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Abstract—The proposed algorithm aims to estimate the instan-
taneous capacity of an electrical battery. The battery capacity
is a crucial parameter of the battery management system and
the knowledge of its value is necessary for the state of charge,
state of function and remaining useful life estimators. Moreover,
operation of lithium batteries raises safety issues, and the very
accurate estimation of the battery capacity makes it possible
to always guarantee its use in its Safe Operating Area (SOA).
As a starting point, the classical Coulomb counting relation is
taken as an observation equation in a Kalman framework based
on a state equation of the capacity evolution. The observation
equation is a biased linear relation with the variables of interest
being affected by errors and corrupted by outlier samples. A
random consensus resampling is thus applied to reject these
outliers and a pre-estimation of the ordinate at the origin of the
affine function is performed. The bias reduction is performed
thanks to a modified hough-transform. This hough-transform
uses the a-priori prediction of the capacity and a multi-resolution
recursive approach is used to optimize the bias reduction while
limiting the computational complexity. The algorithm is robust to
the presence of a high level of outlier and the Kalman approach
makes the estimation adaptive. Moreover a statistical test is
realized to determine whether the estimated capacity should be
directly injected back in the SOC estimator or not. Our algorithm
is tested on a database delivered by the NASA DashLink
plateform. Statistical simulations confirm the robustness and the
adaptive nature of the method. The obtained RMS of the relative
errors over the entire ageing cycles are below 3%.

Index Terms—state of health, robust estimation, capacity,
ageing model, kalman filtering

I. INTRODUCTION

The increasing use of electrical batteries is a clear attempt to
be prepared for the “post-oil” era. But even if the development
of the electric mobility is a vertuous trend, the mineral and
metal resources involved are critically limited. The case of
lithium salt is a flagrant example. In the next few years the
part of lithium demand in the battery sector would be up to
50% of the entire demand with an average growth rate of
15% [1]. So, on the one hand the recycling and ecological use
of batteries is a necessity, and on the other hand the battery
should be operated optimally. Consequently, it is required to
estimate the battery indicators accurately. In this paper we
focus on the capacity estimation. Indeed, a precise and robust
estimation of the battery capacity leads to a more efficient
usage and allow to increase its operating margins. Moreover,

as the capacity is a crucial parameter of the cell, with a more
precise estimation, a safe operation can be guaranteed, and
the probability of hazardous event can be reduced. These two
benefits improve the life cycle of the battery. The capacity
of electrical batteries cannot be directly measured because
its value results in a complex relationships between electrical
and chemical parameters of the internal components of the
cell. Thus, since the capacity cannot be measured it must be
estimated. There exists many laboratory protocols to determine
the nominal capacity at given operating conditions but these
methods are offline ones and consequently they cannot be em-
bedded online in a Battery Management System (BMS). The
aim is to estimate online regularly the battery cell capacity to
not only evaluate the State of Health (SOH), but also feed the
other algorithms of the BMS that estimate the other indicators :
State of Charge (SOC), State of Available Power (SoAP), State
of Function (SOF), State of Energy (SOE). Current estimators
are well documented in the literature. The total least squares
is currently an interesting method to obtain the capacity and a
recursive approach is formulated by Plett[2]. Obviously many
papers deal with machine learning techniques such as support
vector regression or neural networks[3]. However learning
algorithms need an exhaustive database of battery cycling to
demonstrate their efficiency and ability to generalize. Such
databases exist but only for a few range of cell references,
and are very expensive to build. The incremental analysis is
also a laboratory method but it can be used online coupled
with learning technique[4]. The problematic of the database
remains here the same. Researchers are currently developping
electrical and thermal models of the capacity evolution[5].
These models are crucial but it cannot be used in an embedded
system without a signal processing approach as the inputs are
biased and corrupted by different errors. The precision of these
cited methods is mostly confirmed, but here we focus also
on the robustness to outliers. The combination of a state -
observation equations aims to increase the average precision.
For that we generate a scatter plot of the variations of SOC
and current on a thin time grid. The robust estimation of
the slope gives us the capacity update. This estimation is
performed thanks to a random consensus integrated in the
Kalman filter. The state equation of the capacity evolution
does not use neither the SOC nor the current. This equation



can be minimalist, at least, we just want a global tendancy of
the capacity decrease. A pre-processing technique is necessary
to reduce the bias mostly caused by the current. Therefore, we
perform a bias reduction knowing the prediction of capacity.
Once this bias reduction is performed the entire consensus and
estimation are computed. At the end, the test hypothesis can be
processed in parallel and the new capacity is injected back in
the SOC estimator once the benefit of it is confirmed. We start
with some definitions and context descriptions. The algorithm
protocol is then presented. Finally, preliminary results are
summarized with their statistical data and visual plots.

II. PROBLEM STATEMENT

In the following, the (.) operator stands for the empirical
mean while µ is the mathematical expectation. The capacity
evolution is difficult to model because the underlying physical
phenomenons are dependent of a lot of correlated variables
linked together by non-linear functions. Furthermore, except
for very specific applications, the diversity of uses makes the
capacity estimation and prediction highly complex. In [6], A.
Barré gives a statistical analysis of the battery degradations.
The capacity depletion is dependent of the time related vari-
ables, battery SOC profile, battery temperature and ambient
temperature. As the variation of SOC for a given cycle is
a time dependent variable then this SOC variation is linked
to the capacity evolution. Indeed, the Coulomb counting is
defined by the following equation on the sampled data. We
denote the sampling period Te and Ith the true current, τ the
Coulomb efficiency, ŜOC the estimated SOC and Copt the
capacity that minimizes the observation error. These variables
are expressed in the international system of units except for the
capacity which is in A.h. The index i designs the ith statistical
realisation :

∆SOCki =

Ni∑
j=0

(SOCki+j+1 − SOCki+j) (1)

=

Ni∑
j=0

τ
TeI

th
ki+j

3600Copt(ki + j)
, ki +Ni < ki+1

We generate at instant l (l = l + 1 once ki = kM ) a set
Ψl of M samples Ski = (∆S̃OCki ,∆Iki) where ηIki+j

is
the additive current noise and it follows an uncentered and
non-stationary gaussian noise. It can be demonstrated using
a second order stationary condition on the capacity variations
that (1) leads to :

∆Iki =

Ni∑
j=0

τ
Te

3600
(Ithki+j + ηIki+j

)

≈ Copt(l)∆SOCki + τ
Te

3600

Ni∑
j=0

ηIki+j

= ∆Ithki + η∆Iki

The real SOC is unknown but we are considering here
that we have an estimation of it obtained as the output of
a recursive and stationary biased or unbiased estimator. The

indicator variable ξ(i)
k is set to 1 when the SOC variation is

aberrant (i.e. if follows the outlier process Θki ) and to 0 in
inlier case :

∆S̃OCki = (1− ξ(i)
k )∆ŜOCki + ξ

(i)
k Θki

The inlier variable ∆ŜOCki is gaussian and unbiased
distributed, and the density of ∆S̃OCki knowing ξ

(i)
k = 0

remains centered and tends towards gaussianity. We define
the inlier region in space (disjoint of the outlier one) by
the distance criteria d which incorporates the prediction of
capacity and the sample Ski :

Ski ∈ Ψin
l ⇔ d(Ski , Ĉl) < dMAX

i (Copt(l))

This distance can be the defined by the frontier of the
3σ region of the joint density of Ski or even by a maximal
distance criteria (innovation or orthogonal distance) relative to
the expected precision on the estimated capacity. This distance
is denoted dMAX

i and the inlier region is called Ψin
l .

A. Analysis of the bias term

The current measurement is biased and corrupted by an
additive and centered noise ηc∆Iki

and we define T as the
average cell temperature :

∆Iki = ∆Ithki +Ni µI,c︸︷︷︸
offset

+

Ni∑
j=0

k(Tki+j , I
th
ki+j)︸ ︷︷ ︸

proportional

Ithki+j + ηc∆Iki︸ ︷︷ ︸
noise

If only translation and rotation are caused by the offset terms
then we can define the y-intercept. The scatter shape will be
implicitely analyzed in the intercept reduction algorithm. This
intercept term is the time-dependent mean of the measurement
errors. Its theoretical definition is the statistical mean of ∆Iki
knowing the SOC variation is null :

bthl = E[∆Iki |∆SOCki = 0], ∀Copt,∀ki 6 kM

In other terms this intercept is the y-intercept of the affine
function which models the dependency between the SOC
variation and the charge of current. The delta of current is the
combination of the intercept bthl , rotational and noised terms
:

∆Iki = ∆Ithki + bthl +R(bthl , Ni)︸ ︷︷ ︸
rotation

+D(Ni, N i)︸ ︷︷ ︸
distorsion

+ηc∆Iki

The rotation component and distorsion terms are shown in
Figure.1 and we understand that these last terms (plus noise
variable) are, in mean sense, independent of the y-intercept
(bthl ). In other words, it means that the scatter is centered
around a line and this line can be the result of a translation
and rotation transforms.

As the observation equation has two degrees of freedom
composed of the intercept and the line slope which is the
capacity, then an unbiased y-intercept estimator must be in-
dependent of any capacity related variables if and only if the
distorsion term is zero mean and uniformly distributed.



Fig. 1. y-intercept and other terms

B. A state equation of the capacity evolution

The assumption is made here that there exists a state model
of the capacity evolution (as an example, obtained through
data processing of test campaign). This model can be non-
linear and is denoted f , we can thus combine the state and
the observation in the following state-space model where the
delay between l and l − 1 is at least

∑M
i=1NiTe:

Ski ∈ Ψl ;

{
Cl = f(Cl−1, Tl, . . . ) + wl [1 × 1]

∆I l = Cl∆S̃OCl + bthl + V l [M × 1]
(2)

Owing to [7] in III.B the objective function to be minimized
in the Kalman filter can also be writen as the sum of the two
respective Mahalanobis’ norms computed on state errors and
on the measurement errors. In (2) the measurement equation
is a linear and non-stationary regression form with errors in
the variables and outlier presence. Under these conditions the
Kalman update would be non-robust due to the leverage point
effect on the Mahalanobis norm of the measurement errors
caused by outlier presence which are non-modeled. Therefore,
the inliers and the outliers must be classified in order to only
make the update on the basis of the inlier set, i.e. classify the
data to define the state-space model (2) on Ski ∈ Ψin

l and
define its noise terms. The state noise is a gaussian, white
and centered process. Its variance is denoted E[w2

l ] = Ql.
This noise term wl is assumed independent with the state Cm
for m ≤ l, moreover the measurement noises are mutually
independent with the state. As a result, the inputs of f must be
independent of the noise terms contained in the SOC variation.
If we note

−→
V l the random vector of the measurement process

then this zero mean gaussian and identical distributed process
has the following correlation matrix E[VlV

T
l ] = Rk which is

not necessarily diagonal. Its components are :
−→
V

(i)
l = R(bthl , Ni) +Di(Ni, N i) + ηc∆Iki

−Clη∆SOCki
(3)

The conditional density function of
−→
V l knowing Ni is the

density of the sum of two independent and gaussian random
variables which is a gaussian random variable. It can be shown

that the distorsion term is relative to the standard empirical
deviation of Ni and the empirical mean of theoretical current
plus its constant offset. The distorsion Di is not necessarily
stationary here and is not always evenly distributed in the
space of statistical realisations.

III. METHODOLOGY

A. Creation of set Ψl

The time dynamics of the capacity evolution gives us the
minimal rate of estimation updates. Furthermore, increasing
the range of ∆SOC for a given M improves the precision
of the capacity estimation. But generating samples at high
∆SOC requires a long delay and thus decreases the estimation
rate. It can also be noticed that generating samples at very low
∆SOC makes the estimator faster but the signal-to-noise ratio
(SNR) is clearly reduced. A trade-off between the SNR and
the slowest time dynamic must be respected. We suppose that
the upper limit εC(l) (the error on capacity approximation)
is known and leads to an order of magnitude of the maximal
number of cycles between two capacity updates. Then, given
M , the sampling distribution of ∆Iki bounds can be tailored.

An intuitive distribution is the truncated gaussian density
function because its range is broad while concentrating the
values around a well-chosen mean. The global range may be
divided into M evenly distributed segments. If we refer to
the noise model proposed in the equation (3) then, if expert
knowledge on the current profiles exist, we can minimize both
the bias and the deviation terms due to Ni. The additional bias
term is not included in the y-intercept estimation and is relative
to the uneven distribution of Ni−N i while the deviation terms
have a higher amplitude as the standard deviation (if evenly
distributed) of Ni is high.

1) Mean of current predictible: In such a case we can
adequatly generate Ψl by reducing both the deviation and the
bias terms. If there exists a lot of current modes in the profile
operation of the battery, we may also suppress the rotational
bias.

2) Mean of current unpredictible: When no information
about the mean of the current is known (i.e. when the battery
application is kind of stochastic) then no prediction of the
best sampling technique of Ψl can be made. This situation
can be improved using specific algorithm techniques but this
problematics is not discussed in this paper.

B. Intercept reduction with Hough-transform

The proposed algorithm for intercept reduction is inspired
by the Adaptive Hough Transform described in [8]. The
Hough-Transform (HT) is a method that finds lines in a
noisy dataset and potentially corrupted with aberrant samples.
The core idea of this method is to express the cartesian
parameterization of an affine function in its parameters space.
A noisy line is a flatten peak in this dual space. Finding
the maxima of this peak gives an estimation of the intercept
bthl . Here, instead of seeking among the entire set of possible
solutions with a constant resolution, we recursively update,
center and scale this set and refine the resolution of search.



The centering and scaling are performed thanks to a connected
label components algorithm in order to work on the peak
region that contains the future global maxima. The space of
parameters must be initially large, but in our case we can use
the capacity prediction and its standard deviation to reduce
its size. The consistancy of the estimator is demonstrated
for unimodal and symmetrical inlier distribution in [9]. The
theroretical replacement breakpoint converges to 1/2 on the
sole condition that the resolution of the HT is well calibrated
and if an upper bound on the outlier ratio is known and largely
below 50% when M is a small value.

Here we use this algorithm to have an estimation of the
y-intercept. This algorithm is not sufficient for our capacity
estimation because the Hough-Transform is more a detector
than an estimator and thus the HT precision is not high enough
for the capacity estimation requirements, especially since the
HT is not a time adpative and recursive algorithm contrary to
the Kalman filter. However if the y-intercept term is highly
above the standard-deviation of the measurement noise then it
is necessary to “detect” it. The intercept obtained from the HT
method is unbiased, and provides a significant reduction of the
Kalman filter observation bias. The resolution and precision
values of the estimation are used to get a confidency interval.

At convergence, i.e. at sufficient resolution, the maxima
must be equal or up to (1−α)M×rin at α2−th 100-quantile of
the error variable where rin is the inlier ratio, M the number
of samples and α the risk level (α � 1). If this not the case
then the scatter should not be a line and the estimation must
be postponed.

C. Capacity estimation by one-point RANSAC and UKF

We insert the state model of capacity evolution in an
Unscented Kalman Filter (UKF) after having determined the y-
intercept to perform succesively the consensus and the capacity
update on the inlier set. The Unscented Kalman Filter was
proposed in the 2000s by Julier et al. in [10][11] and this
filter is an extension of the classical Kalman to non-linear
models. Contrary to the Extended Kalman filter, the Unscented
Kalman Filter works with points (called sigma points) around
the mean state to empirically estimate the mean and covariance
propagation through the non-linear functions. These mean and
covariance estimations are obtained using the scaled unscented
transform (UT). The ability of the UT to approximate the prop-
agation of the two first moments through a non-linear model
is actually better than the first-order derivative approximation
made in the EKF [12]. Moreover, for small state dimensions,
the UKF complexity is about the same than the EKF one.

The set of inliers is obtained from a consensus approach
called one-point RANSAC proposed by Civera et al. in the
case of visual odometry problematic [13]. This technique is
a derivative of the RANSAC algorithm (Random SAmple
Consensus) previously introduced in 1981 by Fischler and
Bolles [14], which is a powerful technique for regression
problem in presence of outlier observation samples. In our
case, estimating the capacity is equivalent to obtain the slope
of the linear and local relationships between the delta of

current and the variations of SOC. In other words, we have
to find the affine function that fits the best the samples of
Ψin
l . An affine function is entirely parametrized by its slope

and its y-intercept and thus, taking two samples is enough to
characterize it. RANSAC algorithm selects these two random
points and test (exhaustively or at a determined confidence
bound) each possible line. The line that fits the best the scatter
is then choosen. The one-point RANSAC realizes the same
procedure but, as the capacity prediction is known thanks
to the Kalman recursion, then selecting one point is enough
to draw the line and perform the consensus. Contrarily to
the RANSAC, the one-point RANSAC is recursive and the
theoretical number of hypotheses is largely smaller than the
one needed in RANSAC algorithm for a given confidence
bound of inliers detection. The procedure is intuitive and the
Figure.2 shows some of the one-point RANSAC iterations :

Fig. 2. one-point RANSAC procedure

It should be noticed that the knowledge of bl improves
the observation update resolution. It would have been less
precise to estimate the y-intercept with only one of the
hypothesis realisation. Estimating this intercept in a first part
is primordial. Once a sufficient set of inliers is found the “real”
update of Kalman filter over the entire set Ψin

l is performed
and the estimated capacity is then obtained.

D. Retroaction using a hypothesis test

Here the SOC estimator is a recursive filter that attempts to
minimize a given criteria, for example if the SOC estimator
is a Kalman-based one then the objective function that is
minimized is the mean-squared error of the estimated state
given all the previous and instantaneous observations. Offline
simulations can characterize the upper limit on capacity error
(above εC) up to which the SOC estimation is unbiased or
stationary biased. The case “stationary biased” is enough in
our case because it leads to a SOC variation unbiased. From
electrochemical considerations we can draw up a coarse but
sufficient maximal variation of theoretical capacity and con-
sequently we have an order of magnitude about the minimal
delay needed between two capacity retroactions in the SOC
estimator[7].

Of course, for a given capacity precision, the faster we
update the capacity the most adaptive will be the SOC
estimator. But this capacity must not be injected back too
frequently to avoid instabilities linked to models switching.
A classical scheme is to analyse the normalized innovation
squared terms. Under gaussian assumptions, these terms are
χ2-squared distributed and a hypothesis test can be performed



to decide whether the updated capacity feedback would be
efficient to improve the accuracy.

IV. RESULTS

Our algorithm has been validated on the DashLink dataset
provided by NASA in open access. They realized for this
dataset deep discharges at constant rate and at ambient temper-
ature on four different 18650 Li-Ion cells. The Open Circuit
Voltage (OCV) is not delivered with the dataset, thus we had
to perform an estimation of this using the impedance data
and the voltage measurements. It has to be noted that this
estimated OCV is not precise. Moreover the capacitance of
the first order Warburg impedance of the cells is also not
delivered and we estimated it at beginning of life of the
cell using an unique measure of the time constant of a step
response. The constant rate of current (constant mean) is the
most difficult case because, as we have seen in the previous
part, in such a configuration we cannot reduce the variance
and potential rotation bias around the theoretical line. At
time we do not dispose of an electrochemical model of the
capacity ageing relative to the temperature. Thus the state
model f is a coarse arithmetic depletion of capacity relative
to a feature image of the number of battery cycles, and this
model is averaged over the four cells of the NASA to keep
generalization and avoid learning dependency. All this to say
the presented results should be largely improved with more
detailed initial battery cell characterizations. The SOC cannot
be used as a feature because no dependency between state and
measurements is allowed. We have chosen as feature the sum
of squared temperatures accumulated between two capacity.
Such a choice makes sense using thermics considerations.
Indeed, the Joule loss can be linked to the integral of the heat
flow from the cell to external environement. This heat transfer
is proportional to the sum in discrete time of cell temperature
when the ambient temperature is constant. Therefore, as the
Joule loss is an image of electrical power exhanged, the
sum of temperature between two updates can define a cycle
related variable. It should be noticed that the use of squared
temperature is a way to deal with both negative and positive
temperatures. Absolute function could be used but its non
derivability at 0 may be problematic in the general case. So
the squared temperature is kept as a feature. We write below
the model of capacity depletion where c is a normalization
constant, T the average temperature of the cell, ω the slope
of our model and L the total number of samples :

Cl =Cl−1 − ωTe

∑L
j=1 T

2
j

c

This model is a first order approximation of capacity de-
pletion relative to an “average” of the squared temperatures.
Such a modeling is obviously biased and heavily unprecise.
In addition to that no calendar ageing is taken into account
in the capacity evolution here. In the future this model should
be improved. But for our first validation this is considered
sufficent, and it will shows the interest of combining a state
model and a Kalman updating stage. To propose a statistical

sensitive-study of our estimator we repeat 50 conditonally
independent realisations of the entire ageing set given the
load profiles (around 550 hours of real profile repeated in
simulation 50 times over the four cells) where the scatter Ψ
is a new one at each temporal and statistical realisation. Even
if the current profiles are always the same along the ageing,
repeating the same profile with a different scatter at each step
performs a sensitivity analysis.

TABLE I
STATISTICS OF THE PROPOSED CAPACITY ESTIMATOR

Cell’s reference B0005 B0006 B0007 B0018

µ(Ĉ − C) A.h 0.01 0.056 -0.0070 0.020

σ(Ĉ − C) A.h 0.0068 0.014 0.0075 0.0085

µ[ Ĉ−C
C

] % 0.72 3.8 -0.086 1.4

RMS(Ĉ − C) A.h 0.032 0.066 0.029 0.039

RMS[ Ĉ−C
C

] % 2.0 4.5 1.7 2.7

P [µ(Ĉ − C) ≤ 3σ] % 99.2 99.3 99.1 99.1

On Figures. 3-4, have been plotted two results of battery cell
capacity estimation over time. The true cell capacity evolution
is plotted in circle blue, whereas the estimated capacity is
plotted in red solid line (in yellow and purple the 3σ bounds).
The cyan blue solid line represents the capacity pure prediction
using only the capacity evolution model.

Fig. 3. statistical results on the B0007 cell

We first observe that the pure prediction of capacities (open-
loop, with out the Kalman filter update) can be highly biased
in long-term. This can be viewed for the cell B0018 in
Figure.4. And this example confirms the need for this Kalman
filter correction and its recursive scheme. In the case of
B0007 cell results are less demonstrative because the predicted
capacities obtained in open-loop is fortunately good. Even if
the state equation is long-term biased, the estimated capacity
follows the reference trajectory. Moreover we can observe the
algorithm ability to converge rapidly towards abrupt capacity



Fig. 4. statistical results on the B0018 cell

change. These two examples (repeated 50 times along the
entire ageing cycles) represent statistical confirmations of the
adaptability and the high level of accuracy obtained with our
algorithm. As it was explained in the introduction the other
great advantage of the proposed method is its robustness.
Indeed all these tests and its results exhibit this robustness
: the probability that the centered error is below 3σ is better
than 99%. The histograms are not shown in this paper but the
estimator distributions are quite symmetrical and their kurtosis
is near the one of gaussian distribution.

V. CONCLUSIONS

The capacity estimator proposed in this paper was developed
in order to improve both the robustness and the precision
of the estimation during all the life cycle of an electrical
battery. The robustness criteria is the most important because
the capacity estimation is used in adjacent algorithms of the
battery management system, and we know that outliers can
corrupt the input data. The combination of bias reduction and
outlier rejection method makes the algorithm robust. Moreover
the virtuous insertion of these preprocessing algorithms in
a Kalman framework make the global algorithm robust and
adaptive. The obtained results are a statistical confirmation
of this robustness and precision. Most of the RMS of the
relative errors are below 3%. Future works should develop the
mathematical concepts and study the algorithm complexity.
Improving the data precision and working with more precise
models of capacity evolution (get from the electrochemical
works as an example) should also highly improve the perfor-
mance of this algorithm.

ACKNOWLEGMENT

We thank NASA and Dawn McIntosh, contributor of the
online collaborative platform DashLink, for providing this
essential data set.

REFERENCES

[1] J. Labbe and G. Daw, “Panorama 2011 du marché du Lithium,” BRGM,
Rapport public RP-61340-FR, Jul. 2011.

[2] G. L. Plett, “Recursive approximate weighted total least squares estima-
tion of battery cell total capacity,” Journal of Power Sources, vol. 196,
no. 4, pp. 2319–2331, Feb. 2011.

[3] A. A. Hussein, “Capacity Fade Estimation in Electric Vehicle Li-Ion
Batteries Using Artificial Neural Networks,” IEEE Transactions on
Industry Applications, vol. 51, no. 3, pp. 2321–2330, May 2015.

[4] C. Weng, Y. Cui, J. Sun, and H. Peng, “On-board state of health
monitoring of lithium-ion batteries using incremental capacity analysis
with support vector regression,” Journal of Power Sources, vol. 235, pp.
36–44, Aug. 2013.

[5] M. Ecker, J. B. Gerschler, J. Vogel, S. Käbitz, F. Hust, P. Dechent, and
D. U. Sauer, “Development of a lifetime prediction model for lithium-
ion batteries based on extended accelerated aging test data,” Journal of
Power Sources, vol. 215, pp. 248–257, Oct. 2012.

[6] A. Barré, F. Suard, M. Gérard, M. Montaru, and D. Riu, “Statistical
analysis for understanding and predicting battery degradations in real-
life electric vehicle use,” Journal of Power Sources, vol. 245, pp. 846–
856, Jan. 2014.

[7] Z. Chen, Bayesian Filtering: From Kalman Filters to Particle Filters,
and Beyond. Communications Research Laboratory, McMaster Uni-
versity, Hamilton, Ontario, Canada: Natural Sciences and Engineering
Research Council of Canada, 2003.

[8] J. Illingworth and J. Kittler, “The Adaptive Hough Transform,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-
9, no. 5, pp. 690–698, Sep. 1987.

[9] A. Goldenshluger and A. Zeevi, “The Hough transform estimator,” The
Annals of Statistics, vol. 32, no. 5, pp. 1908–1932, Oct. 2004, arXiv:
math/0503668.

[10] S. J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte, “A new approach
for filtering nonlinear systems,” in Proceedings of 1995 American
Control Conference - ACC’95, vol. 3, Jun. 1995, pp. 1628–1632 vol.3.

[11] E. Wan and R. Van Der Merwe, “The unscented Kalman filter for non-
linear estimation,” in Proceedings of the IEEE 2000 Adaptive Systems
for Signal Processing, Communications, and Control Symposium (Cat.
No.00EX373). Lake Louise, Alta., Canada: IEEE, 2000, pp. 153–158.

[12] J. K. Uhlmann, “Dynamic Map Building and Localization_new Theo-
retical Foundations,” Ph.D. dissertation, Oxford, Oxford, England.

[13] J. Civera, O. G. Grasa, A. J. Davison, and J. M. M. Montiel, “1-
Point RANSAC for extended Kalman filtering: Application to real-time
structure from motion and visual odometry,” Journal of Field Robotics,
vol. 27, no. 5, pp. 609–631, May 2010.

[14] M. A. Fischler and R. C. Bolles, “Random Sample Consensus : a
paradigm for model fitting with applications to image analysis and
automated cartography,” Graphics and Image Processing, vol. 24, no. 6,
1981.


	I Introduction
	II Problem statement
	II-A Analysis of the bias term
	II-B A state equation of the capacity evolution

	III Methodology
	III-A Creation of set l
	III-A1 Mean of current predictible
	III-A2 Mean of current unpredictible

	III-B Intercept reduction with Hough-transform
	III-C Capacity estimation by one-point RANSAC and UKF
	III-D Retroaction using a hypothesis test

	IV Results
	V Conclusions
	References

