step. In comparison to a 

symmetric configuration, this misalignment increases (reduces) the 

right (left) front gate Vth, as expected from TCAD simulations. Even 

when some Vth mismatch is considered acceptable at 300K, one can 

expect exacerbated asymmetry at 2K and below due to the ΔVth 

temperature dependence, as illustrated in Fig. 9. Strict overlay 

control is therefore a key parameter in order to ensure ideal 

operability of split gates devices. 

Defect-free inter-gate regions 

 One major source of yield loss in Si QD arrays is spurious 

dots within the qubit layer. Although they can be spotted in the form 

of parasitic lines on stability diagrams (Fig. 10), revealing spurious 

dots earlier in the characterization chain –during 300K tests for 

example is preferred for the sake of learning cycle time. However, 

standard transistor parametric tests are unsuitable to reveal such 

defectivity. Fig. 11 illustrates a method specifically designed to 

highlight the presence of inter-gate defectivity using 300K 

characterization. This technique consists in monitoring the screening 

effect inter-gate defectivity has on the exchange gate polarization. 

For negative values of VJ, the front gates Vth is poorly shifted when 

inter-gate defectivity is present. 

On the process side, a possible solution to suppress spurious dots is 

to avoid using any implantation steps, as those can introduce defects 

or parasitic dopants in the qubit layer. However, well doping, which 

is required for back-biasing, is uneasy to achieve when deprived from 

any implantation step. A possible option effective at cryogenic 

temperature consists in implementing a metallic backgate electrode, 

so the backgate is no longer subject to dopants freeze out [6]. In the 

example shown in Fig. 12, a TSV-like backgate was etched by DRIE 

through the substrate landing on the lower BOX interface, followed 

by CVD metallization. Functionality of this approach is verified at 

200mK, yielding a similar body factor to the one at 300K (Fig.13). 

Conclusion 

Given their specific designs and integration constraints, new 

measurement protocols are required to characterize FDSOI QD 

arrays. Adapting 300K parametric test procedures offers the 

possibility to gather statistical data on the expected device behavior 

at cryogenic temperature. New methodologies and metrics, such as 

the ones presented in this paper, are developed to speed up learning 

cycle time in the development of large scale quantum computing. 
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Fig. 1: TEM image of a 4-Front Gates (FG) QD 

array with exchange gates (JG), and 

corresponding schematic cross section.  

Fig. 2: Diagram of the 3-steps characterization chain of QD arrays 

performed at CEA-Leti, with various temperature and throughput 

constraints. 

Fig. 3: Examples of linear QD arrays designs. 

FG: front gate, JG: exchange gate, SET: single 

electron transistor. 

  

Fig. 4: IdVg characteristics at 300K of a 4-FGs array with simultaneous sweep of all 

FGs (a); Extracted threshold voltage (b) and subthreshold slope (c). 
Fig. 5: IdVg characteristics at 300K of each individual FG when the three other 

gates are set to 1V. Larger spread is observed on outer gates (G1, G4). 

 

 

 

Fig. 6: Extracted threshold voltage (a) and 

subthreshold slope (b) for each front gate at 300K. 

Standard deviation is labelled for each gate boxplot. 

Fig. 7: Electron density in the qubit layer 

when sweeping inner (a) & outer (b) 

gates. Black lines: dopants distribution. 

Fig. 8: IdVg characteristics at 300K of two FGs facing each other with 

symmetric (a) and asymmetric (b) coverage of the qubit layer. 

Expected Vth variation vs CUT misalignment from TCAD (c). 

 

Fig. 9: Coulomb diamonds diagrams of a split gate 

device with asymmetric vs symmetric gates at 2K. 

 

Fig. 11: IdVg FGs sweeps at 300K for various exchange gate 

voltages (VJ), in the presence (a) or absence (b) of inter-gate 

defects. Such defects inhibit the Vth shift expected at negative VJ. 

Fig. 10: Stability diagram of a split-gates device 

obtained at 2K. Spurious dot signature appears 

though diagonal dark lines. 

  

Fig. 12 : Schematic cross section of implanted wells (a) vs metallic backgate 

(b) integration. Corresponding optical microscope image of the backgate 

through-silicon-via observed post cavity etch (c). 

Fig. 13: IdVg sweeps at 200mK of a single gate device featuring a metallic backgate for 

various backgate polarization VBG (a). Extracted Vth vs VBG lines show similar slopes at 

200mK and 300K (b), suggesting functional back-biasing at cryogenic temperature. 
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