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Abstract

Side-channel based instruction disassembly (SCBD) is a family of side-channel
attacks that aims at recovering the code executed by a device from physical
measurements. Over past decades researches proved that instruction-level dis-
assembly is feasible on simple controllers. Simultaneously, the computing power
and architectural complexity of processors are increasing, even in constrained
devices. Performing side-channel attacks on mid or high-end devices is inher-
ently harder because of complex concurrent activities and an important amount
of noise. While broad pattern identification, such as cryptographic primitives,
has been proved possible, the feasibility of precise SCBD remains an open ques-
tion on a complex System-on-Chip (SoC).

In this work, we address some of the technical challenges involved in per-
forming SCBD on SoCs. We propose an experimental setup and measurement
methodology that enables reliable characterization of instruction-level electro-
magnetic (EM) leakages. After investigating broad-functional unit activity leak-
ages, we study the feasibility of three instruction-level code reconstruction gran-
ularities: functional unit recognition, opcode recognition and bit-level recovery.
Under a controlled experimental environment, our results show that broad func-
tional unit activity recognition is achievable as well as opcode-level SCBD. Fi-
nally, we show promising results regarding bit-level SCBD practical feasibility
by exploiting the prefetching semantics of the CPU.
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1. Introduction

Side-Channel Attacks (SCA) exploit physical leakages (e.g., power consump-
tion, electromagnetic field, execution time) produced by a device while comput-
ing to disclose secret information. Side-channel Based Disassembly (SCBD) is a
sub-category of side-channel attacks that aims at reconstructing an approximate
representation of the assembly code executed by a processor. This reconstruc-
tion can either be fine-grained, if it recovers instructions or bit encodings, or
coarse-grained if it recovers higher-level program structures, such as basic blocks
or broad functionalities.

SCBD is a serious thread to Intellectual Property (IP) of software, especially
bootloaders, whose code is usually read protected. However, it can also be used
for identifying regions of interest in large side-channel traces, or for synchroniz-
ing more specific attacks such as fault injections. Thus, having a better under-
standing of these attacks is valuable for deploying appropriate countermeasures.
Aside from the attacks, SCBD can also be used to implement a non-intrusive
control flow monitoring scheme [10] through Electromagnetic (EM) or power
measurements. This allows detecting abnormal behaviors of a system, such as
the execution of malicious codes.

SCBD really shines for the reverse-engineering of bootloaders as it is a non-
invasive way to perform black-box dynamic analysis. These programs are stored
in an on-chip ROM which is rarely accessible, even through debug ports. A
SCBD could also be used as a synchronization tool. Indeed, it would help the
adversary to identify Points of Interest (PoIs) within the assembly code, such as
conditional branch instructions. For instance, targeting memory loads during an
AES encryption can help to trigger the subBytes routine. Such application can
help to provide meaningful side-channel traces realignement (i.e., counter jitter
effects), which is necessary for univariate analysis (i.e., per sample). Moreover,
in a real-case attack scenario, a SCBD can provide acquisition triggers (e.g.,
detect the beginning and ending of an AES encryption) for further analysis,
such as fault injection (FI) attacks or key recovery attacks. Recent works in-
vestigated the possibility to perform Control Flow Integrity (CFI) checking by
modeling side-channel leakage of single instructions so that the device internal
state can be verified [10]. Finally, as a leakage modeling tool, a SCBD could
help programmers to understand the sources of side-channel leakages, either at
a coarse-grained or fine-grained scale. This can facilitate the development of
hardware and software based coutermeasures to reduce the information that
could be exploited by an attacker. In other terms, SCBD techniques can be
used in order to enhance side-channel aware programming.

Recent breakthroughs have pushed the limits of coarse-grained SCBD, en-
abling detection of cryptographic primitives on low-end System-on-Chip (SoC)
(ESP8266EX with 80MHz Tensilica CPU) [17], but also OS and malware de-
tection on laptop grade processors such as a x86 Intel NUC board [21]. Fine-
grained SCBD, on the contrary, is steered towards code reconstruction for black
box reverse engineering or precise monitoring for event identification or malware
detection.
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Different fine-grained SCBD techniques have been studied in the literature:
opcode classification [6, 13, 18], hierarchical classification (i.e., with recognition
of opcodes and operands) [15] and bit-level reconstruction [5]. While the recog-
nition of substantial patterns have been proved feasible on complex architec-
tures [17, 21], fine-grained SCBD methods struggle to scale up with CPU com-
plexity. This brings us to the following questions: is SCBD achievable on a
high-end SoC’s CPU and what reconstruction accuracies can be achieved?

1.1. Contributions
In this paper we propose a practical feasibility study of different SCBD

paradigms on a Zybo-z7 board. Namely, we investigate coarse-grained, opcode-
level and bit-level recovery. After describing related work in section 2 and
precising the SCBD attacker model considered in this paper in section 3, we
identify the main architectural differences between microcontrollers and mod-
ern SoCs. We highlight the impact of these differences on side-channel measure-
ments (see section 4). Then, in section 5, we propose an acquisition method-
ology for near-field electromagnetic side-channel so as to take the architectural
complexity into account: we craft an experimental protocol that mitigates sev-
eral noise and jitter sources inherent to SoCs. In section 6, we study the feasibil-
ity of broad and instruction-level functional unit activity recovery. Afterwards
we investigate the leakages of single instructions in section 7 with a hierarchical
approach: we show that opcode-level SCBD is feasible. Leakage assessment
and classification of single instruction bits is discussed in section 8. Namely,
we start by identifying prefetching semantics leakages that are further exploited
for a classification task. We show that bit-level reconstruction is much harder
than opcode level, but promising results support the bit-level SCBD feasibility.
Finally, we conclude in section 9

2. Related Work

2.1. Leakage Analysis
Fine-grained leakage assessment was studied by Gao and Oswald on a Cortex-

M3 [8] and by Barenghi and Pelosi on a Cortex-A7 [2]. They performed micro-
architectural reverse engineering and developed a leakage assessment methodol-
ogy in order to quantize the leakage of data manipulated by instruction se-
quences. Noticeably, they expose pipeline inner semantics (e.g., inter-stage
buffers, buses) leakages, possibly with different leakage models, and method-
ological tools that we will use in this work. Marshall et al. designed a series of
micro-benchmarks for assessing pipeline leakages of Cortex-M series SoCs [12].
Beyond methodological aspects, they provide insightful findings on data rema-
nence leakage within load / store units.

2.2. SCARE
Side-Channel Analysis for Reverse Engineering (SCARE) is a family of side-

channel attacks that targets hidden constants rather than secret data directly.
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In that sense, Novak designed an attack that aimed at recovering the content
of a lookup table used in A3/A8 algorithm, a GSM authentication algorithm
that was implemented in SIM cards [14]. Later, Clavier improved the attack by
retrieving the two A3/A8 substitution tables and the secret key [4].

2.3. Bytecode Recognition
Vermoen et al. performed the side-channel reconstruction of Java Card byte-

code sequences by exploiting a smart card’s power consumption [20]. They
based their analysis on building templates for several instructions and instruc-
tion sequences. Some bytecode mispredictions are commented: these confusions
interestingly concerned semantically similar bytecode instructions.

2.4. Opcode Classification
Opcode level recovery was introduced by Goldack et al. [9] which performed

a leakage analysis for SCBD on PIC16 devices. In a follow-up work, Eisenbarth
et al. [6] applied the template approach of Chari et. al [3] for recovering opcodes.
In addition, they proposed a new approach to correct errors in opcode sequences
using a hidden Markov model built with prior knowledge on opcode distribu-
tions. They achieved 70.1% and 50.8% recognition rates on test code and real
code respectively, by measuring power on a PIC16 microcontroller running at
1 MHz. Then, Msgna et al. built an opcode classifier on power measurements
of an ATMEGA163 8-bit microcontroller running at 4 MHz [13]. By com-
bining Principal Component Analysis (PCA) for dimensionality reduction and
K-Nearest Neighbors (kNN) for the classification, they claim a 100% recognition
rate on test code for the 39 selected opcodes. On a decapped PIC16F, Strobel et
al. used Linear Discriminant Analysis (LDA) for dimensionality reduction and
kNN for opcode classification on EM measurements [18]. By combining side-
channel measurements at multiple probe positions, they obtained up to 96.4%
success rate for test programs and 87.4% for an AES implementation.

2.5. Hierarchical Reconstruction
Park et al. [15] introduced a new approach for SCBD known as “hierar-

chical classification”. The idea is to recover information incrementally, start-
ing from broad instruction categories (load/store, ALU, shifts) and then using
more specific classifiers to recover exact opcodes and operands. They pre-process
side-channel traces (power measurements) with Continuous Wavelet Transforms
(CWT) and Kullback-Liebler divergence to select a relevant subset of samples.
They feed the resulting data in a PCA for further reducing the dimensions
of data. On an ATmega328p AVR microcontroller, they achieved a 99.03%
recognition rate on test code (112 different instructions). Also, they adress the
covariate shift caused by template portability on other devices.

Similarly, Vafa et al. used Kullback-Liebler divergence along with CWT for
feature extraction and PCA for dimensionality reduction on a PIC16F micro-
controller and ARM Cortex M3 32-bit CPU [19]. Concerning the hierarchical
classifier, they observed the best results with Random Forest based Ensemble

4



Classification. Finally, they reported 99.5% and 93.3% of success rate for test
code and real code respectively on the PIC16F, and 98% and 80.2% for the
Cortex-M3 core.

Fendri et al. used a multi-layer perceptron neural network to perform
instruction-level recovery on a 32-bit RISC-V platform running at 100 Mhz [7].
By performing data augmentation and preprocessing the traces with sparse dic-
tionary learning for feature selection and dimensionality reduction, they attest
93.16% instruction recognition accuracy considering EM leakages.

2.6. Bit-Level Reconstruction
Cristiani et al. introduced the bit-level SCBD paradigm [5]. They targeted

the instruction prefetch buffer, which is shown to leak the Signed Hamming
Distance (SHD) of the instructions going through it. The bit-level approach
has the advantage to be scalable to large instruction sets, and is easier to train
than other methods. Using simple LDA-based classifiers, the authors attested
a 99.6% recognition rate for single bits, and 95% on the full 14 bits of the
target instruction by combining multiple EM probe positions upon a PIC16F
microcontroller.

3. Attacker Model

For the rest of this work, we make several assumptions on the attacker
model. We consider only supervised SCBD techniques, meaning that an attacker
can train a model under a controlled environment before performing the actual
attack. This implies that:

• the adversary has a full control over a clone of the target device or the
target device itself. Ideally, they should have the ability to execute arbi-
trary code on the clone device, potentially with root or even kernel-level
privileges.

• A complete attack scenario is divided in two steps: a profiling phase (per-
formed on a clone of the device) and an attack phase (on the real target).

While template portability has been proved possible in a SCBD context on
small microcontrollers [15], this is left out of the scope of this paper. Namely,
we rather perform profiling and attack phases on the same target.

To facilitate our analysis, we assume that the same code can be easily re-
executed on the target. This allows collecting several traces of the same pro-
grams to reduce the noise in measurements. This assumption is not unrealistic in
practice. Typically, bootloaders are executed every-time the device is powered-
on: multiple resets can produce measurements of the same program.

5



4. Challenges of SCBD on Modern SoCs

So far, most fine-grained side-channel disassemblers [5, 6, 13, 18] have been
targeting simple and low performance microcontrollers (e.g., Atmel or PIC de-
vices). Side-channel analysis on these devices is eased by several factors: they
run at low clock frequencies, their CPU have a simple architecture with few
logic gates and large CMOS technology (e.g., > 100 nm). Then, it is important
to pinpoint the major differences between microcontrollers and SoCs. After-
wards, we present the main noise sources of a SoC (in terms of side-channel
measurement), and some mitigation techniques we identified.

4.1. Simple controller vs. Complex SoC
Unlike microcontrollers, SoCs have a highly sophisticated architecture. We

provide in Table 1 a side-by-side comparison of the most significant differences
between these systems. From a side-channel analysis perspective, the challenges
that appear on SoCs are:

• Contrary to microcontrollers that mostly execute code “close to the metal”
(i.e., with small RTOS or no OS at all), modern SoCs are able to run a
full fledged operating system such as Linux. From a SCA point of view,
this results in eventual context switches and parallel activity (even
more in multi-core systems) that add noise to the measurements.

• Complex systems run at higher clock frequency (close to GHz). As a
consequence, high-end oscilloscopes with large bandwidth and sample rate
are required in order to perform measurements more precise than a CPU
clock cycle.

• Modern SoCs embark many hardware IPs (peripherals, hardware acceler-
ators) within a space-optimized package. The measurement chain must be
precise enough to observe the leakages. Particularly, it seems more astute
to target local EM signal over the chip rather than to target the whole
device’s power consumption.

• Complex CPUs are designed to optimize the latency of the executed code,
they make heavy use of prediction and parallelisation. As a conse-
quence, their side-channel activity is often cluttered with a lot of noise
(see subsection 4.2).

4.2. Sources of noise in complex SoCs
From a side-channel perspective, observing the side-channel activity of a

SoC is inherently noisy because of the high number of in-flight instructions
concurrently executed. Then, we shall describe the main elements that trouble
side-channel acquisitions and how to mitigate their effect.
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Properties Simple controller System-on-Chip
Pipeline Few stages > 5 stages
Clock frequency < 300 MHz > 300 MHz, DVFS
Issue capacity 1 2 or more (superscalar)
Instruction flow In-order In-order or Out-of-Order
Branch prediction Static Dynamic
Programs Bare Metal Operating system
Memory Flash, ROM DRAM, caches, MMU, TLB
Instruction set Restricted Mult. latencies and encodings

Table 1: Comparison between microcontrollers and SoCs.

4.2.1. DVFS
Frequency scaling is a mechanism that adapts the CPU’s frequency propor-

tionally to the current workload. It is often connected with voltage scaling: the
conjunction of these two techniques is called Dynamic Voltage and Frequency
Scaling (DVFS). DVFS introduces variations in the execution time of a program,
also called jitter, that desynchronizes side-channel acquisitions.

4.2.2. Multi-Core
Modern SoCs often include more than one processor (2-16) which operate

concurrently. From a SCA point of view, observations of a program running on
a single core are disrupted with noise due to other cores’ activity.

4.2.3. Pipelining and multi-issuing
The key idea of pipelining is to decompose the execution of instructions into

several small steps. Moreover, multi-issuing is a mechanism that allows to issue
several instructions simultaneously at each clock cycle. Regarding side-channel
activity, both pipelining and multi-issuing have the effect of overlapping the
leakages of nearby instructions.

4.2.4. Out-of-Order
Out-of-order processors are an elegant solution to the superscalar processor’s

limits. The key idea is to allow instructions to be dynamically dispatched to
available execution units. To be even more efficient, Out-of-Order processors
also perform register renaming to break Write-after-Write and Write-after-Read
dependencies. This mechanism complicates the targeting of a particular physical
register. Moreover, the complexity of modern architectures with all their un-
documented details makes the execution order hard to predict in practice. This
leads to alignment issues when performing several side-channel measurements.

4.2.5. Branch prediction
Branch prediction is a key part of modern processor architectures, and it

needs to be as fast and as accurate as possible as any misprediction, or branch-
miss, will pause the CPU and have an important performance impact. When
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branch mispredictions occur, the speculatively executed instructions are dis-
carded. Thus, the pipeline needs to restart with the correct branch outcome:
this phenomenon introduces a jitter in a SCA context.

4.2.6. Cache hierarchy
When a CPU needs to access content at a given address, it first searches

through the cache hierarchy, and fetches the main memory only as a last resort.
Depending on whether the data is currently in the cache or not, we can observe a
cache hit or a cache miss. Then, from a SCA point of view, data evictions caused
by a SoC’s inherent concurrency provoke inconsistencies and thus introduce a
jitter.

4.3. Noise and Jitter Mitigations
In order to accurately analyze side-channel leakages, the environment be-

tween two distinct acquisitions should be as similar as possible. Instead of
trying to disable some of the SoC features responsible for noise and jitter, we
propose mitigations that limit their impact. Indeed, these mitigations are con-
sistent with the SCBD’s profiling phase, where the target device (or a clone)
is supposed to be fully controlled by the attacker. In Table 2, we summarize
the noise mitigation strategies we used to reduce the noise sources presented
in subsection 4.2.

Table 2: Noise sources on SoC and mitigations.

Noise source Solution
DVFS Run a CPU-stressing workload to reach the

maximum frequency.
OS Scheduling Schedule the task on a specific core.
Trigger Jitter Use raw memory access to toggle GPIOs.
Caches and branch prediction Use branch-free code warmup.
Address inconsistency Use a fixed buffer containing the target

code.
Pipeline state Surround target code with NOP instruc-

tions.
Environment variations (tem-
perature, humidity)

Execute target code snippets in a random
order.

Superscalar and Out-of-
Order properties

Introduce carefully crafted data depen-
dency between instructions.

5. Measurement Methodology

We now describe the measurement framework that we use for all experiments
described in the rest of this work. Regarding the attacker model (section 3),
these experiments take place at the profiling stage of the attack, where the
adversary has full control over a clone of the target.
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5.1. Device Under Test
We selected the Zybo XC7Z020-1CLG400C board as our device under test

(DUT). It is a ready-to-use SoC built around the Xilinx Zynq™-7000 architecture
and incorporates a dual-core Cortex-A9 CPU running up to 667 MHz. The
Cortex-A9 CPU is a high-performance and low-power processor that belongs to
the ARMv7-A family (32-bit) [11]. We chose this DUT because (i) the Zybo-
z7 is an all-in-one board, with various components such as a FPGA: this type
of target is similar to real-world devices; and (ii) the Cortex-A9 CPU contains
several optimizations such as out-of-order execution, dynamic branch prediction,
dual-issuing of instructions and a deep pipeline. We stress that the FPGA is
not used in our experiments.

5.2. Side-channel Acquisition Setup
We acquire the near field EM emanations of the undecapped DUT through

a 100 µm EM Langer H-field ICR HH 100-27 probe connected to a Tektronix 6
series oscilloscope with a 2.5 GHz bandwidth (to avoid being disrupted by high
frequency RF signal) through a +45/50 dB low noise amplifier. The probe is
attached to a 3-axis motorized bench. We use a sampling rate of 12.5 GS/s, and
an Analogic to Digital Converter (ADC) precision of 12 bits. The acquisition
setup is represented on Figure 1.

Figure 1: Measurement setup.

5.3. Software Architecture
The DUT runs a standard ARM Hard-Float Debian 10 distribution. The

software architecture used to perform acquisitions is designed under a client / ser-
ver model that is depicted in Figure 2. The DUT runs a TCP server in userspace,
which accepts connections from a control computer. In order to trigger acqui-
sitions, we use a GPIO of the board raised up and down. Using GPIO drivers
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provided by the Linux kernel (i.e., /dev/gpio*) would introduce a high amount
of jitter within measurements, because of context switches. To mitigate this
issue, we toggle GPIOs with raw physical memory accesses to the GPIO periph-
eral address1.

Figure 2: Overview of the software running on the DUT.

The TCP server initializes the trigger context and waits for a client to con-
nect before launching the daemon that executes assembly code payloads sent
by them. The payloads are written inside a page-aligned buffer marked as ex-
ecutable. We rely on the mmap function for this step. This allows to have
an executable region in memory that is writeable, executable and at a fixed
address. Then a function pointer is used to execute the buffer’s content. To
ensure deterministic execution and measurements, we tie the TCP server on a
single core of the DUT.

Before acquiring traces for a payload, a “warmup phase” is mandatory to
reduce the impact of several noise sources (see Table 2). This can be done by
executing the payload several times within a branch-free loop (see algorithm 1)2.
We stress that the code must be as similar as possible between the warmup
rounds and the acquisition round. During our experiments, 100 warmup rounds
proved to be sufficient to obtain stable execution times.

5.4. Characterization programs
In our model, the client (i.e., the laboratory computer) is responsible for

crafting characterization programs (payloads) and sending them to the DUT.
Characterization programs take the form of assembly functions, which contain

1On Linux, it can be achieved by obtaining a virtual memory address (using mmap) on a
fragment of the /dev/mem file, which gives raw physical memory access.

2Avoiding conditional branches allows to reduce the jitter due to branch prediction mech-
anisms.
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Algorithm 1: Generic warmup function.
Input: x, r
cond← false;
for i from r down to 1 do

// cond must be a branchless expression
// to avoid branch misses.
cond← i== 1;
trigger_set(cond);
process(x);
trigger_unset();

end

(i) a function prologue, (ii) a sequence of NOP instructions, (iii) the target code,
(iv) a sequence of NOP instructions and (v) a function epilogue.

The function prologue is responsible for setting up the stack for the function
and saving registers’ values if needed. The function epilogue does the opposite
operations: it restores registers and the stack. Prologue and epilogue may also
used to switch back and forth Thumb execution mode and set register values to
random to reduce unexpected biases. The NOP sequences surrounding the target
code allow to entirely flush the pipeline state and provide a recognizable visual
pattern within the traces.

We show on Figure 3 a sample EM side-channel trace obtained for a charac-
terisation program. We clearly distinguish the different steps mentioned before
(prologue, NOPs, target instructions, epilogue). The center area (“Target Ins-
truction Sequence”) is where we perform the leakage analyses.

Figure 3: example mean trace of a payload execution: here the target code is a sequence of
EOR instructions linked by read-after-write dependencies.
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6. Coarse-grained analysis

This section is dedicated to the analysis of the leakages produced by the ac-
tivity of functionnal units (e.g., Arithmetical and Logical Unit (ALU), Load/Store
Unit or Barrel Shifters). After exposing the crafting of our target code in sub-
section 6.1, subsection 6.2, and subsection 6.3, we turn to broad functional unit
activity classification (subsection 6.4).

6.1. Structure of Instruction Sequences
To perform classification of functional units activity, we craft several ins-

truction sequences D = (Di)1≤i≤n such that (i) every instruction in a particular
D ∈ D goes through the same functional unit (e.g., ALU, MUL, Load/Store
unit), (ii) Read-after-Write dependencies force in-order and single-issue execu-
tion, (iii) execution times of all D ∈ D must be equal, so that the classification
step would not exploit leakage resulting from statistical differences between
target instructions and surrounding NOPs and (iv) all D patterns should be
chainable without loosing the RAW dependencies properties (see Figure 4).

EOR r0, r5

EOR r1, r0

EOR r5, r1

LDR r0, [r0, r1]

LDR r0, [r0, r1]

LDR r0, [r0, r1]

Figure 4: Chainable dependency patterns D examples.

6.2. Handling Memory Loads
Crafting sequences with memory loads needs a special attention to guarantee

in-order and constant time execution. The TCP server running on the platform
allocates a memory buffer of m addresses that we call the sled buffer. Let
~sb = (sb[1], ..., sb[m]) be such a buffer (as a sequence of void*, equivalently
32-bit words) and let &sb[i] denote the address of sb[i]. We define ~sb as follows:{

sb[i]← &sb[i+ 1] if 1 ≤ i ≤ m− 1

sb[m]← &sb[1] otherwise

Then, the address of the sled buffer (equivalently &sb[1]) is given as param-
eter of the characterization program, such as the register r0 contains this value
at the beginning of the execution of the payload. Suppose r1 contains the value
0, then we can introduce RAW dependency with the code snippet illustrated
in Figure 4.
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6.3. Spatial Positioning
As we target local EM leakages in our experiments, the probe position on

top of the CPU along the x, y and z axis has an important influence. Hence,
the best positions have to be found by measuring a leakage metric of a target
variable over a n × m grid set of different positioning. We consider that the
closer to the CPU the probe is on the z axis, the better the results will be.
As the signal amplitude can vary drastically from one position to another, an
automatic calibration of the oscilloscope’s voltage range focus is performed after
moving to a new position.

6.4. Classification of Broad Functional Unit Activity
In this subsection we aim at distinguishing broad functional unit activity.

Namely we design 4 sets of D patterns that respectively hold (i) ALU oper-
ations, (ii) barrel shifters related instructions, (iii) multiplication operations,
(iv) memory loads. We depict these 4 classes as CALU , CBARREL, CMULT and
CLOAD.

In this experiment, we explore a 20× 20 spatial grid covering a small region
of interest over the chip and we gather 6000 traces (each one being the average of
100 repetitions of a D pattern execution) per position. We split the dataset into
90% for training and 10% for validation. We choose the LDA as our classifier,
relying on the implementation provided by the Scikit-Learn framework [16]. The
validation accuracy of the LDA is used as a metric for evaluating the spatially the
leakage of the two Cortex-A9 cores. The results of functional unit classification
are shown on Figure 5.

Figure 5: Validation accuracy of the LDA for functional unit prediction over our cartography
grid for first (left) and second (right) core of the Cortex-A9.

We observe that the classifier’s validation accuracy is spread out differently
along the spatial dimension according to the target core, and it reaches 100%
success rate on the best positions.

This experiment shows that the coarse-grained recognition of broad func-
tional unit activity can be done accurately by exploiting local EM leakages.
Indeed, some probe positions allow to reach 100% accuracy with our experimen-
tal setup. Note that such a high classification accuracy is depends on several
factors. First, CALU , CBARREL, CMULT and CLOAD concern D patterns with
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several instructions. Hence, as an example, we expect several contiguous LDR
instructions to produce a leakage significantly different of a sequence of MUL
instructions, mostly because they are manipulated through distinct hardware
components during the execution stage of the pipeline. Also note that there
exist a link between the functional units manipulated and the Cycles Per Ins-
truction (CPI): this characteristic can be exploited by the classifier. Then, jitter
and noise mitigation techniques described in Table 2 improve the alignment of
the measurements: this allows the sample-wise linear combination performed
by the LDA to be more accurate.

7. Instruction-level Analysis

The coarse-grained recognition of broad functional unit activity allows to
investigate finer grained leakages. Especially, the goal of this section is to as-
sess the feasibility of opcode-level disassembly by investigating single-instruction
leakages on the Cortex-A9 CPU. To do so, we opt for a hierarchical approach:
we start by characterizing the leakages of instructions going through distinct
functional units in subsection 7.1 and subsection 7.2 before performing a clas-
sification subsection 7.3. Then, we study leakages of arithmetical intructions
in subsection 7.4. Finally, we discuss classification results in subsection 7.5.

7.1. Functional-unit leakage assessment
This analysis can be seen as analogous to the first step of a hierarchical

approach, as presented in [15]. The main goal is to provide answers to the
following questions:

• what is the best spatial region to characterize single-instruction leakages
over our DUT?

• can we identify temporal instants that correspond to the pipeline path of
an instruction?

Note that this experiment is tied to only one core of the CPU. We craft a set
of five different instruction sequences D, each one containing a prologue, a target
instruction I preceded and succeeded by 200 NOPs, and a function epilogue. The
r1 register is set to a random value and r2 is fixed before each execution. For
each payload, the target instruction I is chosen from a set I defined as:

I =


NOP
ADD r3, r2, r1
MUL r3, r2, r1
LDR r0, [r0, #0]
LSL r3, r2, r1

 (1)

For each instruction I from I, the payload is executed 5000 times per po-
sition on a 10 × 20 cartography grid. For each position, we split the traces
between 5 classes, namely CNOP , CADD, CMUL, CLDR and CLSL. Then, we
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compute Signal-to-Noise Ratio (SNR) for this set of classes as a leakage assess-
ment metric.

The SNR is an univariate leakage metric that allows a comparison between
the level of the useful signal and the level of noise in some observations. The
higher the SNR is, the most likely the information will be recoverable. The SNR
is defined as:

V ar(signal)

V ar(noise)

Namely, if we denote Y the random variable representing the class of an obser-
vation X, the SNR can be expressed as follows:

SNR(X,Y ) =
V ar(E(X | Y ))

E(V ar(X | Y ))
(2)

The numerator, shows that the “useful signal” is E(X | Y ) (the average per
class). The denominator is an estimation of the variance of the noise (the
variance inside each class). As the SNR is a univariate metric, it needs to be
applied on each samples of the traces individually.
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Figure 6: SNR output for the best cartography position with LDR instructions enabled (left)
and disabled (right), the RoI is bounded by the two red lines.

We can observe in Figure 6 that (i) the SNR starts to rise approximately at
the middle of the payload execution (the epilogue occurs around sample 7000),
which is the instant I is expected to be executed, (ii) the SNR plot exposes sev-
eral high peaks until the end of the payload execution. The latter observation
can be explained by the difference between the CPI of the different instructions.
Indeed this can introduce a slight jitter that desynchronizes the traces and in-
duce biased univariate statistical divergences. Consequently, we define a Region

15



0 5 10 15

0

2

4

6

8
0.000

0.005

0.010

0.015

0.020

SN
R 

va
lu

e

0 5 10 15

0

2

4

6

8
0.0000

0.0025

0.0050

0.0075

0.0100

SN
R 

va
lu

e

Figure 7: SNR cartography with LDR instructions enabled (left) and disabled (right).

of Interest (RoI) that corresponds to the beginning of the SNR rising. The
SNR peak in the RoI is significantly higher when the LDR instruction is enabled
(see Figure 6). This can be explained by the activation of several hardware com-
ponents when a memory load is performed (e.g., data buses, load/store unit,
caches etc.).

Hence, the cartography in Figure 7 output the maximum SNR value upon
the RoI. The cartography highlights different spatial regions of leakages, de-
pending on the presence of memory loads within the payloads. From Figure 6
and Figure 7, we can deduce that memory loads produce a significantly higher
leakage than the other benchmarked instructions: the suitable spatial positions
to characterize assembly instructions is depending on the hardware components
involved in the processing of the latter instructions.

7.2. Pairwise Comparisons
In order to further characterize fine-grained leakages, it seems important to

find a probe position where all the instructions from I leak significantly. Also,
we expect this position to expose similar leakages for all I ∈ I, at least at some
temporal instants. Such a finding could lead to both a probe position and time
instant that are suitable to investigate early pipeline stages’ leakages. Hence an
interesting question at this point is:

• in which positions do the different instructions distinguish the most from
a NOP instruction?

To answer this question we perform a Welch’s t-test between traces from CNOP

and each of the other target instructions related traces on every along upon the
cartography grid.

We see on Figure 8 that (i) several positions present a high t-value on the RoI
for each instruction. (ii) a zone near the top right corner of the grid contains the
highest t-values for ADD, LSL and MUL instructions, (ii) the most significant LDR
operation spatial leakage zone is separated from the other instruction’s ones.
At this point we can identify a position that exposes high leakage values for all
payloads (i.e., the position at (3, 15) on the grid).

Figure 9 illustrates the outputs of the different Welch’s t-tests at the latter
best position. We can observe that there are three patterns where the leakages of
the different instructions from I behave analogously (i.e., between samples 2760
and 2830). This can indicate that the instructions receive a similar treatment
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(b) CNOP vs CLSL
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(d) CNOP vs CLDR

Figure 8: Pairwise Welch’s t-test cartography where CADD, CLSL, CMUL, CLDR payloads
are compared to CNOP .
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Figure 9: Outputs of the Welch’s t-test upon the best selected position for the ADD, LSL, MUL,
LDR payloads, the two red lines represent the RoI.

at this step, and thus potentially indicate an early pipeline stage. Then the LDR
instruction leaks more than the others for a one cycle duration approximately
(sample 2870). From now on, single position experiments will be conducted
with the same probe position used here.

7.3. Classification
We build a classifier that aims at discriminating the instructions from I. The

goal of this model is to discriminate the use of different functional at a single-
instruction level. Hence, for each class CNOP , CADD, CLSL, CMUL, CLDR, we
acquire 500 thousand traces at the best probe position. For each class, a per
batch average is computed with varying number of traces: the average traces
constitute our dataset. A LDA is then applied upon the normalized RoIs of
the traces, with a 90%/10% training/validation split. The classifier reaches up
to 96% accuracy in average with a batch averaging size of 4900. We notice
in Figure 10 that a higher per batch averaging induces a higher accuracy.
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Figure 10: Confusion matrix of the LDA classification between instructions that use different
functional units, with an averaging size of 2000 (left), sensitivity of the accuracy compared to
the averaging size (right).

This experiment shows that, under rigorous conditions, single-instructions
targeting different functional units can be discriminated with a high-accuracy
(i.e., superior to 90%). Note that several classes of instructions have been evicted
from our analysis, essentially to preserve the stability of our experiments, and
are left as further work. For example, branching instructions would impact the
control flow of our target code and, thus, necessitate special investigation.

7.4. ALU instructions leakage assessment
Here we want to answer the following question: is this possible to classify

different instructions that go through the same functional unit?
We select the ALU as our target functional unit. Hereafter we depict the I

chosen for this experiment:

I =


ADD r2, r1, #imm
SUB r2, r1, #imm
EOR r2, r1, #imm
MOV r1, #imm
MVN r1, #imm

 (3)

For each acquisition, we generate a target code D that contains a single
instruction I ∈ I. The r1 register, as well as the immediate value imm ∈
{0, ..., 256} are chosen randomly for each execution. Both randomized values
and single functional unit targeting operated by I allow to limit the leakages
in late pipeline stages. Moreover, we expect a distinguishable leakage in the
decode stages of the pipeline. We add that the register renaming phase of
the Out-of-Order semantics really helps to limit the leakages of the physical
registers: the choice of the latter for a specific register label (e.g., r1 or r2) is
hardly predictable.
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From I we derive 5 classes CADD, CSUB , CEOR, CMOV , CMVN . We acquire
a total of 12.5 million traces in total for this step We first perform a leakage
assessment phase with a SNR computation on a set of 12.5 million traces, equally
distributed between the different classes.
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Figure 11: SNR output for classes CADD, CSUB , CEOR, CMOV , CMV N , the previously
identified RoI is bounded with red lines.

The SNR output is depicted in Figure 11: we remark that it exposes two
major peaks. Interestingly, the separation between these two peaks is of one
CPU cycle. Moreover, it is stated in [1] that the Cortex-A9 incorporates a
two stages decoding routine. These observations, jointly with the properties of
our characterization code, are strong arguments for assessing that the observed
leakage stems from the decoding mechanics of the CPU.

7.5. Classification
We aim at classifying the traces between the 5 classes CADD, CSUB , CEOR,

CMOV , CMVN . As for previous experiments, a per trace batch averaging is
performed with a varying number of batch size. We depict the LDA classification
result in Figure 12.
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Figure 12: Confusion matrix of the LDA classification between ALU operations, with an
averaging size of 6000 (left), sensitivity of the accuracy compared to the averaging size (right)
for same functional unit instruction classification.
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As for Figure 10, we observe in Figure 12 that increasing the averaging batch
size is beneficial regarding the LDA’s accuracy. The classifier reaches around
85% accuracy in average for highest batch averaging sizes. This experiment
shows that, under a highly controlled execution context, opcode discrimination
from a set of instructions I manipulated through an ALU is doable by exploiting
the decoding semantics of a high-end SoC’s CPU. Together with the experiments
performed in subsection 7.3, we show that the opcode reconstruction based
SCBD is doable with high accuracy on a Out-of-Order SoC’s CPU under a
controlled execution context.

8. Bit-level approach

This section is dedicated to the investigation of single instruction bits leak-
ages within the pipeline stages displayed in the RoI identified in section 7.

When focusing on single instruction bits, we must categorize two types of
leakages: (i) direct leakages that are related to the actual manipulation of bit
values and (ii) indirect leakages, where an instruction bit influences the be-
haviour of the CPU. While the first category is more likely to happen during
prefetch or fetching semantics (i.e., when the actual bits that encode an ins-
truction go through inter-stages buffers and buses), the second is more likely to
be observable during late pipeline stages. This part is dedicated to investigate
direct leakages of the instruction bits.

A bit-level approach comes with bitwise leakage models considerations. In-
deed, for an instruction, three main leakage models can be considered at a bit
granularity:

• the Hamming Weight model (HW), which corresponds to the actual bit
value,

• the Hamming Distance model (HD), that exploits the transition of bit
values.

• the Signed Hamming Distance model (SHD) that also exploits transitions
of bit values while making a distinction between 0→ 1 and 1→ 0 transi-
tions.

Note that the target code structure we opted for is designed not to be re-
strictive regarding the leakage models. Indeed, as I is surrounded by NOPs,
considering a HW leakage model can also lead to the identification of HD and
SHD leakages between the target instruction and a constant NOP. Moreover,
if distance based leakages were to be present while a target instruction I is
processed, such distances could happen with several instructions, that might
be separated from I by distinct clock cycles. This would highly impact the
complexity of this analysis, and is thus left out of the scope of this work.
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8.1. Bit-Level Approach Against Out-of-Order CPUs
As mentioned in subsection 4.2, Out-Of-Order CPUs perform register re-

naming to break some data dependences in order to speed-up execution time.
Register renaming is a technique that consists in mapping virtual registers (i.e.,
registers tagged in the instruction encoding, such as r1 or r2) to physical reg-
isters, which are the actual hardware resources. As this mapping process is
almost unpredictable in practice, it seems hardly possible to exploit the leakage
of physical registers in order to guess the virtual register tagged in the original
assembly instruction. Then, one can rely on the actual bits that encode the
virtual registers. This implies targeting early execution semantics (i.e., fetching
or prefetching), in which bit-level SCBD have been shown to be accurate [5].

8.2. Prefetching semantics leakage assessment
Discovering a prefetching routine leakage could allow to exploit single-bit

leakages with few biases [5]. To highlight such leakages, we design an experi-
ment which goal is twofold. Firstly, we want to show that the previous RoI cor-
responds to the target instruction I being processed within the CPU’s pipeline.
Secondly, as the prefetch of an instruction occurs several cycle before the latter
goes through the pipeline, we expect a leakage of a prefetch routine to be ante-
rior to the pipeline’s one. For this experiment, the choice of the payload set D,
and more precisely the set of target instructions I is to be especially cared of.
Namely we must ensure that:

• Every instruction I ∈ I have the same CPI, so that the observed leakage
is not resulting from a “shift” in the traces (i.e., jitter), and all leakages
are as much aligned as possible.

• Every instruction I ∈ I incorporate a random component (e.g., the value
contained in a register), to limit statistical biases in late pipeline stages.

• All instructions in I have a variable operand (e.g., an immediate value)
that is located at the same position regarding the ISA’s encoding. Indeed,
this would allow to target the same buffer location regardless the chosen
instruction from I.

Hereafter we depict the I chosen for this experiment:

I =



ADD r2, r1, #0
ADD r2, r1, #255
SUB r2, r1, #0
SUB r2, r1, #255
EOR r2, r1, #0
EOR r2, r1, #255
MOV r1, #0
MOV r1, #255
MVN r1, #0
MVN r1, #255



(4)
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Note that the r1 register is randomly initialized before each execution, and r2 is
fixed. As previous experiments performed in this section, every I is surrounded
by a fixed number of NOPs.

We acquire 500 thousand traces for each I ∈ I, leading to a total of 5 million
traces. Then we divide the traces into several classes:

• CADD, CSUB , CEOR, CMOV and CMVN containing traces that correspond
to the precised opcode, regardless the immediate values,

• C0 and C255 that contain traces that correspond to the precised immediate
value, regardless the opcode.
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Figure 13: Output of the SNR computed on CADD, CSUB , CEOR, CMOV and CMV N , the
two red lines represent the RoI.

The SNR computed on classes CADD, CSUB , CEOR, CMOV and CMVN

is depicted in Figure 13. Interestingly, one can remark that the highest SNR
peaks are located in the same RoI as for Figure 9. This means that this zone
indicates the locations where, independently from the operands, instructions of
same execution time leak the most. Hence this RoI seems to encompass leakages
of stages (or inter-stages buffers) at least from the decoding part of the pipeline
to the writeback. Note that within each class, the immediate values 0 and 255
are equally represented. Hence Figure 9 should not be directly influenced by
these values.
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Figure 14: Outputs of the Welch’s t-test between C0 and C255, the two red lines represent
the RoI, the two green lines surround the prefetching routine.

The Welch’s t-test between C0 and C255 is illustrated in Figure 14. Several
observations can be made from this figure: (i) the RoI still exposes leakages,
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this can indicate that inter-stages buffers that carry the immediate values of
instructions are leaking, (ii) the beginning of the RoI (around sample 2750) is
much more leaky than in Figure 13, this can highlight leakages in the fetch
stages of the pipeline, and (iii) we observe a region (delimited by green lines),
several cycles anterior to the pipeline leakages, that displays immediate values
dependant leaks.

Based on these two experiments, we can conclude that we were able to
design an accurate methodology to detect prefetch leakages on the Cortex-A9
architecture. This prefetch leakage could originate from the instruction cache,
the prefetch unit, interconnection buses or all these components together.

8.3. Classification
In this experiment, we make use of the set of instructions I depicted in sub-

section 7.4. Hence we gather 12.5 million traces of payload execution, with an
equal proportion for each immediate value.

As the immediate value is drawn from {0, ..., 255}, it is represented with 8
consecutive bits within the encoding of all I ∈ I. We consequently create 8 clas-
sifiers, one for each bit, that aims at recovering the value of this bit. Regarding
the RoI used for classification, we select the samples between the beginning of
the prefetch zone (sample 2730 in Figure 14) until the beginning of the pipeline
zone (sample 2800 in Figure 14), before the decoding semantics location iden-
tified in Figure 11. Once again, we use an in-class per batch averaging before
providing the data to the LDA models. The validation accuracy of the 8 LDA
classifiers is illustrated in Table 3.

Bit index 7 6 5 4 3 2 1 0
Accuracy 92.1% 64.5% 65.9% 50.5% 57.9% 53.3% 57.5% 50.0%

Table 3: Classification validation accuracies of the immediate value’s bits, from most signifi-
cant bit (bit 7) to least significant bit (bit 0), with a batch averaging size of 6000.

We observe that one bit is accurately classified (i.e., 92.1% for bit 7), and two
other bits are recognized with an accuracy superior to 60%. As 0 and 1 values for
each bit are equally distributed for a uniform distribution of immediate values
from the interval {0, ..., 256}, the expected accuracies for a guess at random on
a bit value is 50%.

Consequently, this experiment shows that, considering a prefetching and
fetching temporal region and under a strictly controlled context, we are able to
accurately classify one bit of an immediate value, and produce classifications
that are better than random guesses on most of the other bits. These results
support the feasibility of a bit-level SCBD on a high-end SoC’s Out-of-Order
CPU. Moreover, one could consider increasing the number on measurements,
opting for a more complex learning model or combining information at several
probe positions to enhance the accuracy.
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9. Conclusion and Further Work

In this paper, we highlight the differences between microcontrollers and high-
end SoCs through the lens of a side-channel analyst. This allows us to derive
methodological insights that provides an appropriate side-channel acquisition
context for SCBD. With such measures, we were able to reliably (i.e., with 100%
accuracy) distinguish broad side-channel activities between different functional
units without the need of advanced deep learning techniques. The low quantity
of measurements (i.e., less than a million) for coarse-grained functional unit ac-
tivity detection is a good indicator concerning to the feasibility of such recovery
in a realistic scenario. At a finer scale (i.e., single instruction level), we show
that single instructions going through different functional units also leak, and
we were able to identify the temporal region where an instruction is processed
through the pipeline. Interestingly, we also show that memory interactions have
a major contribution to the leakage on the Cortex-A9 CPU. Classification re-
sults show the feasibility of the first level of a hierarchical classifier, that aims
at recovering the “category of an instruction” based on the functional units in-
volved in its computation. Next we show that ALU related instructions can be
discriminated with good confidence by exploiting deconding semantics of the
pipeline. These two results support the feasibility of opcode level SCBD on a
high-end SoC.

Afterwise, we identify prefetching related leakage, and exploit the latter to
craft a bit-level classifier that is able to classify single bit values of immediate
operands, with variable accuracies depending on the bit index. This result shows
that bit-level SCBD could be practical on a high-end SoC’s CPU, but the effort
to perform such a technique is much superior to previous methods.

Most of the analyses presented in this paper are performed at a single EM
probe position, and with simple machine learning techniques. Future researches
can be headed with more advanced models, such as neural networks, and po-
tentially exploiting leakages at multiple probe positions. As a final word, we
recall that all the experiments described in this paper are performed under a
strictly controlled execution environment. This means that extrapolating this
work onto a more realistic scenario would necessarily add supplementary dif-
ficulty from an attacker’s perspective. Consequently, further work could then
tend to alleviate the attacker model presented in this work.
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