Supplementary Information

Characterization of Lithium Phosphorus Oxide Thin Film Libraries by Laser-Induced Breakdown Spectroscopy Imaging: A Step Towards High-Throughput Quantitative Analyses

William Berthou^{1,2}, Maxime Legallais¹, Bruno Bousquet²*, Vincent Motto-Ros³, Frédéric Le Cras^{2,4}*

¹CEA, CEA Tech Nouvelle Aquitaine, F-33600 Pessac, France

²Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France

- ³ Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5306, Institut Lumière Matière, Villeurbanne F-69100, France ⁴ Univ. Grenoble Alpes, CEA, LITEN, DEHT, 38000 Grenoble, France
 - Specific data on Gate and Gain for each spectrometer

	Spectro 1	Spectro 2	Spectro 3
Wavelength (nm)	164-236	380-467	390-520
Gate (ns)	5000	5000	500
Delay (us)	1	1	1
Gain	200	500	1

Table S1. Features of each of the three spectrometers

- Calculation regarding detectable Li and P amounts ablated with one laser shot
- (i) The precise density of amorphous $Li_{2.3}PO_{3.65}$ is unknown, but it is expected to be close of those of crystalline $Li_4P_2O_7$ and Li_3PO_4 , i.e. 2.3 and 2.5 g.cm⁻³ respectively. Therefore, the approximate value of 2.4 was used in the calculation. Its molar mass is 2.3 x 6.94 + 30.97 + 3.65 x 16 = 105.33 g.mol⁻¹.
- (ii) Steady state deposition rate of $Li_{2,3}PO_{3,65}$ in the present sputtering conditions is 115-120 nm.h⁻¹, or 2 nm.min⁻¹
- (iii) Therefore, the amount of Li_{2.3}PO_{3.65} material deposited during 2 min corresponds to a 4 nmthick layer.
- (iv) The volume of $Li_{2.3}PO_{3.65}$ material ablated on a spot of 12 µm in diameter (and 7 µm deep) is equal to $\pi x (12 \cdot 10^{-4})^2 / 4 x (4 \cdot 10^{-7}) = 452 \cdot 10^{-15} \text{ cm}^3$
- (v) This corresponds to $452 \cdot 10^{-15} \times 2.4 / 105.33 = 10.3 \cdot 10^{-15} \text{ mol}$
- (vi) And to 2.3 x 6.94 x $10.3 \cdot 10^{-15}$ = 157.10⁻¹⁵ g or 0.157 pg of Li, and $30.97 \times 10.3 \cdot 10^{-15}$ = 319.10⁻¹⁵ g or 0.319 pg of P