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ABSTRACT

Context. For Sun-like stars, the generation of toroidal magnetic field from poloidal magnetic field is an essential piece of the dynamo
mechanism powering their magnetism. Previous authors have estimated the net toroidal flux generated in each hemisphere of the
Sun by exploiting its conservative nature. This only requires observations of the photospheric magnetic field and surface differential
rotation.
Aims. We explore this approach using a 3D magnetohydrodynamic dynamo simulation of a cool star, for which the magnetic field
and its generation are precisely known throughout the entire star.
Methods. Changes to the net toroidal flux in each hemisphere were evaluated using a closed line integral bounding the cross-sectional
area of each hemisphere, following the application of Stokes theorem to the induction equation; the individual line segments corre-
spond to the stellar surface, base, equator, and rotation axis. We evaluated the influence of the large-scale flows, the fluctuating flows,
and magnetic diffusion on each of the line segments, along with their depth-dependence.
Results. In the simulation, changes to the net toroidal flux via the surface line segment typically dominate the total line integral
surrounding each hemisphere, with smaller contributions from the equator and rotation axis. The surface line integral is governed
primarily by the large-scale flows, and the diffusive current; the latter acting like a flux emergence term due to the use of an impene-
trable upper boundary in the simulation. The bulk of the toroidal flux is generated deep inside the convection zone, with the surface
observables capturing this due to the conservative nature of the net flux.
Conclusions. Surface magnetism and rotation can be used to produce an estimate of the net toroidal flux generated in each hemi-
sphere, allowing us to constrain the reservoir of magnetic flux for the next magnetic cycle. However, this methodology cannot identify
the physical origin or the location of the toroidal flux generation. In addition, not all dynamo mechanisms depend on the net toroidal
field produced in each hemisphere, meaning this method may not be able to characterise every magnetic cycle.
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1. Introduction

During the solar cycle (see review of Hathaway 2015, and ref-
erences therein), the classical solar dynamo scenario begins
with an originally poloidal magnetic field that is acted upon
by the Sun’s internal differential rotation transforming the field
into toroidal wreaths at the base of the convection zone (see
review by Charbonneau 2020). Once this toroidal field becomes
sufficiently strong, magnetic flux buoyantly rises towards the
surface (Browning & Priest 1984; Birch et al. 2016), twisting
in response to the Coriolis force (D’silva & Choudhuri 1993;
Fan 2008), and convective motions (Jouve et al. 2012), pro-
ducing Joy’s law (Schunker et al. 2020). The net effect of
these processes regenerates the poloidal field at the surface,
but with the opposite polarity to the original poloidal field
(Mordvinov & Kitchatinov 2019; Noraz et al. 2022), although,
the exact mechanism for regenerating the poloidal field is still
debated, and could also depend on deep-seated cyclonic con-
vection (Parker 1955; Mason et al. 2002), or magnetic buoyancy
instabilities (Vasil & Brummell 2008). An overview of these
mechanisms can be found in Brun & Browning (2017).

The evolution of the Sun’s photospheric magnetic field
has been continuously studied over the last four solar cycles

(since the 1970s), using ground-based (Scherrer et al. 1977),
and later, space-based (Scherrer et al. 1995, 2012) observatories.
Flux emergence begins at mid-latitudes and progresses down
towards the equator during the approximately 11 year solar
activity cycle (van Driel-Gesztelyi & Green 2015). The emerged
magnetic field locally suppresses magnetoconvection at the sur-
face, creating dark sunspots, and bright facular regions. The
magnetic cycles of other Sun-like stars have begun to be mapped
using magnetic activity proxies (Baliunas & Vaughan 1985;
Egeland et al. 2016), Zeeman-Doppler imaging (Saikia et al.
2016, 2018), and the occultation of starspots by transiting exo-
planets (e.g., Morris et al. 2017). Although, not all cycles are
observed to be solar-like (see Jeffers et al. 2022).

The regeneration of toroidal magnetic field from poloidal
magnetic field remains poorly understood, despite the growing
number of magnetic cycle observations. Cameron & Schüssler
(2015) proposed a method for evaluating the net toroidal flux
in each hemisphere of the Sun that only requires observations
of the photospheric magnetic field and the Sun’s differential
rotation pattern. The method assumes that the cancellation of
toroidal flux between hemispheres can be treated as a simple loss
term. However, this has not been explored in a scenario where
the net toroidal flux in each hemisphere was actually known. In
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addition, the net toroidal flux may not scale with the total mag-
netic energy, because of cancellation effects, and therefore fail to
capture the underlying magnetic cycle.

If the net toroidal flux is important for the magnetic cycle of
a star, this method has enormous value in estimating the reser-
voir of toroidal flux available for the next magnetic cycle. For
the solar dynamo, some factors suggest the net toroidal field
is relevant, including the facts that: the amount of net toroidal
field estimated using the methodology of Cameron & Schüssler
(2015) is almost the same as is lost through flux emergence
(Cameron & Schüssler 2020); changes in the amount of toroidal
flux produced is reflected in the amount lost through emergence;
and that during times of maxima, flux emergence occurs with a
systematic preference for the same orientation (at all latitudes in
each hemisphere) in accordance with Hale’s law (Cameron et al.
2018). However, this may not be the case for all dynamo mech-
anisms.

In this study, we apply the methodology from
Cameron & Schüssler (2015) to a cyclic dynamo simula-
tion where the net toroidal flux in each hemisphere is known,
and the fundamental assumptions of the method can be tested.
Section 2 describes the methodology of Cameron & Schüssler
(2015), and the magnetohydrodynamic simulation used in this
work, published in Brun et al. (2022). Section 3 details the
application of this method to the simulation, and observations
of the Sun. The accuracy of this method in reproducing the deep
internal stellar dynamo from surface measurements alone, its
capability to diagnose the dynamo process, and the potential
caveats, are summarised in Sect. 4.

2. Methodology

2.1. Evaluating the net toroidal flux generation

The method proposed by Cameron & Schüssler (2015) is based
on the application of Stokes theorem to the induction equation.
First the induction equation is written in terms of the azimuthally
averaged large-scale magnetic field and velocity, B and V, plus
the turbulent magnetic field and velocity components, b and u,
such that,

∂B
∂t

= ∇ ×

(
V × B + 〈u × b〉 − ηJ

)
, (1)

where η is the magnetic diffusivity, J = 1/µ0∇ × B is the cur-
rent density, and 〈u × b〉 represents the azimuthally averaged
correlation between the turbulent magnetic field and velocity
components.

Contours that enclose the northern and southern hemispheres
are selected, denoted by CH, each composed of four line integrals
following the surface, base, equator, and axis of rotation (see
dark contour in Fig. 1). By applying Stokes theorem to the induc-
tion equation over the area inside the contour AH, the time evolu-
tion of the net toroidal flux in each hemisphere can be recovered
using

dΦH

dt
=

d
dt

∫
AH

BφdAH ,

=

∮
CH

(
V × B + 〈v × b〉 − ηJ

)
· dl. (2)

Each line segment contributes to the evolution of the net toroidal
flux via the projection of the large-scale flows, the fluctuating

Fig. 1. Schematic depiction of the Stokes theorem contour, overlaid on
a snapshot of the ASH simulation. The dark contour CH shows the path
of integration around the area AH in the northern hemisphere, which is
broken into four segments; surface, equator, base, and axis of rotation.
The left hemisphere shows the structure in the radial field at the outer
boundary of the simulation. The right hemisphere shows a slice through
the azimuthally averaged toroidal magnetic field in the simulation.

flows, and magnetic diffusion onto the direction of the line seg-
ment. In spherical coordinates (r, θ, φ), for the northern hemi-
sphere AN, this is explicitly written

dΦN

dt
=

∫ 0 to π/2

surface

(
VrBφ − VφBr + 〈vrbφ〉 − 〈vφbr〉 − ηJθ

)
R∗dθ

−

∫ R∗ to R0

equator

(
VθBφ − VφBθ + 〈vθbφ〉 − 〈vφbθ〉 − ηJr

)
dr

−

∫ π/2 to 0

base

(
VrBφ − VφBr + 〈vrbφ〉 − 〈vφbr〉 − ηJθ

)
R0dθ

+

∫ R0 to R∗

axis

(
VθBφ − VφBθ + 〈vθbφ〉 − 〈vφbθ〉 − ηJr

)
dr,

(3)

where, R∗ and R0 represent the radial distance to the surface and
the base respectively. In this study, these line segments are evalu-
ated individually, and represent the flux of toroidal field through
each of these boundaries. Each line segment contains contribu-
tions from the large-scale flows, the fluctuating flows, and mag-
netic diffusion.

2.2. Dynamo simulation

In this study, we analysed a global convective dynamo simu-
lation performed using the ASH code (Brun et al. 2004). This
simulation exhibits cyclic reversals of its large-scale magnetic
field, with a solar-like differential rotation pattern. The star has
a mass of 1.1 M� and mean rotation rate three times higher than
that of the Sun. The simulation domain is composed of a sta-
ble inner radiative zone, spanning 0.5–0.75 stellar radii, with
an outer convective zone reaching up to 0.97 stellar radii. The
simulation domain has a grid resolution of 769 radial (r) cells,
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Fig. 2. Overview of the ASH simulation used in this work. Snapshots of the simulation at five intervals are displayed in the top row, showing the
radial field at the surface in the left hemisphere and the azimuthally averaged toroidal flux in the right hemisphere. The second panel shows the
time evolution of the azimuthally averaged radial magnetic field at the surface. The third row contains snapshots, similar to the top row, displaying
the surface rotation rate in the left hemisphere and the azimuthally averaged rotation rate (minus the time-averaged profile) in the right hemisphere.
The fourth panel shows the time evolution of the azimuthally averaged surface rotation rate, with the fifth panel containing the residual rotation
rate after the temporal average is subtracted (highlighting deviations coincident with the reversal of the radial magnetic field).

512 latitudinal (θ) cells, and 1024 longitudinal (φ) cells. Impen-
etrable and stress-free boundary conditions are maintained at the
surface and base of the domain. The magnetic field is perfectly
conducting at the base and matches a potential field at the sur-
face. Convection is driven by a fixed entropy gradient at both
boundaries. The ASH simulation (M11R3m) is described fully
in Brun et al. (2022) and references therein.

The resulting cyclic reversals of the poloidal magnetic field
have a periodicity of around five years. A temporal interval
of 32 years, spanning several magnetic cycles, was selected for
our analysis. Equation (3) was computed at a weekly cadence
throughout this period, that is, for ∼1600 ASH simulation snap-

shots. Figure 2 contains snapshots of the simulation during this
period, along with time-series of the surface magnetic field, and
rotation rate, showing two full magnetic cycles (i.e., four polar
field reversals). The polar field reversals in each hemisphere
become desynchronised around t = 33 years, and recover during
the next few magnetic cycles. This indicates a strong contribu-
tion of the quadrupolar mode during this time (see discussion in
DeRosa et al. 2012). This ASH simulation possesses very inter-
esting dynamo properties that resemble that of a cyclic solar-
like star, although, it is by no means considered a perfect solar
dynamo model. Here, we aim to characterise how representative
surface observables are of the underlying cyclic dynamo, which
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Fig. 3. Breakdown of the net toroidal flux generation terms in the northern and southern hemispheres, left and right respectively. The top panel
displays the contribution of each line integral (surface, base, equator, and axis) towards the total net toroidal flux generation in each hemisphere.
The panels below, labelled according to their corresponding line integral, further breakdown the contributions to each line integral in terms of the
large-scale flows, the fluctuating flows, and magnetic diffusion.

is not an exact representation of the solar dynamo, although its
properties are similar. At the base of the convection zone, the
long-term cyclic magnetic field evolution hosts both equator-
ward and polar branches (see Appendix A). This magnetic field
is processed as it emerges through the convection zone to reach
the surface. This produces a mostly dipole field that reverses on
relatively long timescales. The increased mass and radius of the
star creates some differences with respect to the solar dynamo.
Here, the convection zone is shallower, the turnover timescale
is shorter (around 24 days), and the rotation rate is three times
larger, leading to a stellar Rossby number of 0.5 (slightly smaller
than that of the Sun). The faster rotation also drives a differen-
tial rotation pattern with flows that are more concentrated at the
equator. Accordingly, the azimuthally averaged surface magnetic
field is structured into three latitudinal bands in each hemisphere.
The central band in each hemisphere, with a polarity opposite
to that of the polar field, sits within an inflection of the surface
differential rotation profile, where the latitudinal shear changes
direction. These features develop self-consistently in the simu-
lation. When the surface radial fields reverse, the new magnetic
field polarity begins to strengthen in the equator-ward band. The
strengthening of the surface field then progresses towards the
poles. Despite the opposing field polarity of the central band, the
locally reversed latitudinal shear maintains a consistent sign of
toroidal flux generation in each hemisphere.

As the simulation’s internal differential rotation shears the
existing poloidal field into toroidal field, oppositely directed
Maxwell stresses develops that resist the continued winding of
the field. This can significantly quench the large-scale rotation
with respect to the temporal average profile. Figure 2 contains
the azimuthally averaged surface rotation of the simulation in
the fourth row, as well as the residual rotation rate after the tem-
poral average is subtracted in the bottom row. Time periods of
decreased rotation (coloured blue in the bottom panel) begin in
the central bands and migrate over two to three years towards the
poles. This kind of behaviour is somewhat similar to the torsional
oscillation observed in the Sun (see review of Howe 2009). Dur-
ing the period of desynchronisation in the northern hemisphere
from t = 33 to 45 years, the growth of toroidal field is insufficient
to influence the internal differential rotation until t = 41 years.
The strength of the quenching at the surface is observed to vary
from one reversal to another. For example, in the southern hemi-
sphere, the feedback of the reversals at t = 43, 47, and 60 years
is significantly smaller than the reversals at t = 37 and 56 years

(10 nHz versus 30–40 nHz decreases). Once the surface radial
fields have reversed, the flow accelerates producing an enhance-
ment with respect to the temporal average (coloured red in the
bottom panel).

3. Analysis of the toroidal flux budget

3.1. Breakdown of each line segment

The contribution from each individual line segment (surface,
base, equator, and axis) surrounding the northern and southern
hemispheres are displayed in Fig. 3. Values in Fig. 3 (and later
Fig. 4) have been smoothed using boxcar-averaging with a six-
month interval in order to more easily make visual comparisons.
The top panels show the net toroidal flux generation in each
hemisphere, with contributions from each of the four line seg-
ments, as a function of time. The surface line segment domi-
nates the integral in each hemisphere, with smaller contributions
from the equator and axis. The base line segment is located at
the bottom of the ASH simulation domain, in the stable layer,
and is therefore effectively zero. The lower four panels of Fig. 3
show the net toroidal flux generation provided by each individual
line segment, which is then further divided into the contributions
from the large-scale flows, the fluctuating flows, and magnetic
diffusion (see Eq. (3)). For the surface line segment, the large-
scale flows drive the overall sum, with magnetic diffusion hav-
ing a smaller contribution that is typically in opposition. This
is a result of diffusion acting as a means for the toroidal flux
(built up by the large-scale flows) to emerge through the surface.
As the boundary conditions of the ASH simulation require the
radial velocity at the surface to tend to zero, this term acts like a
replacement for flux emergence by advection. In other words,
the flux of magnetic energy (or Poynting flux) is channelled
through the other non-zeroed components (see Eqs. (4)–(7) in
Finley et al. 2022). Therefore, this is a loss term with respect to
the net generation below. These observations hold for both the
northern and the southern hemispheres.

The net toroidal flux generated in the northern hemisphere
is plotted with a solid grey line in the top left panel of Fig. 4.
This was evaluated by performing a temporal derivative on the
net hemispherical toroidal flux using the weekly simulation out-
puts, and smoothing to more easily make visual comparisons.
This is compared with the resulting net toroidal flux generation
calculated from the complete line integral with a dashed black
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Fig. 4. Comparison of the net toroidal flux generation in the northern hemisphere of the ASH simulation. The upper left panel shows the time
evolution of the net toroidal flux generation with the true value in solid grey, the full line integral in dashed black, and the surface line integral only
in dotted red. The true value and line integral agree, with small differences due to the data sampling frequency (here data are taken at a weekly
cadence rather than at the much smaller time-step cadence). Intervals labelled with vertical lines from one to eight, correspond to the smaller
panels below. These panels show, for each interval, the depth dependence of the surface line integral, and its constituents (the large-scale flows, the
fluctuating flows, and magnetic diffusion). The series of panels on the right contain a more continuous sampling of this parameter space, showing
the time-evolving depth dependence of the surface line integral and its contributions. Above ∼0.75 stellar radii, the line integral remains roughly
constant with depth. Figure B.1 shows the same information but for the southern hemisphere.

line, and just the surface line segment with a dotted red line.
The same information is available for the southern hemisphere
in Fig. B.1. The complete line integral matches the evolution
of the net toroidal flux, with some small differences owing to
the weekly cadence of the snapshots used in its calculation. The
polarity of the northern polar magnetic field (30◦ around the
pole) is displayed in red (positive) and blue (negative) along the
bottom of the panel. The surface line integral appears to match
best when the net toroidal flux generation is largest, for exam-
ple during the reversals of the polar fields. However, the surface
line integral struggles to explain the net toroidal flux generation
when the value is small and comparable to either the flux trans-
ported through the equator between hemispheres, or sources on
the rotation axis.

3.2. Varying the depth of the surface line segment

The toroidal flux in the ASH simulation is generated near the
base of the convection zone (Brun et al. 2022), far from the
dynamics at the surface. This is also shown by the small pan-
els in Fig. 4, each one representing the calculation of the sur-
face line segment at various depths in the northern hemisphere
(in a sense, scanning through the simulation). The contributions
from the large-scale flows, the fluctuating flows, and magnetic
diffusion are shown with coloured dashed, dash-dotted, and dot-
ted lines respectively. The total is then shown with a solid black
line. Provided the other line segments closing the area below
each surface line segment are small, this value represents the net
toroidal flux generation in the ever-diminishing area under the

surface line segment. If the net toroidal flux generation inside
the area remains the same, the value of the surface line segment
should be constant. In general, this is the observed behaviour in
the outer 10−20% of the simulation, far away from the principal
source of net toroidal flux. As the line segment moves to depths
that contain imbalanced toroidal flux, due to the local generation
of the opposing polarity, the value of the line segment begins to
diverge. The largest values are found near the base of the convec-
tive zone, notably, in the large-scale flows responsible for shear-
ing the poloidal field into toroidal field; but also this is accompa-
nied by a rise in magnetic diffusion that opposes this mechanism.

The rightmost panels of Fig. 4 contain a more extensive
breakdown of the depth-dependence of the surface line segment.
The top panel shows the total surface integral, with the lower
three panels breaking this down into the large-scale flows, the
fluctuating flows, and magnetic diffusion. In the top panel, the
line integral remains visibly constant down to around 0.85 stel-
lar radii. This depth varies little in time, showing that the dynamo
action responsible for the cyclicality of the simulation is deeply
seated. Below 0.75 stellar radii, the integral passes into the radia-
tive zone and therefore diminishes towards zero. The net toroidal
flux generation therefore lies in the lower half of the convection
zone. The constituents of the line integral, have more structure
with depth than their total. The large-scale flows, the principal
driver of the net toroidal flux evolution, peak around 0.78 stellar
radii. Magnetic diffusivity peaks slightly closer to the base of the
convective zone, directly opposing the shearing from the large-
scale flows. Further away from the base of the convection zone,
the contribution from magnetic diffusion falls off, and is replaced
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Fig. 5. Method of Cameron & Schüssler (2015) applied to magnetograms from WSO, SOHO/MDI, and SDO/HMI plus the surface rotation rate
from Snodgrass (1983). Top panels show the rotation profile and azimuthally averaged magnetic field. These are combined to produce the middle
panel, a measure of the net toroidal field generated by the large-scale flows based on the surface observables. The lower panel shows the net
toroidal flux generation in each hemisphere from this process.

by the turbulent flows which conserve the net toroidal flux gen-
eration up towards the surface. However, as the radial velocities
are damped progressively towards zero in the outermost ∼5% of
the simulation, the turbulent flow contribution decreases near the
surface with magnetic diffusion picking up this contribution.

3.3. Comparison with the Sun

We now compare our analysis of the ASH simulation, to the results
of the same approach but using observations from the Sun (as in
Cameron & Schüssler 2015). Assuming that the dominant contri-
bution to Eq. (3) is the large-scale flows at the surface, then

dΦH

dt
=

∫ π/2

0

(
VrBφ − VφBr

)
R∗dθ. (4)

If the primary contribution to this term is the large-scale differ-
ential rotation on the poloidal magnetic field VφBr. This can then
be simplified to,

dΦH

dt
=

∫ 90◦

0◦
VφBrR∗dθ =

∫ 1

0

(
Ω(θ) −Ωeq

)
BrR2

∗d cos θ, (5)

in a rotating frame with the equator Ωeq, for the northern
hemisphere (see Cameron & Schüssler 2015). Here, magne-
tograms are taken from the Wilcox Solar Observatory1 (WSO,
Scherrer et al. 1977) and both the Michelson Doppler Imager
(MDI, Scherrer et al. 1995), onboard the Solar and Helio-
spheric Observatory (SOHO), and the Helioseismic and Mag-
netic Imager (HMI, Scherrer et al. 2012), onboard the Solar

1 Data accessed Jan. 2023: http://wso.stanford.edu/
synopticl.html

Dynamics Observatory (SDO). Both SOHO/MDI and SDO/HMI
data products2 include a polar-field correction (Sun et al. 2011;
Sun 2018). The radial magnetic field, shown in Fig. 5, is then
multiplied by the solar-surface differential rotation profile, taken
from Snodgrass (1983),

Ω(θ) = Ωeq + α2 cos2 θ + α4 cos4 θ, (6)

where Ωeq = 472.6 nHz is the equatorial rotation rate, and the
values of α2 = −73.9 nHz and α4 = −52.1 nHz. This forms the
surface line segment integrand, shown in the second panel of
Fig. 5, which is integrated in each hemisphere to estimate the
net toroidal flux generation in the lower panel of Fig. 5. For the
Sun, the integrand is dominated by the action of the differential
rotation on the polar fields, which leads to the net toroidal flux
generation in each hemisphere smoothly oscillating. This also
implies that the peak net toroidal flux generation in each hemi-
sphere occurs when the polar fields are largest.

In comparison, interpretation of the ASH simulation is more
complicated. Figure 6 repeats this analysis for the simulation,
only considering the surface differential rotation acting on the
radial magnetic field. Compared to the Sun, the simulated dif-
ferential rotation profile features a steeper profile around the
lower latitude, and a flattening towards the poles. In addition,
the modelled dynamo supports a latitudinally banded radial mag-
netic field, where opposite neighbouring polarities in each hemi-
sphere add complexity to the interpretation. Nevertheless, the
intergrand (second panel of Fig. 6) shares similarities with that
of the Sun (in Fig. 5). The toroidal flux generation in each hemi-
sphere peaks when the banded radial magnetic field strength-
ens and becomes the same polarity in the central and poleward

2 Data accessed May 2023: http://hmi.stanford.edu/data/
synoptic.html
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Fig. 6. Method of Cameron & Schüssler (2015) applied to the ASH simulation. The top panels show the rotation profile and azimuthally averaged
magnetic field. These are combined to produce the middle panel, a measure of the net toroidal field generated by the large-scale flows based on the
surface observables. The lower panel shows the net toroidal flux generation in each hemisphere from this process, in comparison to the true value
from the simulation.

bands, before diminishing when these bands have mixed
polarities.

Figure 3 shows that the surface line segment of the simula-
tion also includes a significant contribution from the magnetic
diffusivity (essentially flux emergence). Equation (5) will there-
fore not perform as well as the complete surface line segment,
which we show in contrast to the true value from the simula-
tion in Fig. 4. The loss of toroidal magnetic flux through the
emergence of bipolar magnetic regions on the Sun is discussed
in Cameron & Schüssler (2020; see also Jeffers et al. 2022). In
Fig. 6, the true net toroidal flux production in the simulation is
plotted with dashed lines for comparison with the estimate using
only the differential rotation and radial magnetic field informa-
tion. Although there are clearly significant departures from the
true value, these arise due to the strengthening of magnetic dif-
fusivity. Therefore, the surface diagnostic captures the building
of toroidal flux by the large-scale flows, up to its peak, after this,
the method fails as the magnetic diffusivity increases, offsetting
some of the toroidal flux being generated. The magnetic dif-
fusivity of the simulation is indeed much larger than expected
for the Sun, but in reality the emergence of bipolar magnetic
regions may play a similar role. This should be accounted for in
future estimations of the net toroidal flux production from sur-
face observables alone.

4. Conclusion

The methodology presented in Cameron & Schüssler (2015)
allows us to estimate the net toroidal flux generation inside the
Sun, using only the observed surface magnetic field and differen-
tial rotation pattern. This is a useful measure of the reservoir of
toroidal flux that could emerge during the next magnetic cycle.
However, this method has yet to be tested in a scenario where

the net toroidal flux is actually known. In this study, we use
a 3D magnetohydrodynamic dynamo simulation where the net
toroidal flux generation is known throughout the entire star, to
determine the applicability and limitations of this methodology.
This simulation has slightly different stellar parameters to the
Sun, but hosts a cyclic dynamo and solar-like differential rota-
tion. Following the method of Cameron & Schüssler (2015), the
application of Stokes theorem to the induction equation, allows
us to evaluate the net toroidal flux generation from a closed line
integral bounding the cross-sectional area of each hemisphere.
The line segments of this integral correspond to the stellar sur-
face, the base of the simulation domain, the equator, and the
rotation axis. In order for this method to be useful, the surface
segment should dominate the integral, as this is the only compo-
nent that can be observed for the Sun and other stars.

Based on the application of this methodology to the dynamo
simulation, we find that the surface segment is generally capable
of describing the net toroidal flux generation. This is most reli-
able during the initial conversion of poloidal field into toroidal
field during activity minima, where the large-scale flows domi-
nate the generation of toroidal flux. However, to ensure the accu-
racy of the surface segment, the contributions of the turbulent
flows and magnetic diffusion should also be included. Future
studies of the Sun’s toroidal flux generation should consider the
contributions from the turbulent flows and magnetic diffusion
(see Cameron & Schüssler 2020, 2023; Jeffers et al. 2022). In
the dynamo simulation, magnetic diffusion is large near the sur-
face, acting as a pseudo flux emergence due to the impenetrable
upper boundary. This component plays a significant role after
the large-scale flows have acted to generate the bulk of the net
toroidal flux. During phases of flux emergence, or maxima of
activity, the toroidal flux generation is weak and so the equa-
torial and rotation axis segments can be comparable to the total
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integral. This introduces ambiguity in the net toroidal flux evolu-
tion predicted by surface observables alone during these periods.

However, the success of this method does not imply that the
surface differential rotation acting on the poloidal magnetic field
is sufficient to generate the toroidal flux for the next magnetic
cycle. It is clear that the toroidal flux is mostly generated, and
confined, near to the base of the convective zone. Instead, the
magnetic field lines are non-local and follow a conservation law.
For this method to be applicable in real stars, the exchange of
toroidal flux between hemispheres must be small or near zero
in order for the unsigned toroidal flux to be a representative
measure of the magnetic field being regenerated by the internal
dynamo. Therefore, if the toroidal flux is produced closer to the
equator, with an increased possibility of flux transferring from
one hemisphere to another, this method may begin to breakdown
as the reservoir of toroidal energy in one hemisphere is no longer
tightly linked to the surface flux evolution.

Equally, there are some dynamo mechanisms where the net
toroidal flux in each hemisphere does not correlate with the mag-
netic activity cycle, as the net toroidal flux is not a direct mea-
sure of the total magnetic energy available to power the next
cycle. One such example is the classic alpha-omega dynamo
wave with a relatively high wave number. This dynamo pro-
duces several bands of toroidal flux of each polarity in each
hemisphere. With appropriate boundary conditions, there would
be zero net flux in each hemisphere, with the bands cancelling;
though substantial magnetic energy would be produced. There-
fore, this method may not be applicable to all observed magnetic
cycles.
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Appendix A: Toroidal field evolution at the base of
the convection zone

The ASH simulation investigated in this work (M11R3m) pos-
sesses some interesting dynamo properties that resemble those of
a cyclic solar-like star (Brun et al. 2022). This is best observed

at the base of the convection zone, where the toroidal field is
organised. Figure A.1 displays the azimuthally averaged toroidal
field at a depth of 0.76 stellar radii. The equatorward and polar
branches are clearly visible, with the toroidal field in each hemi-
sphere reversing after around five years.

Fig. A.1. Time evolution of the azimuthally averaged toroidal magnetic field at the base of the convection zone.
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Appendix B: Analysis of southern hemisphere

In Section 3.2, the Cameron & Schüssler (2015) method for esti-
mating the net toroidal flux generation is compared against the
true value in the ASH simulation for the northern hemisphere
integral using equation (3). Here the same analysis is performed
on the southern hemisphere, where the integral is formed as fol-
lows:
dΦS

dt
=

d
dt

∫
AS

BφdAS ,

=

∮
CS

(
V × B + 〈v × b〉 − ηJ

)
· dl. (B.1)

and broken down into four line segments as,

dΦS

dt
=

∫ 0 to π/2

surface

(
VrBφ − VφBr + 〈vrbφ〉 − 〈vφbr〉 − ηJθ

)
R∗dθ

−

∫ R∗ to R0

equator

(
VθBφ − VφBθ + 〈vθbφ〉 − 〈vφbθ〉 − ηJr

)
dr

−

∫ π/2 to 0

base

(
VrBφ − VφBr + 〈vrbφ〉 − 〈vφbr〉 − ηJθ

)
R0dθ

+

∫ R0 to R∗

axis

(
VθBφ − VφBθ + 〈vθbφ〉 − 〈vφbθ〉 − ηJr

)
dr.

(B.2)

The net toroidal flux generated in the southern hemisphere is
plotted with a solid grey line in the top left panel of Figure B.1,
and can be compared to the true value shown with a black dashed
line, and the surface integral only with a dotted red line. The
smaller panels in the lower right of Figure B.1 display radial
scans through the simulation of the surface line integral. This is
expanded in the right panels, showing the depth dependence of
the net toroidal flux generation estimated from the surface line
integral (split into the contributions from large-scale flows, fluc-
tuating flows, and magnetic diffusion).

Fig. B.1. Same as Figure 4, but now for the southern hemisphere.
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