5th European Conference on Metal Organic Frameworks and Porous Polymers EUROMOF

24-27 September 2023 Granada

www.euromof2023.com

Luminescent MOF Architectures for radioactive gas detection and

engineering large Stokes shift

Lecturer: Dr. Jacopo Perego

Dept. of Materials Science

University of Milano-Bicocca

https://nanoporous.mater.unimib.it/

MOFs and MOFs composite for high-energy radiation detection

Radioactive gas detection with scintillating MOFs

Nature Photonics, **2021**, *15*, 393 - 400.

Nature Communications, 2022, 13, 3504.

Nature Photonics, 2023, 17, 672 - 678.

Radioluminescence and scintillating properties of MOFs and MOF composites

Scintillators: materials that produce light pulses upon interaction with ionizing radiation

electrons cascade OF nanocrysta S_0 VB olymer matrix Zr +) cluster

MOF@polymer based composite scintillator

- Fast time response (few ns)
- High light-yield compared to pure organic scintillators

Scintillation process in MOF nanocrystals

Synthesis and crystal structure

<u>Nature Photonics</u>, **2021**, *15*, 393 – 400.

Synthesis and crystal structure

Zr₆O₄(OH)₄(COO⁻)₁₂ cluster

DPA diphenylanthracene

0.581

0.591

Nature Photonics, **2021**, *15*, 393 – 400.

Photophysics and radioluminescence properties

MOF nanocrystals: photo- and radioluminescence

Photophysical properties of ZrDPA nanocrystals

Sensitization effect of the inorganic building blocks

MOFs @polymer nanocomposites for fast scintillation

Synergistic behaviour of inorganic/organic components inside ZrDPA nanostructures

Ultrafast time-resolved scintillation experiments

Time (ns

(x-rays exposure)

Scintillation decay time

Scintillation rise time

 $\tau_{\text{DECAY}} = 4.1 \text{ ns}$

 $\tau_{\rm RISE} = 45 \ \rm ps$

$$CTR = 85 \pm 17 \ ps$$

Photon management in co-assembled MOFs

Fast emitting reabsorption-free

MOF nanocrystals

Nature Communications, 2022, 13, 3504.

Controlled growth of nanometer-sized Zr-based hetero-ligand MOFs

Co-assembly of the 2 different ligands in various ratio generate a family of hetero-ligand MOFs with different concentration of DPT units.

Zr-DPT:DPA-X% 0.1 %< X < 8 %

Homogeneous distribution of ligands: HP ¹²⁹Xe NMR

Photoluminescence and scintillation properties

Large Stokes Shift emission

Scintillation of mixed-linker MOFs

Scintillating sponges concept

SPARTE project: nanoporous scintillator for radioactive gas detection

M. Orfano, J. Perego, et al., <u>Nature Photonics</u>, **2023**, 17, 672 – 678.

Scintillating Hf-based MOFs

Hf-DPA MOFs as effective solid state nanoporous scintillator

Scintillating Hf-based MOFs

Ultra-high surface area nanoporous scintillators

Radioactive gas detection with MOFs

Fast and effective gas diffusion and radioactive gas detection

Confined Free Хе Xe 293 K 248 K 202 K 195 K 187 K 60 140 100 20 -20 180 δ (ppm)

¹²⁹Xe hyperpolarized NMR

2% ¹²⁹Xe in a He/N₂ mixture at 298 K

Nanoporous Materials Research Group

https://nanoporous.mater.unimib.it/

Prof. Piero Sozzani Prof. Angiolina Comotti Prof. Silvia Bracco Dr. Charl X. Bezuidenhout Dr. Andrea Daolio Sergio Piva Master and Undergraduated students

Prof. Angelo Monguzzi Prof. Anna Vedda Dr. Matteo Orfano Dr. Francesca Cova Dr. Irene Villa Prof. Christophe Dujardin Dr. Benoit Sabot European Community through the grant n° 899293, HORIZON 2020 – SPARTE

Please, visit SPARTE website @ https://www.sparte-project.eu/

I acknowledge University of Milano-Bicocca for the "Young talent award 2020" first prize.

Financial support from the Italian Ministry of University (MUR) through grant no. PRIN 2020—SHERPA no. H45F2100343000

Synthesis and crystal structure

	Pore volume (cm³/g)		Density (g/cm³)	
	Calculated	Experimental ^a	Calculated	Experimental ^b
Zr-DPA	1.20	1.11	0.591	0.581

a. Calculated from N_2 adsorption at 77 K according to NLDFT theory. b. Calculated from He picnometry and N_2 adsorption at 77 K measurements.

