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Abstract—Fault-Injection might be a useful tool to bypass
security features that may obstruct the work of forensic experts.
For instance, injecting a fault could modify the target control-flow
and compromise its security. When the attacker knowledge about
the target software implementation and hardware architecture
is limited, discovering a Fault-Injection vulnerability becomes a
serious challenge. Another issue is identifying when the targeted
vulnerability is executed. To the best of our knowledge, this paper
proposes a new methodology to solve these problems for the first
time on System-on-Chip (SoC). The first step is to improve the
knowledge of security feature implementations. Then deviations
in the control-flow induced by forged inputs can be combined
with Side-Channel observations to identify vulnerabilities. The
next step is to define a trigger as close as possible in time
and prior to these vulnerabilities. At this stage, Electromagnetic
Fault-Injection (EMFI) can be put in practice to bypass the
targeted security feature. As a proof of concept, we bypassed
the Secure-Boot of a smartphone grade SoC. Three theoretical
vulnerabilities in the Secure-Boot architecture of our target are
identified using this new methodology and successfully exploited
by EMFI.

Index Terms—Side-Channel Analysis, Electromagnetic Fault-
Injection, System-On-Chip, Secure-Boot, Hardware Attacks

I. INTRODUCTION

Most modern smartphones come with security features such
as Secure-Boot. This mechanism ensures the authenticity and
integrity of the different programs processed in order to
complete the boot and to start the Operating System (OS).
This security feature consists in a systematic authentication of
the boot stage n+1 prior to its execution by the boot stage n
currently executed. It is an interesting feature to study, in

particular in a forensic context where it can obstruct the work
of forensic experts. Fault-Injection may be a solution to bypass
this security feature. Injecting a fault with the right timing may
alter the program control-flow and guide it in an advantageous
state for the attacker. During the boot phase, programs that
are executed earlier are granted higher privileges. Therefore
an attacker would want to bypass the first authentication to
get the highest privileges.
Having the knowledge of the executed code would be a
great asset. However the first program executed is generally
unreachable for an attacker, which raises problematics such
as:
P1. Finding a vulnerability to Fault-Injection without having

access to the code.
P2. Finding the timing when the vulnerability happens.
P3. Identifying the best signal to trigger the Fault-Injection.
P4. Identifying the best Fault-Injection parameters.
This paper presents a methodology to answer P1, P2 and
P3. The problematic P4 is not addressed in this paper. The
Electromagnetic Fault-Injection (EMFI) parameters are set up
prior to the final experiment in a fully controlled environment.
Our methodology works as follows:

1) First the target Secure-Boot is analyzed in order to find
potential vulnerabilities.

2) Then we forge images that create deviations in the target
control-flow according to the vulnerabilities. We assume
it is possible to load a customized image on the target.

3) These deviations leak in Side-Channel, creating notice-



able divergences between Electromagnetic (EM) traces
from authentic and corrupted images.

4) A trigger signal as close as possible prior to the di-
vergence is identified in order to get a jitter as low as
possible.

5) The delay between the trigger signal and the divergence,
and its jitter are characterized.

6) Finally, the trigger signal is used with the delay measured
to inject a fault with the right timing.

Thanks to this methodology, the first authentication of the
Secure-Boot of a smartphone grade System-on-Chip (SoC) has
been successfully bypassed for three vulnerabilities.
We will present these results according to the following plan:
Section II presents a state of the art on Secure-Boot attacks
and on related works. Section III presents the target and its
Secure-Boot. Section IV presents the methodology and how
we applied it. The results of the experiments are presented in
Section V. Finally, Section VI concludes this paper.

II. STATE OF THE ART

A. Secure-Boot attacks

Hardware attacks, especially Fault-Injection, have already
been used to bypass Secure-Boot [1, 2, 3, 4, 5, 6]. Such attacks
have various synchronization requirements. Some attacks do
not require timing precision. For instance, [1] presents a
scenario in which an attacker can inject a fault during the
copy phase of a malicious image composed of a shellcode
and pointers. A fault any time during the pointers copy could
set the Program Counter value to the pointer value. Another
attack from [2] shows that it is possible to bypass the Secure-
Boot of a smartphone SoC by using static faults. In those two
examples, the need of synchronization is relaxed. The fault
can be injected any time in a certain temporal window. In
contrast, attacks such as [5, 4, 3, 6] target a vulnerability that
happens at a specific timing. A trigger close to this instant will
increase the attack success rate by reducing the jitter. It can
be a communication signal [5, 3, 6, 7, 8], a reset signal [3]
or a Side-Channel based trigger [4]. Also knowing the delay
between the trigger and the vulnerability reduces the time-
domaine exploration, thus increasing the attack success rate.
When this delay is not precisely known, the attacker has to
explore a temporal window until a successful fault [3, 6, 7].
An attacker could also look for Side-Channel information on
the target behavior to find the vulnerability delay [5, 8, 9].

B. Side-Channel Analysis

Side-Channel Analysis is based on the fact that data ma-
nipulated by a target can leak in power consumption or EM
emanations. However information about the target behavior
may also leak alongside this data, such analysis is called a
Simple Power Analysis (SPA) [10]. Other works exploit this
fact, for instance finding some information about the target
code via a Side-Channel Analysis has already been explored
in [11, 12].
Also, some similar works use Side-Channel to monitor the tar-
get control-flow in order to detect malicious program [13, 14].

In [9] the authors propose to identify the execution timing
of a specific targeted instruction by matching a template
waveform with a target waveform using a Sum of Absolute
Difference (SAD). This methodology allows to identify all
potential timing of the targeted instruction in the targeted
trace. Our work lays on the same idea that information about
the target control-flow leaks in Side-Channel. [5] proposes a
similar approach to roughly measure the vulnerability timing
on a microcontroller. However for a much more complex target
that runs at high frequency such as a SoC, a more resilient
methodology might be useful. In order to find this divergence,
we use a methodology close to trace alignment techniques that
have already been explored in the literature [15, 16, 17].

III. TARGET AND SECURE-BOOT

Our target is the same target presented in [4]. It is a
smartphone grade SoC on a development board. The SoC is
based on 4 cores Cortex A53 up to 1.2GHz. During the earlier
phases of the boot, only one core is active, and it is running at
800MHz. The Secure-Boot is natively disabled on our target,
but it can be enabled.
A first program named the First Stage Boot Loader (FSBL)
is executed from a Read Only Memory (ROM). Then, the
Secondary Stage Boot Loader (SSBL) is loaded in SRAM and
authenticated by the FSBL before execution. The SSBL again
loads and authenticates the next boot stage, etc. This boot
flow is represented in Fig. 1. The FSBL is the only program
that is not authenticated since the ROM is enclosed in the
SoC, it is considered secure by default. The SSBL is the first
program loaded that can be modified. A malicious SSBL could
be used to get privileges at Exception Level 3 (EL3), giving
access to the processor in secure state. This would give the
attacker privileges over critical resources such as the TEE.
However, the experiment has to be performed in a black-box
context since the attacker has no access to the FSBL binary
or code. In this paper we propose a methodology to find the
right timing to inject a successful fault without having access
to the targeted FSBL code.

TEE
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FSBL SSBL
Authentication
Execution

Fig. 1. Secure boot of our target

In order to be authenticated, the SSBL image has to be
signed beforehand. The signature step works as follows:

1) A RSA private key Kn is used to sign the image hash.
2) The corresponding public key kn is saved in the certifi-

cate n.
3) The certificate n is signed with a private key Kn-1.
4) The corresponding public key kn-1 is saved in the certifi-

cate n-1.



5) Step 3 and 4 are repeated with the certificate n-1 and a
new key pair until the root certificate.

This process is illustrated in Fig. 2A. The root certificate is a
particular case. Its hash should have already been burned into
fuses during the procedure to enable the Secure-Boot. In Fig. 1
each authentication involves authenticating both the image and
every certificate. An authentication of an image or a certificate
is performed according to the following steps:

1) The certificate/image hash is computed.
2) The certificate/image signed hash is verified using the

public key saved in the previous certificate.
3) The computed hash is compared with the verified hash.

The comparison result is used to continue or stop the
boot.

4) Step 1,2 and 3 are repeated until the root certificate.
5) The root certificate computed hash is compared to the

value stored in fuses.
Fig. 2B represents the full authentication of an image and its
certificate chain. Each certificate or image authentication
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Fig. 2. (A) Image signature performed by the authority | (B) Image
authentication performed by the target

contains one final comparison that represents a potential
vulnerability to Fault-Injection. An attacker could try to fault
a comparison to force its own certificate or image to be
accepted. Furthermore, there is an other vulnerability when
the FSBL check if the Secure-Boot is activated or not. The
Secure-Boot status is written in fuse. The FSBL reads the
fuse and perform, or not, the Secure-Boot depending from
the fuse content. The SSBL certificate chain is composed of
three certificates. Therefore there is at least 5 potential Fault-
Injection vulnerabilities in the SSBL authentication:
V1. The check of the Secure-Boot status
V2. The root certificate authentication
V3. The certificate 0 authentication
V4. The certificate 1 authentication
V5. The image authentication
In this paper we explore V1, V2 and V3. We did not explore
V4 and V5, we suppose that these vulnerabilities are already
close to V3.

IV. METHODOLOGY TO FIND VULNERABILITIES TIMING

In order to bypass the authentication, we need to find
the right Fault-Injection timing. Without any knowledge of
the FSBL code, our methodology relies on a Side-Channel
Analysis to find this timing. A Langer probe (RF3-mini) and
a preamplifier (PA303/PA306) are used to capture the target
EM emanations. The EM emanations can be captured from
above the chip or above the decoupling capacitors.

A. SCA of the certificate 0 authentication: V3

We can use the signals between the SoC and the EMMC
memory as a trigger signal to get as close as possible to
the vulnerability in a similar way as [3]. Indeed, the image
has to be loaded before being authenticated. Therefore, the
authentication is likely to be performed shortly after the last
activity on the EMMC communication bus. The first vulnera-
bility studied is the vulnerability V3 in the authentication of
the certificate 0. To find the best timing, we need to induce
a modification of the target behavior that would leak in Side-
Channel. By using forged inputs such as forged SSBL images,
it is possible to change the target control flow. This change
will leak in Side-Channel, resulting in the divergence between
traces. Therefore, we compared the EM traces when the SSBL
is signed correctly and when it is not. In Fig. 3 two classes
of traces are represented:

• Valid trace in blue: Trace when a fully valid image is
used.

• Invalid trace in green: Trace when a malicious image
is used. A valid root certificate is used but the others
certificates are malicious.
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Fig. 3. Valid trace vs Invalid trace

The malicious image is first correctly signed with a certificate
chain that begins with our own root certificate which hash
does not match the value saved in fuses. We replaced this
root certificate by the right one used in a valid image. So the
root certificate hash matches the value saved in fuse, but the
certificate 0 signature can’t be verified by this root certificate.
Our goal is to trigger the injection at the right timing to force
the SoC to accept our malicious certificate 0.
On Fig. 3 the divergence between the two classes seems
to appear 6ms after the trigger. A more in-depth analysis
is needed to find the perfect timing. Multiple traces are
needed to measure the mean timing. However due to the jitter,



the divergence is desynchronized between multiple traces.
Therefore we propose a methodology to reliably find the
divergence on each trace. A trace is composed of patterns
that carry information about the processor activity. Patterns
are persistent between traces captured in the same conditions.
When a pattern is identified in a trace, it can be identified in
other traces by using a comparison metric such as the Pearson
correlation coefficient. Our methodology to find the divergence
between two classes of traces is:

1) We use large traces like Fig. 3 to roughly localize the
divergence timing.

2) We select a reference trace in one of the two classes
around the divergence timing.

3) We manually select the patterns in our reference trace.
4) Using a sliding window correlation, we search each pat-

tern in the other traces from both classes. The divergence
is identified when a pattern is only present in one of the
two classes. It should be the same class as the reference
trace.

Fig. 4 shows an example of the sliding correlation technique.
A reference pattern (in red) is retrieved in the test trace (in
green) at the maximum of the sliding window correlation
function (tmax). This sliding correlation can be replaced by
other techniques such as Sum of Absolute Difference or Phase-
Only Correlation (POC) [16].
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Fig. 4. Example of sliding window correlation to find a pattern

Timing identification of the diverging pattern is a necessary
condition for a successful Fault-Injection. We applied the
methodology presented on traces captured arround the V3
divergence. The reference trace is arbitrarily selected in the
valid traces. Eventually, a pattern that is only present in the
valid traces is found. On Fig. 5 several traces from both
classes are realigned and superimposed to clearly illustrate the
divergence between classes. When the diverging pattern has
been identified, we can measure the delay before it appears in
each trace. For 76 invalid traces, we measured a mean delay
of 6.733ms after the trigger signal, the standard deviation of
this delay is 1.87µs.
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Fig. 5. Traces of both classes superimposed and aligned on the last common
pattern, with a zoom on the divergence.

B. SCA of the Secure-Boot status check: V1

The same methodology is applied to find the timing for
the check of the Secure-Boot status. Traces of a target with
enabled Secure-Boot and traces of a target with disabled
Secure-Boot are compared. The trigger signal used is the same
as the previous section. The divergence happens closer to
the trigger signal. We use a reference trace that belongs to
the Secure-Boot enabled class to find the patterns around the
divergence timing. We search these patterns in both classes
until we find a pattern that appears only in the Secure-Boot
enabled class. Fig. 6 shows the analysis result.
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The delay between the trigger signal and this pattern has
a mean value of 45.12µs and a standard deviation of 49ns
measured from 67 traces with Secure-Boot enabled.

C. SCA of the root certificate authentication: V2

The previous subsections show how to find the divergence
with no knowledge of the code executed. However, an au-
thentication always ends with a comparison of two hashes. It
is generally performed using a "memcmp" function (memory
compare) which compares two inputs word per word. We made
the asumption that the comparison was performed in a similar
way as illustrated in Fig. 7 with 8-bits words.
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We may identify this "memcmp" in Side-Channel by finding
a pattern that repeats itself depending from the number of valid
bytes in common between the two hashes that are compared.
We bruteforced different root certificates with hashes that
partially match the hash stored in fuse.

• 0 valid byte hash: b043c4dd67..................26bbd6a24c
• 1 valid byte hash: e1eb1c648d...................0ed518fbb7
• 2 valid bytes hash: e11cebc2da...................ec0aa76ba2
• hash stored in fuse: e11c9b94af...................57256a5a08

Then we tried to find the divergence between the traces when
the SSBL is signed with these root certificates. Eventually, a
pattern is found that seems to diverge according to the number
of valid bytes. Multiple segments are noticed when analysing
traces of Fig. 8. Blue and black segments are common between
all traces. Red segments are only in traces with at least one
valid byte. Green segment is only in the 2 bytes valid trace.
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Fig. 8. Memcmp pattern for hash with 0, 1 and 2 valid bytes.

With this approach we are able to identify the "memcmp"
function with higher confidence than the previous vulnera-
bilities. For this experiment we used the Frequency Detector
described in [4] as trigger. On 65 traces we measured a mean
delay of 4.95µs between the trigger signal and the pattern. The
standard deviation of this delay is 492ns.

V. PROOF OF CONCEPT: SECURE-BOOT BYPASS

The goal of the previous section is to identify interesting
timing for a Fault-Injection that could bypass the Secure-Boot.
We measured the delay between divergences, corresponding to
V1, V2 and V3, and their respective triggers. In this section,
we present the setup and the results of the Fault-Injection using
the different identified timings.

A. Setup

The setup used for the final experiment is described in
Fig. 9. We use a voltage pulser that injects a 400V pulse in

an active probe positioned above the target. The pulse width
is 6ns and its rise time is 2.5ns. The methodology used to
find the probe position and the pulse parameters is performed
in a fully controlled environement and is very similar to the
methodology presented in [18, 4]. In the final experiment, the
trigger signal used is the communication signals between the
SoC and the EMMC for V1 and V3. For V2 we use the
Frequency Detector described in [4] sets to trigger on the
activation of the 20.5MHz frequency.
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Fig. 9. Attack setup.

B. Bypass of the certificate 0 authentication: V3

The goal of this experiment is to execute a malicious
SSBL image. The certificate chain of this image contains
a malicious certificate 0 signed with our own private key.
However the root certificate is the right one. So the target
should authenticate the root certificate, then it should try and
fail to authenticate the certificate 0. A fault injected at the right
time might force the target to continue the Secure-Boot despite
the malicious certificate 0. We used the delay of 6.733ms
previously identified in section IV-A as delay between the
trigger and the injection. On 25000 experiments (17 hours),
we were able to boot our malicious SSBL 2 times.

C. Bypass of the Secure-Boot status check: V1

The target reads fuses to determine if the Secure-Boot is
enabled or not. A fault during the comparison of the result
could disabled the Secure-Boot for this boot, allowing us
to load and execute our own malicious SSBL without any
authentication. The injection is triggered using the communi-
cation signals between the EMMC and the SoC. We used the
mean delay of 45.13µs previously identified. However after
50000 attempts (78 hours) without results, we gave up on
bypassing the Secure-Boot. A possible explanation might be
the use of function pointer in the code. In this case, finding
the divergence is not enough to achieve a successful bypass.
Therefore we used another approach, we assumed that there
might be vulnerabilities between the trigger signal and the
divergence. So we explored each nanosecond between the
trigger and the timing identified. The whole campaign duration
was 80 hours. Eventually we get 3 success:

• Success 1: 25.88µs.
• Success 2: 29.52µs.
• Success 3: 29.64µs.



Giving the low jitter, Success 2 and 3 are probably caused by
the same vulnerability. However, Success 1 seems to be caused
by an other vulnerability. Also it shows that the divergence
may not be the right timing for the vulnerability, but it gives
an upper bound to the time-domaine exploration.

D. Bypass of the root certificate authentication: V2
To attack the root certificate authentication, a modified

image with a malicious invalid root certificate is used. The
two first bytes of this malicious certificate hash match the two
first bytes of the expected hash. We assume that injecting a
fault at the right timing may cause a premature loop exit such
as presented in [18] with a return value of 0. The activation of
a specific frequency in the EM emanations is used as trigger.
The Fault-Injection is triggered with the delay previously
identified. With this setup, we performed 55000 experiments
(66 hours) which resulted in 10 successes. The better jitter
measured for V2 might explain this higher success rate.

VI. CONCLUSION

This paper proposes a methodology to answer problematics
P1 and P2 in the context of a complex target such as a SoC and
when the attacker has no access to the code. This methodology
exploits the fact that information about the processor control-
flow leaks in Side-Channel. The research of divergent patterns
in EM traces allows to identify relevant timing for Fault-
Injection. These timing are also used to find the best trigger,
which partially answer P3. It does not ensure a success, but it
gives boundaries to the timing window in which the vulnera-
bility is. By forging specific images, we were able to create
different behaviors in Side-Channel. This allows us to reverse
the architecture of specific function such as the memcmp
function. We performed the proof of concept by bypassing
the Secure-Boot of our target for three vulnerabilities.
This methodology is expected to be used when the attacker
does not have the target code. It allows to find some vulnera-
bilities, but not necessarily all the vulnerabilities. A full scan
of the delay between the EMMC trigger and the end of the last
authentication would be useful to compare results. However
the full authentication chain takes several milliseconds, which
would take months to fully explore. An alternative would be
to use a classic methodology using a known code and GPIO
to find the vulnerabilities, and then compare the results with
our methodology results. P4 is not explored in this work. A
controlled software is used to find the best Fault-Injection
parameters. Also, only one SoC was studied, and it is an old
model that is not used anymore in new smartphones.
Finally, we believe that the methodology presented in this
paper could be used on others target and other scenarios. In
particular, bypassing the Secure-Boot at the FSBL level could
be used in forensic investigation to execute code controlled by
the forensic experts with TEE privileges, which would lead the
way to other attacks.
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