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Abstract—Active learning aims to optimize the dataset anno-
tation process when resources are constrained. Most existing
methods are designed for balanced datasets. Their practical
applicability is limited by the fact that a majority of real-life
datasets are actually imbalanced. Here, we introduce a new
active learning method which is designed for imbalanced datasets.
It favors samples likely to be in minority classes so as to
reduce the imbalance of the labeled subset and create a better
representation for these classes. We also compare two training
schemes for active learning: (1) the one commonly deployed in
deep active learning using model fine tuning for each iteration
and (2) a scheme which is inspired by transfer learning and
exploits generic pre-trained models and train shallow classifiers
for each iteration. Evaluation is run with three imbalanced
datasets. Results show that the proposed active learning method
outperforms competitive baselines. Equally interesting, they also
indicate that the transfer learning training scheme outperforms
model fine tuning if features are transferable from the generic
dataset to the unlabeled one. This last result is surprising and
should encourage the community to explore the design of deep
active learning methods.

I. INTRODUCTION

Efficient deep learning relies on the availability of large
annotated datasets which are exploited to optimize the large
number of parameters of deep neural networks. The suc-
cess of fully supervised strategies is conditioned by sizes of
the networks and of the available annotated datasets. Large
amounts of unlabeled data are available for many tasks but
their annotation can be costly. Partial annotation of datasets
can be an interesting solution for time-sensitive applications
or when annotation resources are constrained. In such cases,
the effectiveness of the training process is linked to the quality
of the sampling performed.

Active Learning (AL) [1] methods are designed to opti-
mize the accuracy of model learned over annotated subset
of unlabeled dataset. Given a total annotation budget, AL is
usually deployed in an iterative fashion. A fixed number of
samples are selected per iteration and annotated in order to
retrain the model which become gradually stronger. Samples
are selected according to an acquisition function (AF) whose
objective is to maximize informativeness [2], [3], [4], [5],
representativeness [6], [7], [8] or a combination of these
two criterias [9]. Measures used to maximise informativeness
prioritize data for which the model is least certain. Measures
based on representativeness focus on selecting a diverse set

of samples so as to provide a strong representation of the
unlabeled dataset.

Machine learning algorithms are often designed and evalu-
ated under the assumption that datasets are balanced or nearly
so. However, in practice, data are often unevenly distributed
across classes and imbalance needs to be dealt with [10].
Moreover, the classes of interest are often the ones in minority
in a range of applications such as the medical domain [11] and
big data processing [12]. Classifiers trained on imbalanced
datasets are likely to be overwhelmed by samples coming
from majority classes. The more general focus on learning
with balanced datasets is also observed in AL, with a limited
number of existing works addressing imbalance. It is argued
in [13] that AL can be adapted to class imbalance by focusing
on samples near the class boundaries where the imbalance is
observed to be lower compared to the overall distribution. This
observation and a margin exhaustion criterion are employed to
limit the selection of samples from majority classes. However,
the authors of [14] show that a high degree of imbalance
has an adverse effect on the selection process. The resulting
model will be biased towards selecting samples from majority
classes. Also, the prioritization of samples which are close to
the hyperplane can have negative effects, as it fails to create
a good representation of the minority class. Particularly, the
problem can be aggravated when the minority class contains
several concepts or is not easily separable from a majority
class [14], [15]. Consequently, a diverse representation of
minority classes should be targeted.

We introduce a new method which tackles imbalanced AL
by focusing on samples which are classified as minority by
the model learned in the previous AL iteration. While simple,
this approach has two advantages. First, if the samples are
correctly classified as minority classes, the selection of these
samples mitigates imbalance in the labeled subset and results
in a better representation of the minority classes. Second, if
the samples are mis-classified as minority, we hypothesize
that these samples have high informative value. Indeed, in
this case, the model learns from samples which it previously
mis-classified, thereby adding important missing information.
It also prunes the decision boundaries around the minority
classes as the samples mis-classified as minority class are
likely to be somewhat in the vicinity of the minority class.
their mis-classified samples are located in their vicinity in
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the representation space. We use three selection strategies to
sample from minority class based on uncertainty, certainty
or diversity, respectively. These intra-class selection strategies
mirror the usual AL selection strategies which are applied at
the dataset level. The minority status of a class is dynamically
assigned after each iteration by updating statistics about the
class distribution. The number of samples for a minority class
is based on the degree of imbalance in the class.

Note that minority class predictions might not be numerous
enough to cover the entire AL iteration. If so, the three strate-
gies described above become equivalent since all minority
samples will be selected. Then, the remaining budget of the
iteration will be selected using a classical acquisition function,
such as random or margin sampling.

A majority of deep AL works exploit iterative fine tun-
ing [6], [16] to progressively learn stronger deep models.
In [17], we showed that the use of a pre-trained model and
of SVM classifiers is preferable to fine tuning in the early
stage of single-state AL if features are transferable toward the
current task. Beyond the proposal of a new AL method, we
provide a comparison of the two learning strategies in iterative
AL and propose a combination of them to maximize accuracy.

Evaluation is done with three imbalanced datasets designed
for different visual tasks. Results indicate that the proposed
method outperforms four competitive baselines. In addition to
global results, we present an analysis of the method compo-
nents so as to understand their individual roles.

II. RELATED WORKS

A. Active learning

A large number of methods have been proposed in AL
literature to select the most pertinent samples for manual
labeling [1]. Their objective is to maximize either informa-
tiveness or representativeness of the manually labeled subset.
Informativeness is targeted by favoring the selection of sam-
ples about which the classification model is most uncertain.
The rationale for this approach is to improve the learned
model by focusing it on difficult regions of the representation
space which are close to classifier boundaries. Least confi-
dence first [3], margin sampling [4] or entropy [2] are the
most common methods which measure uncertainty. The main
limitation of informativeness-based approaches is that they fail
to capture the overall sample distribution and hence provide
weak representation of each class. This problem is more acute
at the start of the iterative learning cycle when the uncertainty
measures are less reliable as the class representations are
still incomplete [1]. This can be particularly problematic for
minority classes as their representations would be weaker
compared to those of majority classes. Then, samples from
minority classes could be easily mis-classified with confidence
in any of the majority classes.

Representativeness-based approaches consist in increasing
the diversity of selected samples. They aim to select the subset
such that it best represents the true distribution. Several works
focus on selecting samples based on K-means and hierarchical
clustering based approaches [7], [8]. Their objective is to

distribute the selected samples across different regions in the
feature space. We incorporate this idea in the context of class
imbalance, to focus on minority classes by selecting samples
from regions associated with minority classes. However, sam-
ple selection is done in the class prediction space instead of
the feature space used for clustering. Coreset [6] is a recent
approach that takes a min-max view to select the samples
whose distance to the closest labeled sample is the maximum.
In our work, we use Coreset to select a diverse set of samples
among those associated with minority classes.

AL has recently received increasing attention in the con-
text of deep learning. One line of works tries to improve
the uncertainty measures. Several runs of the models with
random dropout parameters are exploited in Monte Carlo
dropout [18] to generate more stable uncertainty measures. An
ensemble strategy is deployed in [5] by exploiting the snapshot
of the model at different iteration points in the training
process to generate uncertainty measures. These approaches
are complementary to our work. Note that while effective,
their application makes the AL process more complex since
multiple versions of deep models are needed.

A cold start problem appears when one tries to perform deep
active learning for an unlabeled dataset. The random selection
of an initial sample set for labeling is usually proposed in
AL [5], [6], [18]. The effectiveness of this approach depends
on the size of the initial set. this is particularly the case
for large deep learning models, that might provide unstable
uncertainty measures at small budgets. This problem was
tackled in [19], where a small proxy model is used to perform
sample selection before training a large model with sufficient
data.

An alternative is to use a transfer learning strategy [20] to
avoid cold start [16], [17]. A model pre-trained on a generic
dataset is used as feature extractor and shallow classifiers
are trained with these features for the current dataset. We
follow a similar approach by training shallow classifiers over
pre-trained features and compare their use to the more usual
iterative fine tuning.

B. Class imbalance learning

Imbalanced learning is a well-studied problem in literature.
Various groups of methods were devised to tackle it. They
focus either on data sampling or classifier optimization [21].
Imbalance can be reduced by either random oversampling of
under-represented minority classes or with random undersam-
pling of over-represented majority classes [22]. Both methods
have their limitations as oversampling can lead to overfitting,
whereas undersampling can lead to incomplete representation
of majority classes. Sampling methods are shown to have
limited or even detrimental improvement in deep learning
context [10] and are thus not in focus here.

Another line of work deals with imbalance at the classifier
level [21]. Class weights can be incorporated in the loss
function during training. Alternately, a post processing such
as thresholding is applied to rectify class predictions during
test based on their prior probabilities in the training set.



While simple, thresholding was shown to outperform a large
array of data sampling and classifier level methods for object
recognition using deep learning models in [10]. We incorporate
thresholding in the fine tuning based training scheme. Cost-
sensitive weighted SVM acts as an effective method to find
the optimal hyperplanes for imbalanced classes in SVMs [23].
The hinge loss of samples is modified based on the number of
samples per class to give more importance to minority classes.
We use this approach when deploying AL with SVMs learned
over a pretrained model.

C. Active learning in class imbalance learning

The authors of [13] concluded that samples close to the
decision boundaries are likely to have less imbalance than
the overall distribution and this observation is used to drive
sample balancing. Uncertain samples are selected in [13], [24]
along with a margin exhaustion criteria to limit the selection
for majority classes. However, it fails to provide a strong
representation of minority classes as selection process is fo-
cused only on samples within the margins of hyperplanes [14].
Note that cost-sensitive SVM (CS-SVM) was exploited as
an effective way to handle a skewed data distribution during
active learning [13], [24]. Other works try to explicitly favor
the selection of minority class samples to reduce imbalance.
The mis-classification component is used to penalize selection
of majority classes with boosted SVMs in [25]. In [15],
the authors propose to prioritize samples which are nearest
neighbours of minority classes. Note that most of these works
are designed for binary classification and are not easily trans-
ferable to the multi-class classification problem tackled here.

In [17], we tackled the cold start in AL for imbalanced
datasets using a single-stage scenario. The selection of an
initial diversified and balanced sample set was done using a
pretrained model and a representativeness-oriented acquisition
function. Put simply, a sample was labeled if it was close to
a minority class and far from any majority class. The main
differences between the approach proposed here and the one
in [17] are: (1) the proposal of a different acquisition function,
(2) the use of a more generic iterative AL setting and (3) the
adaptation of shallow classifiers to an imbalanced context.

III. PROBLEM FORMALIZATION

We consider an unlabelled dataset DU with samples xi ∈ X
for i = [1..u], i.i.d realizations of random variables X drawn
from the distribution P where X is the instance space. In
an iterative AL setting, a total budget b, with b < u, is
allocated for manual labeling in t iterations. The process starts
by randomly selecting a small subset of DU for annotation to
create the initial labeled dataset DL0 with xj , yj ∈ X × Y
for j = [1.. bt ]. Here Y = {y1, ..., yn} is the set of n class
labels.DL0 is used to train an initial model M0 which pro-
vides the probability estimates P0 or the feature embeddings
F0 required by an acquisition function AF to estimate the
importance of samples for the next iteration. Afterwards, at
iteration step k, for k = [1..t− 1], a batch of samples of size
b
t is selected for labeling from DUk = DU \ DLk−1, and added

to DLk−1 to update the labeled subset DLk . DLk is then used to
learn the model Mk.

We test two training methods which are based either on
deep model update or on a pretrained model followed by
a shallow learning of classifiers during AL. Both schemes
exploit a pretrained modelMS learned over a generic dataset.
The first method is inspired from the usual deep AL process
and is based on fine tuning [5], [6], [18]. Deep models are fine
tuned for each AL iteration using MS and DLk . The second
method assumes that, although MS is trained on a separate
dataset, the knowledge it encapsulates can be transferred to
DU . Feature embeddings FS from MS are used to train
shallow classifiers during AL iterations. We propose a switch
criterion to decide at which iteration fine tuning should be
used instead of transfer learning AL scheme. This criterion is
implemented using cross-validation at the end of each iteration
to assess the performance of each of the two training schemes.

IV. ACTIVE LEARNING ACQUISITION PROCESS

A. Baselines

We compare our method to four competitive baselines. The
first three are classical methods representative for random,
informativeness-based, and diversity-based selection respec-
tively. The fourth is a method which we recently introduced
to counter cold start in imbalanced AL [17].

1) Random sampling: The simplest baseline consists in a
random selection of samples for annotation. Note that this
sampling roughly reproduces dataset imbalance. It is a good
reference to measure how effective imbalance countering is
for each of the other methods tested. This baseline is noted
random below.

2) Margin sampling: Uncertainty based methods aim to
maximize informativeness and thus focus on samples that
the model is having most difficulty in classifying. They are
deployed using the outputs of the classification layer [1].
Margin based AL is shown to be an effective uncertainty
measure for class imbalance learning problems [13]. It exploits
the region between two different classes where imbalance is
also likely to be limited. It is defined as:

marg(x) = (P (y = c1|x)− P (y = c2|x)) (1)

where c1, c2 are the top-2 predicted classes for test sample x.
Samples are prioritized if the difference between the top two

predictions given by Equation 1 is low. The baseline obtained
is noted margin.

3) Coreset: Diversity based methods aim to select a subset
of DU so as to ensure an optimal coverage of the representation
space. Coreset [6] was recently introduced as a way to solve
the greedy k-center problem. It is defined as:

core(DUk ,DLk ) = max
∀xu∈DU

k

min
xl∈DL

k

d(F (xu), F (xl)) (2)

where core(DUk ,DLk ) returns a samples from unlabeled dataset
DUk using the labeled dataset DLk , d(F (xu), F (xl)) is the
distance between a labeled point xl from DLk and an unlabeled
point xu from DUk . F is the feature extractor. For SVM



training, a classifier is learnt with F = FS given by the
pretrained model MS . For the CNN fine tuning, the feature
extractor is given by Mk−1, the model available from the
latest iteration. In Equation 2, the unlabeled samples which
sit at minimum distance from the k-centers already labeled are
first preselected. Then, the sample among the minima which
is at a maximum distance from any of the k-centers is kept.
The k-centers are updated after every selected. The baseline
AF obtained by applying Equation 2 is noted coreset.

4) Certainty diversified sampling: We introduced this func-
tion, abbreviated cds − bal below, in [17] to deal with the
cold start problem in single-stage imbalanced AL. It exploits
a pretrained model MS to provide the features for its di-
versification and balancing objectives. Note that cds − bal is
deployed in the feature space so as to select samples which
minimize their distance to the centroid of a minority class and
to maximize the distance to the centroid of the closest majority
class. cds − bal is adapted here for usage in an iterative AL
setting by selecting the initial subset using random sampling
as in other AL acquisition function.

B. Method

Minority class oriented sample acquisition. Minority
classes have weaker representations in the models trained from
imbalanced datasets. They need to be prioritized either during
training or test to reduce the effect of imbalance [10], [21]. We
translate this observation to an iterative AL scenario to propose
a simple and efficient method which improves sampling from
imbalanced datasets. Minority classes are identified by com-
puting statistics of the class distribution of labeled data points
up to the last iteration. This distribution also provides the
estimated number of samples needed in the current iteration
to remove imbalance for each minority class. The initial set of
candidates for a minority class is made of samples predicted as
belonging to it byMk−1, the latest model learned. Selection of
candidate samples can be done to boost certainty, uncertainty
or diversity and leads to the different versions of the proposed
AF discussed below.

At the start of the kth iteration, the number of labeled
samples is sk = k bt based on iterations 0 to k−1. The objective
is to add b

t new samples with priority given to minority classes.
We note sck, the number of labeled samples for class c and
compute the average number of samples per class µk = sk

n . A
class is then considered as minority if sck < µk. The maximum
number of samples which is allowed for class c during the kth

iteration is defined as:

mc
k =

{
µk − sck, if sck < µk

0, otherwise
(3)

Equation 3 favors minority classes since they are the only
ones which have candidate samples allocated. The set of
unlabeled samples associated to class c is given by:

DU(k)
c = {∀x ∈ DUk , if P (c1 = c|x)} (4)

, where c1 is the predicted label for the sample x and.

If |DU(k)
c | > mc

k, a selection is needed among the set of
samples given by Equation 4. We propose three ways to select
samples which are inspired from classical AL objectives.

1) Certainty-oriented Minority Class Sampling: favors the
most certain data points from DU(k)

c using:

CMCS = arginvsort∀x∈DU(k)
c

marg(x) (5)

where marg(x) is the margin measure from Equation 1 and
arginvsort sorts the samples in decreasing order. Note that
Equation 5 performs a margin sampling at class level instead
of dataset level. It thus allows a selection of certain samples
but oriented towards minority classes due to the application of
Equation 3 for sample allocation to classes.

2) Uncertainty-oriented Minority Class Sampling: favors
the most uncertain samples from DU(k)

c using:

UMCS = argsort∀x∈DU(k)
c

marg(x) (6)

where marg(x) the margin from Equation 1 and argsort sorts
the samples in increasing order. Equation 6 favors data points
which are predicted under c but are close to other classes. Its
objective is inverse compared to that of CMCS.

3) Diversity-oriented Minority Class Sampling: It aims to
select a diversified samples subset for c. Such a subset can
be obtained, for instance, by applying the Coreset method [6]
from Equation 2 to DU(k)

c :

DMCS = core(DU(k)
c ,DL(k)c ) (7)

where core is applied iterative-ly to select mc
k samples from

DU(k)
c using the samples already selected DL(k)c for class c,

while updating the datasets with every selection.
Auxiliary acquisition functions The proposed sampling

process is focused on minority classes. It is possible that
if the imbalance is limited the number of samples allocated
to minority classes is less than the budget. Further, there is
no guarantee that there are enough samples predicted under
minority classes to treat the imbalance. Minority predicted
samples are most likely to be insufficient at either at the
very beginning or towards the end of the AL process. In the
beginning, minority class representations are weak and their
samples are likely to be mis-classified in majority classes.
Towards the end, there will be simply too few samples left
for labeling in minority classes. In such cases if the budget of
the kth iteration is not filled entirely, remaining samples can be
selected according to any AF. Tests are run using random and
margin sampling for these remaining samples. The final forms
proposed acquisition functions are noted DMCS− rand and
DMCS −marg.

V. EXPERIMENTS

We first describe the experimental setup and the datasets
used in evaluation. Then, we discuss the obtained results
globally and also present an analysis of the main components
of the proposed approach.



A. Setup

We test the proposed approach using an usual iterative AL
setting [5], [6], [18]. We set the AL budget to b = 8000 and
the number of iterations to t = 16, including the initial one.
The number of samples selected in each iteration is 500.

We use a ResNet-18 architecture [26] for all experiments.
The ResNet-18 model is trained over the ILSVRC dataset [27]
is used MS .

As discussed in Section III, AL performance is tested with
two training schemes. The first scheme is based on fine
tuning as proposed in previous deep AL works [5], [6], [18].
We employ thresholding based on prior class probabilities to
reduce the effects of imbalance [10]. This scheme is noted
FT − th and is used by default in experiments. FT − th
models are trained for 60 epochs with an initial learning
rate of 0.01 and a batch size of 32. The Stochastic gradient
descent was used with the cross-entropy loss. A learning rate
decay of 0.1 was done if the loss plateaus for 10 epochs. The
second scheme is inspired from transfer learning and exploits a
model pretrained on ILSVRC. It is less frequent in deep active
learning but proved useful to tackle cold start problem [17].
SVMs are trained after each iteration using the features
provided by MS , the pretrained model. Following [13], [24],
cost-sensitive SVMs are used to reduce the negative effect of
imbalance. This scheme is noted CS − SVM and is used
by default in experiments. Results obtained with fine tuning
without thresholding (noted FT ) and with classical SVMs
(noted SVM ) are also reported to highlight the usefulness of
adapting training schemes to an imbalanced learning context.
The two training schemes are run in parallel at the start of
the AL process in order to exploit the one which is more
accurate. Transfer learning with SVMs is more likely to be
useful at the beginning, until the DL is sufficiently large for
efficient training of deep models. The switch between the two
schemes will occur faster if the content of the unlabeled dataset
is visually unrelated to the one in the generic model used
for the pretrained model. Cross validation using 80:20 split is
performed for each of the two schemes after each iteration.
The average accuracy of each scheme is computed to decide
which of them should be used starting from the following
iteration. The methods which are non-deterministic in the
iterative setting, namely random sampling and the proposed
method with auxiliary random sampling are repeated with 5
different seeds.

It is common practice in imbalanced learning [10], [21] to
evaluate performance over balanced test datasets. This choice
is also made here to give equal importance to each class
irrespective of the class distribution in the training dataset.

B. Datasets

The proposed method and the baselines are evaluated on
three imbalanced datasets designed for different visual tasks.
Following [17], we induce imbalance in the publicly available
CIFAR-100 [28] (object recognition) FOOD-101 [29] (fine-
grained food recognition), MIT-67 [30] (indoor scene recog-
nition). An imbalance induction procedure was applied to all

Dataset Class Images Mean(µ) Std(σ) ir
FOOD-101 101 22956 227.28 180.31 0.793
CIFAR-100 100 17168 171.68 126.98 0.740

MIT-67 67 14281 213.15 168.16 0.789

TABLE I
DATASET STATISTICS. ir IS THE IMBALANCE RATIO.

datasets using a target imbalance ratio to guide the pruning
process. The imbalance ratio is defined as ir = σ

µ , with σ
the standard deviation and µ the mean of images per class in
the dataset. The main statistics of the obtained datasets are
provided in Table I. Imbalance is similar across datasets to
facilitate comparability of results.

C. Global performance discussion

The results obtained with the baseline methods and with
DMCS, the diversified version of the proposed AF, are
provided in Figure 1. A consistent performance gain is ob-
tained with DMCS − marg and DMCS − rand com-
pared to the baselines. This indicates that the proposed
method is appropriate for use in iterative AL for imbalanced
datasets. Accuracy improvements are obtained for all three
datasets and are particularly interesting for CIFAR−100 and
FOOD − 101 datasets. The comparison of DMCS − rand
and DMCS −marg is globally favorable to the first method
and is discussed in more detail in Subsection V-D. Mirroring
global results, DMCS − rand and DMCS − marg have
better performance for a large majority of individual iterations
on CIFAR−100 and FOOD−101 from Figure 1. They are
also better than margin sampling for MIT-67 between 1000
and 3000 samples and results become more mixed afterwards
as the uncertainty criteria becomes more reliable. The better
behavior of the proposed method is partly explained by its
ability to select candidates for labeling whose distribution
is globally more balanced, as illustrated in Figure 2. The
imbalance profiles of the two DMCS versions are clearly
better than those of baselines for CIFAR-100 and FOOD-101.
They are comparable to those of margin for MIT-67. It is
noteworthy that the imbalance profile is not the only factor
explaining AF performance. This is clear from the analysis
of cds − bal imbalance profile, which is better than that of
other methods but is not correlated with a performance gain.
The intrinsic quality of the selected samples is also important.
The reported results indicate that DMCS is able to provide
a more appropriate sampling than the other methods.

The performance of baselines methods is generally close to
that of random sampling or even lower. The only exception is
margin for MIT-67, which is clearly better than random.
This result confirms previous reports [5], [6] that random
sampling is a competitive baseline in active learning. This is
particularly the case for the imbalanced datasets tested here.
coreset is comparable to random for CIFAR− 100, but is
inefficient for FOOD − 101 and MIT − 67. It also fails to
provide any significant improvement in the imbalance profiles
for the datasets. It is likely that, for imbalanced datasets,
coreset selects outliers that belong to majority classes.



Fig. 1. Iterative active learning performance for baselines and for the proposed method using cross-validation between CS − SVM and FT − th training
schemes. Results with random (rand) and margin (marg) based sampling are shown for the remaining budget of each iteration when there are not enough
samples associated to minority classes. ”*” represents the switching point from CS − SVM to FT − th training scheme. The AL budget is b = 8000 and
the number of iterations t = 16. Best viewed in color.

Fig. 2. Imbalance profile of labeled datasets for different acquisition functions. b = 8000, t = 16. Best viewed in color.

cds− bal is useful to tackle cold start in AL [17] but fails
in selecting good quality samples in the iterative AL setting
studied here.

The results show that transfer from a generalist pretrained
model is preferable at the beginning for all three datasets.
Surprisingly, this training scheme remains better than fine
tuning for CIFAR-100 and MIT-67 throughout the entire AL
process presented in Figure 1. As illustrated, the switch from
SVM toward fine tuning occurs only for FOOD − 101. This
is intuitive since this dataset was shown to be furthest away
from ILSV RC in [17]. The performance of the two schemes
is illustrated in detail in Figure 5 and further discussed in
Subsection V-F. This finding is interesting insofar it is at odds
with the usual assumption that fine tuning schemes should
be used in iterative active learning [5], [6], [18]. It is also
interesting because the transfer learning scheme is much faster
since only shallow classifiers need to be trained for each
iteration.

D. Comparison of random and margin as auxiliary AFs
In Figure 1, DMCS results are presented with random

and margin as auxiliary AFs if there are not enough samples
associated to minority classes. It is somewhat surprising to
note that DMCS − rand provides slightly better overall
accuracy compared to DMCS−margin. This happens even
though margin baseline is globally better than random when
used alone. DMCS − rand is better for all iterations for
the FOOD − 101 dataset although the imbalance profile
in Figure 2 is better for DMCS − marg. The difference
between the two DMCS variants is very small for MIT−67.

Their performance for CIFAR − 100 is interesting insofar
DMCS − rand is more effective in up to 5000 samples
and DMCS −marg becomes better afterwards. The change
of performance is correlated with an inversion of imbalance
profiles in Figure 2.

We assume that some amount of randomness is effective
in the beginning for driving the balancing procedure to fo-
cus sampling on minority classes. There, random sampling
provides a better overall representation than margin sampling.
Later in the AL process, uncertainty estimates are more reli-
able and imbalance has been mitigated to the extent possible
for the given dataset. Then, it becomes preferable to select the
remaining samples based on margin sampling.

E. Analysis of minority oriented sampling versions

The performance and imbalance profiles for three versions
of the proposed method described in Subsection IV-B are
presented in Figures 3 and 4 respectively. The comparison is
done with random as auxiliary AF. All the three versions have
a positive impact in mitigating the imbalance with DMCS
providing slightly better global performance. This finding
indicates that a diversified selection of samples for minority
classes is better than favoring the most certain or uncertain
ones. Accuracy is slightly better for DMCS and CMCS for
CIFAR-100 in the initial iterations, while UMCS is better
later. This is partly explained by the imbalance profile, which
increases for the first two versions but not for the third after a
certain iteration. For MIT-67, UMCS is most effective since
the average performance is higher and the uncertain samples



Fig. 3. Iterative active learning performance of different versions of the proposed method. Random sampling is used as AF for remaining samples of each
iteration if there are not enough samples associated to minority classes. b = 8000, t = 16. Best viewed in color.

Fig. 4. Imbalance profile of labeled datasets for the three versions of the proposed method. Random sampling is used as AF for remaining samples of each
iteration if there are not enough samples associated to minority classes. b = 8000, t = 16. Best viewed in color.

become the ones of interest. This is also the case of CIFAR-
100, but later in the AL process.
CMCS is most effective to mitigate the imbalance in the

early stages, but leads to most imbalanced dataset by the
end of the learning process for CIFAR-100 and MIT-67. It
is likely that CMCS learns a limited representation of the
minority class, since it focuses on most certain samples. This
reduces the model’s ability to find samples for the class and
also explain the observation that CMCS is outperformed by
DMCS and UMCS in later iterations.

The results for FOOD-101 are particularly interesting since
the three selection processes lead to different imbalance pro-
files while the accuracy is quite similar.

F. Comparison of training schemes

We illustrate the results obtained by the two training
schemes described in Section III without (SVM , FT ) and
with (CS−SVM , FT−th) adaptation for an imbalanced con-
text in Figure 5. CS−SVM and FT − th outperform SVM
and vanilla FT , their classical counterparts for random. The
gain is quite significant for CS − SVM , validating its use
in class imbalanced active learning [13]. Further, we show
the effectiveness of the proposed method DMCS − rand
over random and the overall strongest baseline margin for
both of the two imbalance adapted schemes(CS − SVM ,
FT − th). This shows the need to explicitly focus on minority
classes during the selection process and the effectiveness of
the method irrespective of training scheme. Another interesting
remark is that, except for classical SVM − random, all
other transfer learning based schemes outperform fine-tuning

schemes for CIFAR-100 and MIT-67. Consequently, both
training schemes should be tried at the beginning of the AL
process for a new unlabeled dataset. If the distance between a
generic dataset and the unlabeled one is not high, transferring
features from the first toward the second seems preferable to
fine tuning. Otherwise, fine tuning become better at some point
during AL and can replace the transfer learning scheme, as in
case of FOOD-101.

VI. CONCLUSION

We introduce a new acquisition method which is designed
for iterative active learning over imbalanced datasets. The
method focuses the selection process toward samples which
are associated to minority classes in order to reduce the
negative effect of imbalance. Evaluation is performed against
competitive baselines and the proposed method ensures a
performance gain. An analysis of its main components fa-
cilitates the understanding of their individual contributions.
Surprisingly, we find that transfer learning scheme outperforms
the fine tuning based scheme usually deployed in AL. We also
propose a simple but effective way to test the accuracy of the
two schemes after each iteration in order to decide which one
should be used later in the AL process. The results presented
here are encouraging and research would be pursued along
three axes. First, the proposed method will be tested on larger
datasets to understand its behavior for AL at scale. Second, the
idea to prioritize minority classes can be extended to balanced
dataset to favor classes that are difficult to learn. Finally the
effect of the pretrained dataset on transfer learning will be



Fig. 5. Comparison of classical (SVM, FT) and imbalance-oriented training schemes (CS-SVM, FT, FT-th). b = 8000, t = 16. Best viewed in color.

assessed. To do this, ILSVRC will be replaced with a larger
dataset, such as the entire ImageNet, for pretraining.
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