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Abstract

Incremental Learning (IL) is useful when artificial systems need to deal with streams
of data and do not have access to all data at all times. The most challenging setting re-
quires a constant complexity of the deep model and an incremental model update without
access to a bounded memory of past data. Then, the representations of past classes are
strongly affected by catastrophic forgetting. To mitigate its negative effect, an adapted
fine tuning which includes knowledge distillation is usually deployed. We propose a
different approach based on a vanilla fine tuning backbone. It leverages initial classifier
weights which provide a strong representation of past classes because they are trained
with all class data. However, the magnitude of classifiers learned in different states
varies and normalization is needed for a fair handling of all classes. Normalization is
performed by standardizing the initial classifier weights, which are assumed to be nor-
mally distributed. In addition, a calibration of prediction scores is done by using state
level statistics to further improve classification fairness. We conduct a thorough eval-
uation with four public datasets in a memoryless incremental learning setting. Results
show that our method outperforms existing techniques by a large margin for large-scale
datasets.

1 Introduction

Artificial agents are often deployed in applications which need to work under strong compu-
tational constraints and receive data sequentially. Incremental Learning (IL) algorithms are
deployed to deal with such situations. Examples include (1) exploring robots that receive
data in streams and that have a limited access to a memory or no memory, (2) disease clas-
sification systems that are not allowed to access past data for privacy issues and, (3) tweets
analysis where new data arrives at a fast pace and should be handled in a timely manner.
Recent approaches to class IL [3, 13, 16, 22, 29] are built using deep neural networks at
their core. The main challenge faced in IL is catastrophic forgetting [19], i.e., the tendency
of neural networks to forget previously learned information upon ingesting new data. The
most important three characteristics that qualify an IL system to be effective and efficient are
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Figure 1: Overview of the proposed method with an initial and two incremental states, and
two classes per state. A deep modelMt is trained for each state Zt . Each model includes
a feature extractor Ft and a classification layerWt . In memoryless IL, models have access
only to data for new classes and to the previous model for fine tuning (FT ). Note that FT
can be implemented in different ways: with a classical distillation component to counter
catastrophic forgetting [7, 14, 22], with a more sophisticated tackling of forgetting [13] or
using vanilla FT [4, 5]. Existing end-to-end methods [7, 13] (in blue) perform recognition
using the weights fromWt , the classification layer of the current model which updates past
classifiers. Our approach (in green) is different because it freezes classifiers learned initially
(init) for each class and applies standardization (siw) to make them more comparable.

the low dependency on memory, the high accuracy on both past and new data, and the time
needed to update the model to incorporate new data.

Class IL is even more challenging when deep model complexity needs to stay constant
over time and access to past data is impossible. Most existing works relax either the com-
plexity requirement to allow supplementary parameters in the model [3, 18, 26, 28] or the
memory constraint to store a limited number of samples of past classes [5, 10, 13, 14, 22, 29].
The setting in which deep model complexity is constant was first studied in iCaRL [22]. The
authors notably adapted Learning without Forgetting (LwF) [16] to an IL setting to mitigate
catastrophic forgetting via the use of knowledge distillation [12]. One influential finding
from [22] was that vanilla fine tuning (FT ) is unfit for IL but this finding was recently chal-
lenged for IL with bounded memory of the past [1, 5].

Memoryless class IL is understudied in litterature but important in practice when past
data are impossible to store (due to confidentiality issues for example). We tackle mem-
oryless class IL and provide overview of the introduced method in Figure 1. Our main
hypothesis is that catastrophic forgetting mainly affects the classification layer of deep mod-
els during vanilla fine tuning. Consequently, we propose to exploit initial classifier weights
learned with all data of past classes. Initial weights provide a good representation of past
classes but need normalization for use in later IL states because their magnitude varies sig-
nificantly across IL states. Preliminary analysis indicates that the magnitude of classifiers
tends to decrease for classes which are learned in later states. We exploit classifier standard-
ization as a way to normalize initial classifiers. Normalization helps but the prediction scores
also change due to variable performance of IL models. Consequently, we also introduce a
state-level calibration of class predictions inspired from [4]. We evaluate results with four
public datasets and three values for the number of incremental states. Results show that our
approach performs consequently better than competitive baselines for large scale datasets.

Citation
Citation
{Castro, Mar{í}n{-}Jim{é}nez, Guil, Schmid, and Alahari} 2018

Citation
Citation
{Javed and Shafait} 2018

Citation
Citation
{Rebuffi, Kolesnikov, Sperl, and Lampert} 2017

Citation
Citation
{Hou, Pan, Loy, Wang, and Lin} 2019

Citation
Citation
{Belouadah and Popescu} 2019

Citation
Citation
{Belouadah and Popescu} 2020

Citation
Citation
{Castro, Mar{í}n{-}Jim{é}nez, Guil, Schmid, and Alahari} 2018

Citation
Citation
{Hou, Pan, Loy, Wang, and Lin} 2019

Citation
Citation
{Aljundi, Babiloni, Elhoseiny, Rohrbach, and Tuytelaars} 2018

Citation
Citation
{Mallya, Davis, and Lazebnik} 2018

Citation
Citation
{Rusu, Rabinowitz, Desjardins, Soyer, Kirkpatrick, Kavukcuoglu, Pascanu, and Hadsell} 2016

Citation
Citation
{Wang, Ramanan, and Hebert} 2017

Citation
Citation
{Belouadah and Popescu} 2020

Citation
Citation
{He, Wang, Shan, and Chen} 2018

Citation
Citation
{Hou, Pan, Loy, Wang, and Lin} 2019

Citation
Citation
{Javed and Shafait} 2018

Citation
Citation
{Rebuffi, Kolesnikov, Sperl, and Lampert} 2017

Citation
Citation
{Wu, Chen, Wang, Ye, Liu, Guo, and Fu} 2019

Citation
Citation
{Rebuffi, Kolesnikov, Sperl, and Lampert} 2017

Citation
Citation
{Li and Hoiem} 2016

Citation
Citation
{Hinton, Vinyals, and Dean} 2015

Citation
Citation
{Rebuffi, Kolesnikov, Sperl, and Lampert} 2017

Citation
Citation
{Ahn and Moon} 2020

Citation
Citation
{Belouadah and Popescu} 2020

Citation
Citation
{Belouadah and Popescu} 2019



BELOUADAH, POPESCU, KANELLOS: INITIAL CLASSFIER WEIGHTS REPLAY... 3

2 Related Work
Incremental learning is a longstanding topic in machine learning [8, 24] and has recently
regained traction with the introduction of deep learning-based methods [2, 7, 22]. The main
challenge is to counter the negative effects of catastrophic forgetting [19] by finding a good
compromise between stability and plasticity of the learned models. IL can be modeled so
as to sequentially integrate new tasks [2, 26] or to deal with mixed streamed data without
task boundaries [13, 22]. The first scenario assumes that new data all belong to a coherent
task while the second makes the more natural hypothesis that new data are distributed across
different tasks [27]. Our work is more adapted to the second scenario since no prior is used
concerning the order of classes or the boundaries between tasks.

One set of approaches addresses the problem by augmenting deep model complexity to
incorporate new tasks. An early approach was introduced in [26]. It copies the latest model
available and adds a part that encodes information for the new task. The method is effective
but requires a relatively large number of parameters dedicated to each task. PackNet [17] and
Piggyback [18] require less additional parameters by exploiting network pruning techniques
to identify redundant parameters and reassign them to new tasks. An important limitation
of PackNet and Piggyback is that they only work with small sequences of tasks. A hyper-
network based approach was proposed very recently to optimize the number of parameters
which are stored in memory for each task [27]. While interesting, these approaches have a
scalability issue because each incremental step augments the complexity of the deep model.

Closer to our approach are methods which keep the size of the model constant during IL
and replays exemplars from a bounded memory to mitigate catastrophic forgetting. These
methods have a long history [23] and were revived in a deep learning context starting with
iCaRL [22]. This method addresses three core components of replay-based IL methods:
(1) the mechanism which offers a trade-off between model stability and plasticity, (2) the
method used to store representative exemplars in memory and (3) the classification layer
which should reduce the prediction bias toward new classes. A knowledge distillation loss
term [12, 16] is used to stabilize the representation of past classes while also incorporating
new classes. A nearest-class-mean classifier [20] is adapted to reduce this bias. Inspired by
iCaRL, many subsequent replay-based IL methods focused on improving one or several of
the three components. The authors of [14] change the knowledge distillation from iCaRL to a
form that is closer to the original one from [12] and report an improved overall performance
of the method. More elaborate mechanisms were proposed recently to improve the trade-
off between stability and plasticity. In [30], the authors deploy an algorithm to compute a
dynamic vector which corrects the bias induced by distillation loss among past classes and
improves the representativeness of past image features. LUCIR [13] is a recent method that
started gaining traction in the community. It combines three components to ensure fairness
between past and new classes: (1) cosine normalization acts on the magnitudes of past and
new class predictions, (2) less-forget constraint modifies the usual distillation loss to handle
feature vectors instead of predictions and (3) inter-class separation induces the creation of a
large margin between past and new classes.

The importance of the classification layer was emphasized in [7], where a balanced fine-
tuning step was introduced to reduce the bias toward new classes. An elegant solution which
adds a linear layer for bias removal was proposed in [29]. This method depends on a vali-
dation set and is very effective for relatively large memory sizes. However, its performance
drops sharply when the size of the validation set becomes insufficient [5]. ScaIL [5] is more
related to our work since it reduces bias by reusing the classifier weights learned initially
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with all data. However, the method is unusable in memoryless IL since it relies on the com-
parison of classifier weights from the initial and the current state. We note that ScaIL uses
vanilla fine tuning as backbone for IL and reported results are competitive with recent meth-
ods that exploit knowledge distillation [13, 29]. A similar finding was very recently reported
in [1], where the knowledge distillation term is also ablated.

We build on existing works to: exploit information from the initial state of classifiers [5,
31]; ensure fairness for the predictions associated to past and new classes [4, 13, 29]; use
vanilla FT as a backbone to train deep models [1, 5] . However, our approach differs through
the method used for the normalization of initial classifier weights and the focus is on a large
scale memoryless IL. Note that many existing methods cannot operate in the absence of
memory and become unusable in our setting. The following ones are usable in memoryless
IL and will be used in the evaluation: LwF [16], the end-to-end version of LUCIR [13],
baseline methods which exploit initial classifiers without bounded memory from [5].

3 Proposed Method

3.1 Motivation
We hypothesize that it is possible to exploit initial classifier weights, learned when data is
first streamed for each class, to mitigate catastrophic forgetting in memoryless IL. CNN
prediction scores are obtained from the combination of features provided by the penultimate
layer of the model with classifier weights from the final layer. We analyze these two layers
in an IL context to motivate our approach. The ILSVRC dataset with an initial and nine
incremental states is used for both analyses.

(a) (b)

Figure 2: Mean magnitudes of classifier weights for new and past classes in memoryless
incremental learning: (a) left - with vanilla fine tuning affected by catastrophic forgetting
and (b) right - after standardization of initial classifiers. Mean magnitudes are computed
only for incremental states and the first non-incremental state is excluded. Note that the
reference state is the rightmost one in each figure.

In Figure 2(a), we present a summarized view of the magnitudes of classifiers for an IL
baseline which exploits vanilla fine tuning. The absolute values of individual classifier di-
mensions are aggregated to compute mean magnitudes for new and past classes respectively.
Past classes have much lower magnitudes because there are no exemplars to be replayed for
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them in memoryless IL. Since magnitudes are much higher for new classes, test examples
will always be attributed to one of these classes even if they belong to past classes. This ob-
servation provides further support for the previous conclusion that vanilla FT is not directly
usable in IL [7, 22].

The magnitudes of new classes in Figure 2(a) vary across incremental states, with a
global tendency toward reduction in later states. A normalization of initial classifiers is
thus needed to ensure fairness if they are replayed across incremental states as proposed
here. New classifiers from previous states of Figure 2(a) are aggregated to represent past
classes in each current state of Figure 2(b). Normalization makes statistical populations more
comparable and it is obtained by applying standardization [9], a method which is discussed
in detail in Subsection 3.2. The standardized classifiers, illustrated in Figure 2(b), have
comparable magnitudes and become usable in memoryless IL.

A second important assumption of our approach is that features extracted from the penul-
timate layer of the current IL model are compatible with initial classifiers from previous
states. This assumption holds if the current features keep a trace of what was learned before.
We design a simple experiment that assesses the degree of similarity between features of the
same images extracted in different incremental states. Features are extracted for test images
of the initial non-incremental state using models learned in each incremental state. Features
of test images extracted in the 9th and last incremental state are used as reference to illustrate
the use of initial classifiers from previous states with its features. Cosine similarity between
them and the features of the same images from each previous state is computed. The mean
feature similarities between the last state and previous ones are presented in Figure 3.

To better situate similarities for memoryless IL (Figure 3(a)), we also present statistics
for IL with bounded memory, including 1% and 2% of the dataset (Figure 3(b) and (c)
respectively). We also provide similarities for independent training of incremental states
where no fine tuning is used in Figure 3(d). Naturally, this last setting is not a valid IL
approach and is shown only as an illustration for a lower bound of feature similarity.
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Figure 3: Mean feature similarities between incremental states for test images of the first
state. Cosine similarities are computed for vanilla fine tuning as follows: (a) without mem-
ory, (b) with bounded memory of 1% of the dataset, (c) with bounded memory of 2%. Sub-
figure (d) plots lower-bound similarities for the case when individual states are learned inde-
pendently, without fine tuning. The upper bound for similarity is 1 and would be obtained for
the model which is frozen after the initial state. However, such an approach has no plasticity
and cannot incorporate knowledge related to data streamed during IL. The final incremental
state (9) is used as reference to compute similarities with other states. The more distant two
states are, the lower the similarity is likely to be.
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The results from Figure 3 indicate that mean similarities obtained with fine tuning with-
out and with memory are significantly higher than those obtained with independent training.
This finding validates the fact that current features learned with vanilla FT keep a trace of
what was learned in previous states. Mean similarities decrease with the distance between
the current state and the initial one because forgetting is higher when more trainings are
involved. The use of a bounded memory in Figure 3(b) and (c) provides better similarities
compared to memoryless IL in Figure 3(a). The effect is particularly visible for states such
as 8 or 7 which are close to the reference one and becomes less important for more distant
states such as 2 or 1. Note that features from the current IL state were used successfully with
initial classifiers in [5] if a bounded memory of the past was allowed. The comparison of
feature similarities indicates that their use with adapted initial classifiers is more challenging
without memory than with a bounded memory but still doable.

3.2 Memoryless IL with Normalized Initial Classifier Weights
We build on previous works [5, 7, 8, 22] to define memoryless class incremental learning. We
note T the total number of states, including the first non-incremental state and T − 1 incre-
mental states. Data arrive in a stream which includes n0 = n1 = n2 = ...= nt classes for each
state of the class incremental process. A first modelM0 is trained from scratch on a set of n0
classes in the initial non-incremental state Z0. The incremental modelsM1, ...,Mt , ...,MT
are trained in states Z1, ...,Zt , ...,ZT . Each incremental modelMt (t = 1...T ) is initialized
using the weights ofMt−1 and accesses training data streamed for the current nt new classes.
Since no memory of the past is allowed, no data are available for past classes butMt should
be able to recognize all classes seen so far Nt = n0 +n1 + ...+nt . Models include a feature
extractor Ft which produces d-dimensional features ft for each image and a classification
layer. A standard CNN model learned in the tth state of an IL process recognizes image con-
tent using a classification layer made of a classifier weights matrixWt and a corresponding
bias vector Bt . Bt is less important than Wt and we focus the discussion on the weights
matrix. Wt is defined as:

Wt = {W 1
t , ..,W

n0
t ,W n0+1

t , ..,W n1
t , ...,W nt−2+1

t , ..,W nt−1
t ,W nt−1+1

t , ..,W nt
t } (1)

We propose to replay the initial classifiers of each class in order to mitigate catastrophic
forgetting. The classification layer made of initial classifier weights is written as:

W in
t = {W 1

0 , ..,W
n0
0 ,W n0+1

1 , ..,W n1
1 , ...,W nt−2+1

t−1 , ..,W nt−1
t−1 ,W nt−1+1

t , ..,W nt
t } (2)

The analysis from Subsection 3.1 shows that the weights from Eq. 2 need normalization
to become comparable across states. We apply a standardization of initial weights (siw) to
obtain a normalized version of the weights matrix:

S in
t = {S1

0, ..,S
n0
0 ,Sn0+1

1 , ..,Sn1
1 , ...,Snt−2+1

t−1 , ..,Snt−1
t−1 ,S

nt−1+1
t , ..,Snt

t } (3)

Each dimension sk of a standardized classifier S from Eq. 3 is calculated using:

sk =
wk−µ(W )

σ(W )
(4)

with: sk - the kth dimension of S, wk - the kth dimension of an initial classifier W from Eq. 2,
µ(W ) and σ(W ) are the mean and standard deviation of W .
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Standardization is useful if it is applied to the statistical populations which follow a
normal distribution [9], which is the case for classifier weights from Eq. 2. Figure 4 provides
weights distribution of a random subset of classifier weights from the weights matrix Wt
defined in Eq. 1. These examples illustrate the fact that the classifier weights follow a normal
distribution. The use of standardization to normalize them is thus appropriate.

Assuming that the incremental process is in the tth state, the final prediction score of a
test image x for Ci

j, the ith class learned initially in the jth state (with j ≤ t), is given by:

p(x,Ci
j) = ( ft(x) ·Si

j +bi
j)×

µ(Mt)

µ(M j)
(5)

with: ft(x) - features of image x given by the extractor of the current model Mt ; Si
j -

standardized classifier weights of the ith class initially learned in the jth state as given by
Eq. 3; bi

j - the class bias value; µ(Mt) and µ(M j) - means of top-1 predictions of models
learned in the tth and jth states computed over their training sets.

The first term of Eq. 5 is a version of the usual CNN prediction process in which the basic
weights W i

t from Eq. 1 are replaced by the standardized initial weights Si
j from Eq. 3. This

term is referred to as siw in Section 4. The second term is inspired by [4], where the authors
observed that a model level calibration is useful when combining information from different
models. µ(Mt) and µ(M j) are calculated by passing all training images available in each
of the two states through the respective model. This term is referred to as mc in Section 4.

Figure 4: Weights distribution of a random subset of classifier weights from the weights
matrixWt defined in Eq. 1.
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4 Experiments

4.1 Datasets and Implementation Details

Experiments are done with four public datasets designed for different classification tasks:
(1) ILSVRC [25] - fine-grained object recognition dataset containing 1000 classes, (2)
VGGFace2 [6] - face recognition dataset containing 1000 identities, (3) Google Land-
marks [21] (Landmarks below) - tourist landmark recognition dataset containing 1000 classes,
and (4) CIFAR100 [15] - basic level object recognition with 100 classes. Please see the sup-
plementary material for dataset details.

To test the robustness of our system, we vary the number of states T = {10,20,50}.
Increasing the number of states leads the model to perform more rehearsal steps. The model’s
parameters are more often updated which worsens forgetting [4, 5].

A ResNet18 [11] architecture is used as backbone for FT-based methods. LwF and
LUCIR are run using the public implementations from [13] and [22]. More implementation
details are provided in the supplementary material.

4.2 Evaluated Methods and Protocol

We use the following competitive methods from literature and their adaptations as baselines:

• LwF [16] - IL method which inspired most recent approaches. Catastrophic forgetting
is reduced by using a distillation loss. For comparability with our approach, we also
create the following variants: inLwF - LwF with raw initial weights, inLwFsiw - inLwF
with siw (standardization of classifier weights) from Eq. 5 and inLwFmc

siw - inLwF with
standardization plus mc calibration from Eq. 5.

• LUCIR [13] - recent approach whose end-to-end version is usable for memoryless IL.
LUCIR uses an elaborate mechanism to reduce catastrophic forgetting. Its definition
does not allow the use of initial classifier weights but we apply mc to it in LUCIRmc

for comparability.

• inFT [5] - uses the initial classifier weights without normalization. It was first intro-
duced as baseline for IL with memory.

• inFTL2 [5] - version of inFT with L2 normalization of initial classifier weights. inFT mc
L2

combines L2 normalization and mc calibration for comparability.

Our methods are based on inFT : inFTsiw exploits only the siw term from Eq. 5, while
inFT mc

siw exploits both the siw and the mc terms from Eq. 5. Full is the performance of
classical learning. This algorithm is the upper bound for all class incremental approaches.

We follow the evaluation protocol from [7], which averages accuracy over IL states (i.e.,
the initial non-incremental state is excluded). Performance is measured with top-5 accuracy.
We also use GIL [5] for a global view of performance. GIL aggregates performance gaps for
individual configurations which are computed as the difference between configuration accu-
racy and Full accuracy divided by the difference between the upper bound of the accuracy
measure and Full accuracy. The closer to zero GIL is, the better performance will be.
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Dataset ILSVRC VGGFace2 Landmarks CIFAR100
GILStates T=10 T=20 T=50 T=10 T=20 T=50 T=10 T=20 T=50 T=10 T=20 T=50

LwF 45.3 37.6 27.1 53.3 42.6 30.8 58.8 49.2 35.2 79.5 65.3 39.0 -34.72
inLwF 47.1 39.9 32.2 58.1 50.8 40.5 55.7 50.2 39.8 79.4 67.9 42.8 -31.97

inLwFsiw 54.0 45.8 35.1 70.4 59.3 45.2 61.0 53.8 42.2 80.0 68.8 44.6 -28.06
inLwFmc

siw 40.2 44.7 33.8 67.5 56.5 42.0 54.6 48.0 37.2 78.6 67.5 43.8 -30.79
LUCIR 57.6 39.4 21.9 91.4 68.2 32.2 87.8 63.7 32.3 57.5 35.3 21.0 -24.75

LUCIRmc 53.7 30.5 12.7 82.6 51.0 21.0 84.1 44.0 21.6 45.8 26.8 23.7 -32.18
FT 20.6 13.4 7.1 21.3 13.6 7.1 21.3 13.6 7.1 21.3 13.7 17.4 -54.91

inFT 61.0 44.9 23.8 90.9 64.4 33.1 68.8 49.4 22.2 55.1 40.8 19.9 -28.99
inFTL2 51.6 43.3 34.5 76.8 66.8 55.1 61.4 52.5 39.2 47.5 39.3 22.5 -26.80
inFT mc 62.0 39.6 19.2 78.5 52.3 27.5 73.3 44.2 17.7 57.9 34.2 18.2 -32.75
inFT mc

L2 53.6 42.7 35.6 86.9 71.4 53.6 66.2 52.6 37.9 52.6 43.1 18.2 -25.02
inFTsiw 61.6 51.9 39.9 84.0 80.6 61.9 75.1 62.6 43.2 56.0 41.8 22.5 -20.97
inFT mc

siw 64.4 54.3 41.4 88.6 84.1 62.6 79.5 64.5 43.2 59.7 44.3 18.4 -19.38
Full 92.3 99.2 99.1 91.2 -

Table 1: Top-5 average IL accuracy (%) for the different methods with T={10, 20, 50} states.
Full is the performance of classical learning, with all data available. Best results are in bold.

4.3 Discussion of Results

The results from Table 1 show that inFT mc
siw provides a GIL improvement of over 5 points

compared to LUCIR [13], the best baseline. The gain is even higher compared to inFT mc
L2 , the

second best baseline which extends inFTL2 [5]. This difference in favor of inFT mc
siw underlines

the fact that classifier weights standardization is more appropriate than L2 normalization for
memoryless IL. A favorable comparison to two other normalization methods is provided in
the supplementary material. Results show that the siw term from Eq. 5 is useful both for
inFT and LwF while mc is beneficial for inFT but degrades results for LwF and LUCIR.
Standardization of inLwF weights has a positive effect for all datasets compared to LwF ,
especially for T = {20,50} states. Moreover, even when mc works, its contribution is less
important than that of siw.

The worst results by far are obtained with FT , both globally and for individual config-
urations. FT trains well for new classes but provides nearly random results for past classes
that have no exemplars available for replay in memoryless IL. This confirms previous find-
ings [7, 22] regarding the strong effect of catastrophic forgetting on vanilla fine tuning in
memoryless IL.

The comparison of performance for different datasets indicates that distillation is useful
at small scale but has lower utility or becomes even detrimental for large datasets. The use-
fulness of distillation for small datasets but not for large ones is an open problem. In [5, 14],
we note that distillation induces confusions among past classes [12]. To better understand
this phenomenon, we provide an analysis of the typology of errors in the supplementary
material. Note that while FT runs do not perform well, normalization does help for them.

The inLwFsiw version of LwF is the best method for CIFAR100, with a large margin
compared to all methods which are not based on LwF . The use of initial weights in inLwF
brings a GIL improvement of nearly 3 points, and the addition of standardization in inLwFsiw
brings another 4 GIL points gain. LUCIR has lower performance but rather comparable to
that of inFT based methods for CIFAR100. The results for the three large datasets show
that LwF has second-lowest performance, after vanilla FT . The improvements over classi-
cal LwF brought by standardization are much more important for the three large datasets.
LUCIR’s more sophisticated scheme for countering catastrophic forgetting is clearly useful
compared to classical distillation from LwF . The removal of the distillation component and
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the use of initial classifier weights in inFT gives globally better results than LUCIR and LwF
for the three large datasets. This behavior in a large scale setting is mainly explained by the
observation made in [5, 13] regarding the high number of confusions among past classes
when distillation is used. The use of siw and mc to inFT is also beneficial, especially when
T is big for large datasets.

The number of incremental states has an important effect on IL performance [5, 7, 22].
The larger the number of states is, the more challenging the process will be. This is confirmed
by the results with T = {10,20,50} states in Table 1 for all tested methods. Actually, as more
incremental states are added, IL models are more prone to forgetting due to the increasing
number of intermediate model updates, which causes information loss. Our approach does
significantly better than existing methods for the three large datasets with T = 50. Its perfor-
mance reaches 41.4 for ILSVRC compared to only 27.1 and 21.9 for LwF and LUCIR.

Table 1 allows an ablation analysis of our approach. Such an analysis is important to
understand the contribution of individual components to the final results. Vanilla FT is the
backbone upon which we build. The use of raw initial weights for past classes in inFT has
a strong positive effect as it reduces the performance gap measured by GIL by nearly a half
(−28.99 vs. −54.91 for vanilla FT ). The sole use of calibration in inFT mc has a negative
effect since performance drops to −32.75. The introduction of standardization in inFTsiw
has a important positive effect since it brings an 8 points GIL improvement over inFT . Fi-
nally, the use of both terms from Eq. 5 in inFT mc

siw has a light positive effect with a 1.6 points
improvement over inFTsiw. We note that inFTsiw improves over inFT for all individual con-
figurations. The largest performance gains between the two methods are obtained for the
three large datasets with the T = 50, the highest number of incremental states tested. This
is the most challenging setting since the effects of catastrophic forgetting are stronger for
a larger number of IL states. The addition of state mean calibration has a positive, albeit
smaller, effect in all individual configurations but two. It does not improve results for Land-
marks with T = 50 states and degrades them for CIFAR100 with the same number of states.
This is probably an effect of the fact that there are only two classes per state in the latter
configuration and the obtained statistics are not stable enough.

5 Conclusion
We proposed a reuse of normalized initial classifier weights to mitigate the effect of catas-
trophic forgetting in memoryless IL. A preliminary analysis showed that initial classifiers
can be reused in latter incremental states, but a normalization step is needed to make them
comparable. We introduced a normalization component based on standardization which en-
sure fairness between classes learned in different IL states which are used together. Our
method compares favorably to a standard handling of catastrophic forgetting in [13, 16, 22].
Interestingly, our results indicate that distillation is only useful for small datasets and has
a negative effect on larger datasets. In this latter case, the use of simpler vanilla fine tun-
ing backbone is more appropriate. Note that the proposed method also improves the results
obtained with classical distillation [16, 22]. However, the gap between classical learning
remains important, and further efforts are needed towards reducing it. The code is publicly
available to facilitate reproducibility1.
Acknowledgements. This publication was made possible by the use of the FactoryIA super-
computer, financially supported by the Ile-de-France Regional Council.
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