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Purpose of Work 
This work is focused on AlGaN/GaN MOS channel High Electron Mobility Transistors (MOSc HEMTs) with 

fully recessed gate on 200mm Si substrates (Fig. 1). We investigate the impact of the gate cavity morphology 

determined by both the AlGaN/GaN etching+wet processes (Fig. 2) and the channel orientation (Fig. 3) on the 

ON-state performance. We present and validate an innovative analysis (based on electrical characterizations and 

TCAD simulations) for extracting mobility taking into account the two gate regions (sidewalls and bottom). 

Approach 

The channel plane for these MOSc transistors [1-2] is usually GaN c-plane (0001), with a standard [𝟏�̅�𝟎𝟎] 

oriented channel (labelled 0°). Here for the first time we fabricated (with two processes [3-4], see Fig. 1) and 

characterized GaN transistors with different channel orientations (Fig. 3), from 0° to 90° (ie [11̅00] to [𝟏𝟏�̅�𝟎]). 

We point out that the gate cavity shape depends not only on the etch-wet process but also on the channel orientation 

(Fig. 6-8), with two specific situations: 0° and 90° (resp. equivalent to 60° and 30° because of the GaN hexagonal 

crystal structure).  

Extracted mobilities are typically related to the bottom (µbot) part of the gate cavity and only complex methods 

enable to evaluate sidewalls mobility (µSW) [6]. Here, we present and validate with TCAD simulations an 

innovative and fast electrical characterization methodology for extracting the different mobility contributions 

of the two-channel regions (µSW and µbot). 

Results and Significance 
The channel orientation impact is highlighted in Fig. 6 (measured Vth, SS, RON vs. orientation) and in Fig. 8 which 

shows ID(VG) curves of 0-90° oriented devices for the two studied processes. RON reduction (-18%) is evidenced 

for process “with ALE & cleans” with respect to the “Reference” one. The respective contributions of the 

sidewalls and bottom regions are evaluated in Fig. 9 (-50% transition resistance 2.Rt and -16% Rchannel from the 

RON partitioning). These improvements are due to gains for the corresponding motilities µSW and µbot. Fig. 10 

details the developed methodology (based on RON(LG) curves, RON partitioning) which enables to extract 

separately the mobility for both regions. The method is then applied to 0° and 90° cases (Fig. 11-14). The final 

results (Fig. 15) show that the new process leads to +20% in µbot, and +50% in µSW. Similar results are obtained 

for the 90° orientation (Fig.14-15). 

The ALE etching [3-4] is probably the first order parameter reducing the RON parameter for the new etching+wet 

process: the GaN surface is thus less damaged. This improvement appears to be more effective on the sidewalls 

w.r.t. the bottom region of the gate (c-plane). 

TCAD simulations [10] have been considered to assess the physical meaning of the extracted mobility values. By 

implementing the gate cavity shapes for the two processes and the two orientations (Fig. 16) and the µSW and µbot 

values at VG=+6V (Fig. 17), we were able to reproduce the experimental ID(VG) curves (Fig. 8-18-19). 

These results open path for in-depth analysis and optimization of power GaN transistors, in terms of etching/wet 

recipes, gate recess depth, temperature impact, and more aggressive gate lengths (Fig. 20). 
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Fig.1: Structure of the fabricated 
GaN-on-Si MOSc-HEMT with 
fully recessed gate. The four RON 
components (Fig. 9) are also 
indicated. 

 
Fig.2: Process flow of the GaN/Si 

E-mode MOS channel HEMT 

with focus on the Gate module. 

 
Fig.3: MOSc transistor structure with 
different channel orientations (0 to 
90°) on the GaN-on-Si substrate. 

 
Fig.4: AFM images on 5nm 

Al2O3/GaN samples for the two 

splits. The ALE etching with new 

cleans lead to a surface with atomic 

plateaus (as observed on unetched 

GaN surfaces). 

 
Fig.5: EDX profiles obtained for 

the reference process in the case of 

0° and 90° oriented devices (same 

profiles for split 2).  

 
Fig.6: Impact of orientation angle on 

the extracted threshold voltage (Vth), 

subthreshold swing (SS) and RON 

(wafer median, 20 sites). 

 

 

Fig.7: TEM images 

of LG=1µm devices 

(zoom on on one 

gate side) for two 

different channel 

orientations a-c) 

standard 0°, and b-

d) 90°. 

 
Fig.8: Experimental ID(VG) curves (wafer 

median values) at VDS=+0.5V. 

 
Fig.9: RON partitioning for LG=1µm transistors (orientation 0°) 

obtained with the two processes (using the method from [2]). 

 

Fig.10: Mobility extraction 

principle for the two regions of 

the gate (sidewalls and bottom 

chhnels). RON(LG) curves 

combined with RON 

partitioning (and C(V) for 

electron density Nch) enable to 

extract separatly the mobility  

for both regions, using the 

dimensions LG,eff and LSW from 

TEM images.  
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Fig.11: Measured RON(LG) for 

different VG of 0° oriented devices 

(wafer median, 20 sites).   

Fig.12: Method 

results for 0° 

devices (for the 

two splits). a) 

Extracted 

Rchannel vs. VG. 

b) Electron 

channel 

mobility µbot on 

the bottom part 

of the gate 

cavity.  

 
Fig.13: Methodology results for 0° devices (for the two 

splits). a) Extracted sidewalls resistance RT(VG). b) 

Corresponding mobility µch,sw(Nch). 

 
Fig.14: Results for 90° devices (for the two splits). 

Extracted electron channel mobility for a) the bottom 

region µbot(Nch) and b) the side walls µch,sw(Nch). 

  
Fig.15: Summary table with extracted mobility values for 

this work (and comparison to published data, based on 

different GaN materials). 

 
Fig.16: TCAD structures considered to simulate 

the 4 configurations, with Synopsis-Sentaurus. 

 
Fig.17: TCAD approach for taking 

onto account the experimental 

mobility values (from Fig. 15). 

  
Fig.18: ID(VG) curves comparison for 0° a) and 90° b) oriented devices 

between measurements (symbols) and TCAD results (lines), at 

VDS=+0.5V (for the two processes). 

 
Fig.19: ID(VG) curves comparison for 0° oriented 

devices with different LG between measurements 

(symbols) and TCAD results (lines). 

 
Fig.20: Possible perspectives of this work (on processes, 

characterizations, simulations), dedicated to device physics 

understanding for performance optimization. 
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