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Abstract— Predictive maintenance for power electronic converters 

has emerged as a critical area of research and development. With 

the rapid advancements in deep learning techniques, new 

possibilities have emerged for enhancing the performance and 

reliability of power converters. However, addressing challenges 

related to data resources, physical consistency, and 

generalizability has become crucial in achieving optimal strategies. 

This comprehensive review article presents an insightful overview 

of the recent advancements in the field of predictive maintenance 

for power converters. It explores three paradigms: model-based 

approaches, data-driven techniques, and the emerging concept of 

physics-informed machine learning (PIML). By leveraging the 

integration of physical knowledge into machine learning 

architectures, PIML holds great promise for overcoming the 

aforementioned concerns. Drawing upon the current state-of-art, 

this review identifies common trends, practical challenges, and 

significant research opportunities in the domain of predictive 

maintenance for power converters. The analysis covers a broad 

spectrum of approaches used for parameter identification, feature 

engineering, fault detection, and remaining useful life estimation 

(RUL). This article not only provides a comprehensive survey of 

recent methodologies but also highlights future trends, serving as 

a resource for researchers and practitioners involved in the 

development of predictive maintenance strategies for power 

converters. 

Index Terms—Physics-informed machine learning, predictive 

maintenance, Power converters, anomaly detection, condition 

monitoring, fault analysis, remaining useful life, AI, digital twin, 

power electronics 

NOMENCLATURE 

AC Alternating Current 

AI Artificial Intelligence 

ANN Artificial Neural Network 

BPNN Back Propagation Neural Network  

CAM Channel Attention Module 

CNN Convolutional Neural Network 

CS Compressed sensing  

DC Direct current 

DNN Deep Neural Network 

DT Decision Tree 

DWT Discrete Wavelet Transform  

ESD  Electrostatic Discharge 

ESR Equivalent Series Resistance 

FEM Finite Element Modeling 

FNN Feedforward Neural Network 

GaN Gallium nitride 

GAN Generative Adversarial Networks 

GMM Gaussian Mixture Model 

GP Genetic Programming 

GPR Gaussian Process Regression 

IGBT Insulated-Gate Bipolar Transistor 

kNN k-Nearest Neighbors 

LSTM Long-Short Term Memory 

MD Mahalanobis Distance 

ML Machine Learning 

MLCC Multilayer Ceramic Capacitor 

MLE Maximum Likelihood Estimator 

MOSFET 

Metal-Oxide-Semiconductor Field-Effect 

Transistor  

NN Neural Network 

ODE Ordinary Differential Equation 

PAF Physical Activation Function 

PCA  Principal Component Analysis 

PCB Printed circuit board 

PDE Partial Differential Equation 

PIML Physics-Informed Machine Learning 

PINN Physics-Informed Neural Network 

PSO Particle Swarm Optimization 

ReLU Rectified Linear Unit  

RF Random Forest 

RNN Recurrent Neural Network 

RUL Remaining Useful Life 

RVM Relevance Vector Machine 

Si Silicon 

SiC Silicon Carbide 

SOM Self-Organizing map 

SVM Support Vector Machines 

 



I. INTRODUCTION  

From electric vehicles to renewable energy systems, power 

converters serve as a vital element of numerous electronic 

systems, and their significance is paramount in diverse fields 

such as electric mobility, renewable energy generation, data 

centers, and smart grid systems. 

The ever-increasing demand for efficient and reliable power 

converters in various industrial applications has led to a surge 

of interest in predictive maintenance techniques. As power 

converters play a vital role in transforming electrical energy 

from one form to another, their failure can have significant 

consequences, including production downtime, financial losses, 

and even safety hazards. 

Despite the elaborate consideration of reliability 

characteristics in design and control [1], power converter 

systems face various risks due to complex and severe working 

conditions. Therefore, ensuring the reliability and safety of 

power electronic converters is crucial for field applications, 

especially in safety-critical settings. To this end, preventive 

activities such as condition monitoring, anomaly detection, 

fault diagnosis, and remaining useful life (RUL) prediction can 

effectively ensure that the intended functions are performed 

reliably and accurately over the operational lifetime of the 

system. This monitoring of the state of assets also means that 

components can be replaced at precisely the right moment, 

neither too early nor too late, reducing wasteful resource 

expenditure caused by excessive maintenance resources or 

underutilization, not only to optimize costs but also to lower the 

related carbon footprint. 

Predictive maintenance can be achieved using a combination 

of model-based and data-driven approaches. Model-based 

approaches provide insights into the degradation mechanisms 

of power converter components relying on the physics-of-

failure and can be used to simulate the behavior of the system 

under different operating conditions. However, physical models 

can be complex and computationally expensive, often rely on 

assumptions, and may not capture all the degradation 

mechanisms. 

Observational data emerges as a promising avenue to 

complement physical models. With the potential for over a 

trillion sensors [2], an abundance of multi-fidelity observations 

was meant to play a pivotal role in bridging the gap between 

physics-based models and empirical reality. But, despite the 

abundance, speed, and variety of available data streams, 

integrating such multi-fidelity data into existing physical 

models remained challenging in many real-world cases [3]. 

This is where machine learning has become widely 

recognized as a powerful tool for solving complex problems 

thanks to its ability to process and extract valuable correlations 

from the massive amounts of data. However, machine learning 

approaches, although more effective in a supervised mode, 

often face a significant challenge due to the scarcity of labeled 

data, limiting their practical applicability and hindering their 

performance in real-world scenarios. Additionally, traditional 

machine learning approaches are ill-equipped to extract 

interpretable insights and knowledge from this abundance of 

data [4] and often lack the incorporation of physical constraints 

and laws, leading to less accurate and reliable predictions. 

Physics-informed machine learning (PIML) addresses this 

issue by incorporating prior physical knowledge into the 

learning process. Although recently introduced, this new 

paradigm has been investigated and explored in a number of 

fields, including fluid mechanics [5], chemistry [6], geology 

[7], power systems , and several review papers have explored 

different aspects of PIML in various domains. For example, 

Karniadakis [3] highlighted key trends in embedding physics 

into machine learning, addressing capabilities and limitations, 

and showcasing PIML applications. Von Rueden [10] 

introduced a taxonomy and classification framework based on 

knowledge integration into the ML pipeline. Rai and Sahu [11] 

reviewed methods fusing physics-based and ML models in 

cyber-physical systems, introducing metrics for hybrid model 

evaluation. The review by Sansana [12] explored hybrid 

modeling techniques, emphasizing data-driven and white-box 

models in chemical and biochemical applications. Willard [13] 

discussed the integration of traditional physics-based modeling 

approaches with machine learning to improve engineering and 

environmental system modeling. Meng et al. [14] surveyed 

PIML in simulation models and surrogate modeling, 

emphasizing physics knowledge and integration methods. 

Bradley et al. [15] highlighted the advantages of combining 

first-principles and data-driven methods, assessing hybrid 

modeling, PIML, and model calibration. Huang et Wang [8] 

delved into Physics-Informed Neural Networks (PINNs) in 

power systems, covering paradigms like state estimation, 

anomaly detection, and power flow calculation. Xu et al. [16] 

reviewed PIML methods in reliability and system safety 

applications, focusing on knowledge aggregation and 

integration methods. Rizvi et al. [17] presented a state-of-the-

art review of PIML applications in Structural Health 

Monitoring, addressing challenges related to noisy datasets, 

dimension reduction, and enhanced structural reliability.  

As for the predictive maintenance of power converters, 

burgeoning studies have taken place with surely more potential 

to explore, as it is now to expect a reduction in the learning 

burden for the algorithm. This stems from the fact that the 

introduction of prior knowledge already accounts for certain 

behaviors and helps constrain the search space, thereby 

reducing the reliance on large amounts of data. This also allows 

for better generalization of the solution because the physical 

equations describing the underlying physical phenomena are 

based on generalizable knowledge. 

This review article aims to provide an overview of the current 

state of the art in predictive maintenance of power converters. 

The article will cover various aspects of predictive 

maintenance, including the degradation mechanisms of power 

converter components, model-based approaches, data-driven 

approaches, and the process of condition monitoring, parameter 

identification, feature extraction, failure detection and 

diagnosis, introducing some of the recent and novel techniques 

in the field. The article will provide valuable insights into the 

current research trends and future directions in this field and 

will help researchers and practitioners develop effective 

predictive maintenance strategies for power converters. The 



remainder of this review is organized as follows. Section II 

introduces the degradation mechanisms of the main 

components of power converters. Section III discusses the 

model-based approach used in predictive maintenance, while 

Section IV focuses on data-driven solutions for condition 

monitoring, fault diagnosis, and RUL estimation. Section V 

exhibits the PIML paradigm and presents cutting-edge 

development for predictive maintenance. Section VI presents 

the concluding remarks. 

II. DEGRADATION MECHANISMS 

Power converters are vital components in many electrical 

systems, and they come in all kinds of topologies to cater to 

different needs and applications, whether they be inverters, 

rectifiers, DC-DC converters, or others [18], [19]. These 

converters are composed of both passive and active power 

devices, some of which are more susceptible to failure than 

others [20], [21]. The literature indicates that capacitors and 

semiconductors, are among the most critical components in the 

event of failure. Additionally, PCBs (Printed Circuit Boards) 

have also been identified as key components that can 

significantly impact system performance and reliability [22] 

(Fig. 1 (a)), as they are subject to various operational and 

environmental stresses that can lead to degradation and failure 

in a composite manner [23]. Temperature, vibration, and 

humidity are among the factors that significantly influence the 

performance and lifespan of electronic components, with 

temperature alone accounting for around 55% of causes [23], 

[24] (Fig. 1 (b)). By understanding the underlying physics of 

degradation, one can discern the key features of the degradation 

mechanism and how it affects the main components of modern 

power converters [25]. This section focuses on the main 

degradation mechanisms, their combinations, and their impact 

on power converter components.  

 
 

Fig. 1. Failures impacts (a) and associated causes (b) in power 

electronic systems 

A. Power semiconductors 

Semiconductor devices play a crucial role in power 

converters. In the form of switches, rectifiers, overvoltage 

regulators, they control the electrical energy as required by the 

power conversion process. There are several types of power 

semiconductors that are used in power converters, including 

diodes, thyristors, MOSFETs, and IGBTs, each selected based 

on factors like voltage and current ratings, frequency range, and 

controllability. 

Power semiconductors fall into three categories: non-

controllable switches, semi-controllable switches, and fully 

controllable switches. Non-controllable switches, exemplified 

by power diodes, operate solely based on circuit conditions. 

Semi-controllable switches, on the other hand, can be externally 

controlled but lack modulation in the on-state current. Fully 

controllable switches, such as MOSFETs, BJTs, and IGBTs, 

enable precise control over switching and output parameters, 

both activated and turned off [20], [21]. 

Semiconductor devices are susceptible to failures due to 

various environmental stresses like high temperatures, 

humidity, high voltages, and current loads, either from inherent 

factors within the die structure or external package-related 

issues [23], [26], [27], [28], [29], [30]. Thermal-induced failure, 

notably thermal runaway, stands out as a common and 

challenging issue to predict. Thermal runaway arises when a 

device's temperature increases, subsequently elevating its 

electrical resistance, causing more current to flow, and 

ultimately culminating in device failure [23], [26], [27], [30].  

Furthermore, short circuits emerge as another prevalent source 

of failure, capable of affecting neighboring switching devices 

[31]. Short circuits may result from sudden or gradual 

degradation processes [32]. In the context of GaN-based 

semiconductors, short-circuit failures can materialize within 

sub-μs under different failure modes [33], [34]. SiC-based 

semiconductors, while having higher temperature resistance 

than their Si counterparts, are more susceptible to short circuit 

failures due to their lower reverse breakdown voltage [35], [36]. 

These devices are also vulnerable in the gate-source structure 

[37], [38], [39]. 

Moreover, Electrostatic discharge (ESD) is a common cause 

of failure for power electronics systems, accounting for 17% of 

field return failure causes [40]. This risk is especially pertinent 

in high-voltage environments, where the rapid flow of charge 

leads to high currents and voltages between system 

components. ESD-induced damage manifests through thermal 

failure, junction damage, and gate oxide breakdown [45]. 

Bipolar transistors, MOSFETs, and diodes can all succumb to 

ESD events, characterized by high currents causing leakage or 

shorting of junctions [41], [42], [43]. These failures are often 

linked to gate oxide breakdown and junction thermal failure at 

high electric fields [44]. 

Additionally, humidity and moisture can contribute to 

semiconductor failures, especially in high-temperature 

environments. Moisture infiltration through non-conductive 



packaging materials can lead to deformations, affecting the 

device's reliability. Thermal load also plays a role in packaging 

failures at different critical sites, among which baseplate solder 

joints, chip solder joints, and wire bonds [31], [45], [46], [47]. 

Packaging-level failures can range from open circuit hard 

failures to bond wire attach failures [48]. 

The diverse range of semiconductor materials, such as Si, 

GaN, and SiC, introduces various failure mechanisms 

associated with thermal stress, short circuits, and ESD [45], 

[46], [49], [50], [51], [52], [53]. These failures can affect 

components at both the device and packaging levels. 

B. Capacitors 

In the domain of power electronics, capacitors play a crucial 

role in a range of applications, such as energy storage, ripple 

voltage filtering, and power factor correction, to name a few 

[54]. The working principle of aligning dipoles inside a 

dielectric allows them to store energy in an electric field. An 

ideal capacitor stores energy with no resistance, but real 

capacitors have non-idealities (Fig. 3), including resistances 

ESR (Equivalent Series Resistance) and 𝑅𝑙𝑒𝑎𝑘𝑎𝑔𝑒 , spurious 

capacitances, and inductances ESL (Equivalent Series 

Inductance) [55], [56]. 

 

Fig. 3. Common equivalent capacitor model of a real capacitor 

(other models with various accuracy to be found in [57], [58]) 

Power converters utilize different capacitor types, primarily 

electrolytic, film, and ceramic capacitors [59] (Fig. 4). Each 

type has distinct topologies and underlying principles, requiring 

a grasp of their fundamental traits, especially regarding 

potential issues and failures. 
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Fig. 2. Main failure causes, mechanisms and modes in power 

semiconductors 



 

Fig. 4. Common capacitors used in power electronic 

converters 

Capacitors are influenced by stress factors such as 

temperature, voltage, ripple current, charge-discharge, and 

humidity. Monitoring the degradation and assessing the health 

of capacitors require the measurement of parameters such as 

capacitance, ESR, dissipation factor, and insulation resistance. 

Consequently, researchers have dedicated significant efforts to 

developing data-driven and statistical models to effectively 

evaluate the state of capacitors, estimate their reliability, and 

predict their RUL [60].  

With acknowledging the importance of capacitors in power 

electronics systems and the challenges in predicting their 

failures, extensive research has been conducted to understand 

failure mechanisms, develop methods for lifetime prediction, 

and enhance reliability design and condition monitoring [61]. 

However, current methods have limitations in reflecting 

changes in capacitor state during service and predicting sudden 

failures.  

1) Electrolytic capacitors 

Electrolytic capacitors are used for electrical energy storage 

and are renowned for voltage ripple smoothing. They are made 

of a solid or non-solid electrolyte layer that serves as the 

cathode and an anode foil that has a thin oxide layer and acts as 

a dielectric [62], [63] (Fig. 5). They are cost-effective and offer 

high capacitance, but are susceptible to wear-out and 

catastrophic failures due to electrical and thermal stress [60]. 

 

Fig. 5. Topology of an aluminum electrolytic capacitor  

Industry standards define an electrolytic capacitor's end-of-life 

as a 10% capacitance loss and a 250% increase in ESR under 

thermal stress or a 20% decrease in capacitance rating and a 

280-300% ESR increase due to electrical stress [60], [64], [65].  

Thermal overstress can lead to electrolyte loss through 

evaporation, accelerated by high temperatures and ripple 

currents [60], [66], [67], leading to capacitance loss and ESR 

increase. Dielectric imperfections generate leakage currents 

during charging, causing evaporation pressure and speeding 

wear-out. Pulsed charges and overvoltage further contribute to 

performance decline [68], [69]. 

In solid electrolytes, thermal overstress can degrade the 

conductive polymer or create defects, affecting conductivity 

[70], [71]. Electrical overstress can cause dielectric breakdown, 

resulting in a short circuit or ignition, particularly in solid MnO2 

tantalum and niobium capacitors [62], [72].  

Loss of electrolyte is the main cause of degradation in 

electrolytic capacitors, and thermal stress is a contributing 

factor [68]. Factors like ripple current, voltage, and vibration 

also affect their lifespan. Interested readers can refer to [73] for 

a comprehensive review of electrolytic capacitor failure modes 

and related causes. 

2) Metallized film capacitors 

Metallized film capacitors feature a metallic coating on 

polymer dielectric films [74], with electrodes typically made of 

aluminum and zinc in pure or alloyed forms [60] (Fig. 6). 

Common dielectric materials include polypropylene (PP) and 

polyethylene terephthalate (PET) [75].  
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Fig. 6. Topology of a layered metallized film capacitor 

PET has a higher capacitance and higher operating 

temperature compared to PP, which is in turn preferred for high 

voltage applications and moisture resistance [76]. However, 

thermal aging causes the deterioration of PP electrodes and thus 

increases the loss factor [77]. 

Metallized film capacitors are notable for self-healing, 

leveraging inherent dielectric defects [60], [78]. It consists of 

localized heating causing the metallization layer to evaporate 

and isolate the defect region, preventing short circuits [78], 

[79]. This leads to incremental soft failures that, when 

accumulated, ultimately result in catastrophic failure. 

Self-healing is significantly influenced by voltage level, 

interfacial pressure, and metallization resistance [76], [78]. 

Specifically, increased voltage level is accountable for 

capacitance loss and ESR increase [80]. It can also extend the 

healing time, leading to catastrophic failures.  

High operating power levels raise the dielectric temperature, 

particularly for polymers with low phase transition 

temperatures, causing thermomechanical and volumetric 

changes [60], [75]. Additionally, increased temperature 

decreases the voltage breakdown of capacitors, especially the 

PP-based ones, making catastrophic failures more likely.  

Pulsed power applications further introduce stresses, 

combining degradation mechanisms and elevating failure risks  

[81], [82]. Peak and AC voltages, thermal aging, and humidity 

are prominent stressors. Humid environments can result in 

corrosion, disrupting current distribution, causing localized 

heating, and ultimately leading to failure [60], [75]. For readers 

seeking a synthetic description of failure causes, modes and 

effects of metallized film capacitors, we recommend consulting 

the reference in [76]. 

3) Ceramic capacitors 

Ceramic capacitors are the most commonly used capacitors in 

modern power electronics. They are used in resonant circuits 

and filters and are also used extensively in high-temperature 

and high-frequency applications [83]. Driven by increasing 

demand from the automotive industry due to the development 

of electric vehicles, as well as the increasing adoption of 5G 

technology in the telecommunications sector, the utilization of 

ceramic capacitors has witnessed significant advancements 

[84].  

Ceramic capacitors are known in the form of multilayer 

ceramic capacitors (MLCCs) which are the most commonly 

used type of ceramic capacitor (Fig. 7), characterized by high 

capacitance and compactness, and are widely used in modern 

day electronics [85], [86]. MLCCs consist of a series of ceramic 

layers interleaved with metallic electrodes. 

 

Fig. 7. Topology of a multilayer ceramic capacitor 

Ceramic dielectrics in capacitors fall into three classes; 

Classes I and II are prominent. Class I dielectrics, composed of 

paraelectric materials [83], [87], offer stability under various 

conditions making them suitable for resonant circuits. Industry-

specific codes like C0G (NP0) and P2G apply. In contrast, Class 

II dielectrics, using ferroelectric ceramics [88], are common in 

power electronics, known by codes like X7R and X5R. 

As for the metallic electrodes, they were primarily made of 

precious metals like silver and palladium alloys, ideal for 

sensitive applications [89], [90]. To reduce costs, base metal 

electrodes (BME), typically nickel (Ni), became standard. 

However, BME manufacturing introduced oxygen vacancies in 

ceramic layers, causing parametric reliability concerns [90], 

[91]. These vacancies boost conductivity, lowering insulation 

resistance (IR), and leading to operational failures. 

Further, under high voltage stress, oxygen vacancies act as 

electron traps, giving rise to positively charged electron holes 

[90], [92]. This phenomenon sets off chain reactions leading to 

catastrophic breakdown that may result in issues like ceramic 

melting, short formation, or mechanical delamination and 

cracking [59]. 

MLCCs are vulnerable to humid environments, particularly 

for the widely used class II BaTiO3-based dielectrics [92], [93]. 

The presence of moisture initiates electrolysis, generating 

protons that increase leakage current and reduce capacitance 

[94]. MLCCs are also vulnerable to ESD, leading to permanent 

parameter shifts like capacitance and insulation resistance [95]. 

C. Printed circuit board (PCB): 

PCBs serve as foundational mounting components in modern 

electronic devices. They come in various forms, differing in 

layer count, electrical connections, and cooling systems [96]. 

PCBs are typically made of a non-conductive material, such as 

fiberglass-reinforced epoxy, with conductive traces for circuit 

connections. The specifics of the materials are usually a trade-

off between the desired performance and the manufacturing 

process [97]. PCBs used in power electronic converters can be 



susceptible to various degradation mechanisms, including 

mechanical failure due to vibration, thermal cycling, and 

environmental stressors [98], [99].  

Due to different material choices with different coefficients of 

thermal expansion, thermomechanical strain appears, which 

can cause solder joint failures and delamination of the PCB 

layers [100], [101]. Further, vibration and thermal cycling cause 

oxidation, fretting corrosion, and contact force decrease on the 

connector side, leading to power loss of the converter [102], 

[103]. 

ESD and moisture ingress are additional PCB degradation 

factors. ESD results from electrical charge accumulation, 

potentially damaging components [104], [105], [106]. Moisture 

can infiltrate PCBs, accelerating degradation by causing 

delamination and affecting switching frequency [107], [108]. 

Understanding these PCB degradation mechanisms is the 

foundation for implementing predictive maintenance strategies 

to ensure the reliability and extend the lifetime of the board 

[109]. 

III. ANALYTICAL MODELING 

The quest for predictive maintenance in power converters has 

led to the development of various modeling approaches for 

degradation assessment and failure prediction. These 

approaches aim to provide valuable insights into the health and 

performance of power components. While the primary focus is 

predictive maintenance, it is essential to recognize that the 

journey towards accurate predictions has evolved through 

different stages. 

A. Empirical and semi-empirical modeling 

Empirical modeling was an initial step towards estimating the 

degradation and failure of power converters. Early approaches, 

such as MIL-HDBK-217F, FIDES, and Telcordia, mainly used 

data-driven models based on statistical curve fitting of historical 

failure data [110], [111]. These handbooks were originally 

developed for the defense and telecommunications sectors, 

where they captured the influence of various stressors on 

component failure rates. For instance, a capacitor's failure rate 

was expressed as a product of temperature stress (𝜋𝑇), voltage 

stress (𝜋𝑉), environmental stress (𝜋𝐸), quality factor (𝜋𝑄), and 

capacitance factor (𝜋𝐶) as in (1): 

 𝜆𝑐𝑎𝑝 = 𝜆𝑏𝜋𝑇𝜋𝑉𝜋𝐸𝜋𝑄𝜋𝐶  (1) 

As these models were developed, they did not always consider 

the specific requirements of power components, let alone power 

systems. As technology evolved, it became evident that a more 

adaptable and comprehensive approach was needed. This led to 

the emergence of semi-empirical modeling, which blends 

empirical data with a basic understanding of the physical 

mechanisms underlying failures. 

The most widely known model is surely the Coffin-Mason 

model, which describes the number of cycles to failure 𝑁𝑓 of an 

IGBT as inversely proportional to the junction temperature 

fluctuation Δ𝑇𝑗: 

 𝑁𝑓 = 𝐴 × (Δ𝑇𝑗)
−𝛼

 (2) 

where 𝐴 and 𝛼 are curve fitting parameters [112]. A further 

detailed empirical model accounts for bond wire lift-off and 

baseplate solder fatigue, as given by [111], [112], [113], 

[114].For capacitors, lifetime estimation   depends on various 

factors including temperature, current, voltage, frequency, and 

environmental conditions [68]. Similarly, a Coffin-Manson 

equation is utilized as a lifetime model for PCBs in a drop test 

setting [115]. Thermal cycling and vibration modeling lifetime 

models are also given in [101].While semi-empirical models are 

useful for making detailed predictions about specific 

component performance, they may fall short by lacking the 

inherent physical structure of power devices and the underlying 

failure mechanisms. In contrast, model-based approaches have 

gained popularity by utilizing mathematical models that 

simulate the underlying physics and mechanics of a system 

(Fig. 8). By incorporating more detailed information, these 

approaches offer more accurate predictions of system 

performance under varying operating conditions.  

 

Fig. 8. Analytical modeling for lifetime assessment of power 

converters 

B. Physics-based modeling 

Utilizing the physics-of-failure approach and advancements in 

computational methods, physics-based modeling offers an 

alternative to empirical models. Unlike empirical models, 

physics-of-failure models require a thorough understanding of 

the failure mechanisms of power devices, enabling the 

modeling of stresses within power module assemblies. 

Statistical techniques, such as Wiener process [116], Poisson 

process [117], Markov chains [118], and Kalman filtering, are 

then applied to directly link this information to reliability, 

allowing for more accurate and detailed predictions of 

performance and failure. These techniques are also leveraged 
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by the development of white-box dynamic identification 

methods for different power converter topologies [119], [120]. 

For example, a reliability model for metallized film capacitors 

has been developed in [121] based on degradation mechanisms. 

The model considers two capacitance loss dynamics - a gradual 

continuous one induced by dielectric film aging and a discrete 

loss due to random self-healing under temperature and voltage 

stresses. The aging process of the dielectric film is characterized 

using the Wiener process, where the aging rate is temperature-

dependent. The random self-healing events are captured 

through a Poisson process, where the rate parameter of the 

process is related to the operating voltage and the dielectric film 

aging rate.  

In another study [122], a model-driven method combines both 

theoretical models and optimization techniques to estimate the 

state of health and predict the RUL of electrolytic capacitors 

using both the unscented Kalman filter and particle filter 

frameworks for tracking degradation and improving prediction 

accuracy. 

Numerical simulation methods like finite element analysis and 

finite volume analysis are developed to model the electrical and 

thermal properties of power components and the influence of 

neighboring components on their thermal degradation [57], 

[123], [124], or to model temperature distribution and evaluate 

critical temperature fields for PCBs [125], [126]. 

The study in [127] employs a model-based approach for 

forecasting the RUL of a DC-DC converter, which uses interval 

model-based prognostic techniques based on polytopes and 

particularly zonotopes with Extended Kalman Filter. Zonotopes 

are geometrical objects [128] used, in this context, to represent 

parameter uncertainty over time and define trusted regions of 

parameter space.  

In [129], a comprehensive lifetime evaluation of three-level 

inverters is conducted. This evaluation considers factors like 

dc-link voltage stress, switching frequencies, and mission 

profiles. It begins by modeling component lifetimes using 

Weibull distributions and then conducts system-level reliability 

assessment using reliability block diagrams and Monte Carlo 

simulations.  

IV. DATA-DRIVEN MODELS 

While physics-based models are often used to describe system 

behavior theoretically, they can be limited in scope due to their 

inability to account for unknown noises, nonlinearities, and 

unseen dynamics that often arise as lumped modeling errors. 

These models may fail at accurately describing real-world 

observations, leading to significant discrepancies between their 

predictions and actual measurements [130]. This is particularly 

critical in power converter maintenance, where accurate and 

reliable predictions are vital.  

To this end, data-based methods have gained popularity in 

recent years, leveraging large amounts of data from sensors and 

other sources to predict equipment failures and schedule 

maintenance before an outage occurs [131]. The quality of the 

collected data is crucial to the accuracy and reliability of the 

predictive maintenance workflow that is presented in Fig. 9. 

The data collection phase includes information from installed 

sensors and off-board sources like historical records, fleet-wide 

data, or even data obtained from virtual sensors. Once the data 

is collected, it undergoes some preprocessing, such as cleaning 

and normalizing, to ensure its quality and suitability for 

analysis. 

The processed data then feeds into the predictive maintenance 

model at the core of the framework, which operates in a cyclical 

manner and is detailed in the following subsections. When the 

model requires refinement or improvement, the data collected 

from the sensors and off-board sources is used to update and 

train the model, creating a continuous loop of learning and 

enhancement. Once the model has reached a satisfactory state, 

it transitions into the inference block, which assesses if 

maintenance is needed based on analysis results. Interventions, 

if deemed necessary, may involve adjusting power converter 

operating parameters to extend its lifespan. This proactive 

approach aligns with economic and logistical considerations, 

enhancing efficiency and longevity.  

The maintenance planning phase eventually loops back to the 

data collection stage, with the consideration of the new state of 

the equipment that has undergone maintenance. This cyclic 

nature of the data-driven framework ensures an ongoing and 

iterative process where data is continually collected, analyzed, 

and utilized to improve predictive maintenance strategies. By 

integrating model training and inference, this framework offers 

a comprehensive approach to maximize equipment reliability, 

minimize downtime, and optimize maintenance operations. 



We can identify that the predictive maintenance model relies 

on key data-based methods used for power systems: condition 

monitoring, fault detection and diagnosis, and RUL estimation. 

A. Condition monitoring 

Condition monitoring in power electronics is a multifaceted 

process that entails identifying system parameters and 

extracting features. These tasks can be done sequentially, 

starting with feature extraction, or separately. The insights 

derived from condition monitoring serve as a foundation for 

fault detection and prognosis, providing valuable information 

[132]. 

1) Parameter identification 

Identifying parameters in power electronic systems is 

challenging due to instrumentation constraints, high switching 

frequencies, and small variations in parameters over time. Non-

invasive methods, which estimate the parameters indirectly 

from physical signals, are highly valued for their cost-efficiency 

and sensorless condition monitoring. 

In recent years, optimization methods, aided by AI, have 

become dominant for parameter identification. These methods 

offer advantages in handling disturbances, assessing 

uncertainty, and adapting to system changes, enabling effective 

power electronic systems’ maintenance and control [130]. 

Rojas-Dueñas et al. [133] employ nonlinear least squares 

optimization to identify power converter parameters, parasitic 

effects, and control loop characteristics. The method is applied 

to various commercially available DC-DC converter topologies 

using only input and output terminal data, collected during 

steady-state and transient conditions. The novelty lies in its 

precise online parameter identification for power converters. 

Machine learning models are prominent as well in the 

parameter identification area. The work in [134] uses an 

artificial neural network (ANN) model to estimate the output 

current ripple in an AC-DC interleaved boost converter 

considering factors such as inductance current ripple, switching 

frequency, and load changes. The developed ANN model 

outperforms alternative approaches such as linear regression 

(LR) and random forest (RF) in terms of accuracy. In [135], a 

deep learning approach is proposed for the adaptive steady-state 

modeling of a resonant DC-DC converter. The deep learning 

method provides precise voltage gain across a wide range of 

switching frequencies and loading conditions, overcoming 

modeling problems associated with other techniques. Finally, 

an ANN-based method is proposed in [136] for identifying the 

impedance model of voltage source inverters under a range of 

operating points, allowing efficient impedance estimation. 

 

Fig. 10. Overview of parameter identification methods for 

power converter applications 

2) Feature mining 

Feature mining steps are critical in refining raw data for 

optimal performance in applications such as fault diagnosis. 

Feature mining involves exploring the structure of the dataset, 

which includes classical data processing, discovering groups of 

similar data points through data clustering, identifying data 

distribution through density estimation, reducing the number of 

features through data compression, and integrating multiple 
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sources of information through data fusion [137]. More feature 

engineering work is retraced in Table 2. 

For example, in a single-phase cascaded multilevel inverter 

system [138], a feature mining strategy utilizes a Fast-Fourier 

transform on voltage signals to extract the frequency responses, 

with added phase information, which enhances fault separation. 

Principal Component Analysis (PCA) [139] is used to extract 

fault signal features and reduce samples dimensions. In 

practice, it reconstructs frequency domain data through a linear 

combination of representative eigenvectors derived from the 

covariance matrix. This approach retains a user-defined 85% of 

data variance while achieving over 97% classification accuracy 

and offering high model sparsity reflected by low inference 

time.  

Wavelet transform analysis is widely used in power converter 

applications as a signal processing tool for feature extraction 

[140]. In particular, discrete wavelet transform (DWT) [58], 

[141], [142], [143], [144], [145], [146], [147], decomposes a 

signal in a multiscale fashion to separate high and low 

frequency content. For example, [148] used a three-scale Haar-

based DWT to estimate the ESR from capacitor voltage, with 

improved sensitivity compared to other methods. In [149], a 

novel deep learning model called WaveletKernelNet (WKN) is 

introduced, which incorporates a continuous wavelet 

convolutional (CWConv) layer to replace the first 

convolutional layer of vanilla CNNs. This CWConv layer 

learns scale and translation parameters directly from the raw 

data, enabling the creation of a customized kernel bank 

specifically tailored to extract defect-related impact 

components from vibration signals. Experimental results 

demonstrate that WKNs outperform CNNs by over 10%, 

highlighting the CWConv layer’s role. Additionally, theoretical 

analysis and feature map visualization further reveal that WKNs 

offer advantages such as enhanced speed, interpretability, and a 

reduced parameter count.  

In [150], time-domain features are used to map the degradation 

of IGBTs in inverter-driven motor drives. The approach 

transformed three-phase inverter current ( 𝑎 ,  𝑏 ,  𝑐) into two-

phase current ( 𝛼 ,  𝛽) using Concordia Transformation. 

Features like standard deviation, skewness, and kurtosis are 

extracted, and classification is done using an SVM. An 

insightful look has been drawn to the localizing capability of 

the mean current vector, grouping spurious resistance faults into 

a pattern of operating stages. Experimental results confirm the 

method’s robustness, yielding an average classification 

accuracy of 94%. Similarly, in [151], the extended park vector 

approach extracts current and load features for open and short 

circuit faults in a three-phase two-level inverter. PCA reduces 

data dimensionality, revealing inconsistencies between healthy 

and faulty currents.  

Self-organizing maps (SOMs) have been used for IGBT health 

state estimation [152]. This approach clusters IGBT states 

based on degradation levels, using data from temperature, 

current, and voltage measurements. Even though SOM has 

shown its efficiency in this setting, [153] has outlined its pitfalls 

when it comes to online monitoring, with concerns over data 

collection and SOM updating. 

Besides, multimodal feature extraction methods have been 

proposed to improve condition monitoring and fault diagnosis 

accuracy by extracting relevant features from multiple sources. 

One study applied multi-domain feature extraction for a three-

level inverter [144], using time-scale, frequency-energy, and 

time-domain features from AC line voltage data of various fault 

types. These features were input to a deep belief network to 

train a fault diagnosis model. Another study employed a Low-

rank Matrix Fusion [154] method to fuse voltage and current 

signals and used a Sparse Transformer for extracting diagnostic 

information. Another method uses an improved attention 

mechanism module that improves the network’s ability to learn 

features and a denoising threshold algorithm for the diagnosis 

of a dual-active bridge converter [155]. A fourth study 

formulates a composite failure precursor for SiC MOSFETs 

using a genetic programming (GP) [156]. Data fusion 

techniques identify relevant precursors from potential failure 

precursors and combine them nonlinearly with GP.  

A comprehensive look at feature domain extraction in the case 

of power converters is detailed in Table 1.

 

Table 1. Feature extraction methods and referenced signals used 

Feature Domain Methods Signals used 

Time-domain features Time domain statistics (mean, 

skewness, kurtosis, peak-to-peak, 

etc) 

Voltage [144], [157], three-phase current [150], 

[151], [158], [159], load current [160], temperature 

[161]  

Multivariate statistics (T², Q, SWE) Three phase currents and voltages, input current 

and voltage, output voltage [162], [163], [164] 

Current, voltage, temperature, power [165]  

Variational Mode Decomposition Three phase line voltage [144] 

Empirical mode decomposition IGBT current, load current, input and diode voltage 

[143]  

Three phase current measurement [158] 



 ResNet with CAM [155],  Non-linear modeling capability, the residual 

connections prevent gradient problem, attention 

mechanism adaptively establishes dependency 

between features, denoising capability 

Frequency Domain Features Fast Fourier Transform Output  voltage measurement [138] 

Three phase current measurement [158] 

Output currents and voltages [166] 

Time-scale domain features Discrete Wavelet Transform Three phase current [141], Electrolytic capacitor 

ripple current and voltage [58], DC link voltage 

[142], Inverter terminal voltage [145], [147], 

Inverter current [146], Electrolytic capacitor 

terminal voltage [148], multilevel converter five 

phase current [167] 

Wavelet Packet Decomposition Diode voltage [143], Three phase line voltage 

[144] 

Cross-domain features PCA and variants Three phase current measurement [151],  Three 

phase currents and voltages, input and output 

voltages, input current [162], [163], [164] 

Park Vector Approach - DQ 

transformation 

Three phase current measurement [151], Output 

currents and voltages [136], [166] 

Table 2. Feature engineering techniques used for power 

converters 

Feature 

engineering 

Method Ref 

Data compression Principal Component 

Analysis (PCA) 

[138], 

[143], [151] 

Compressed sensing 

(CS) 

[58] 

Mean Current Vector [150] 

Generalized 

Discriminant Analysis  

[158] 

Bidirectional gated 

recurrent unit  

[154] 

Wavelet Compression [168] 

t-SNE [155], [169]  

Data Fusion Low-rank Matrix 

Fusion 

[154] 

Genetic Programming [156] 

Ensemble learning [152], 

[162], [163]  

Generative models Auto-encoder [170] 

GAN [171] 

B. Fault detection and diagnosis 

Fault detection is a crucial part of predictive maintenance. It 

identifies deviations from normal behavior, revealing potential 

performance degradation and impending failures [172]. The 

power of machine learning-based fault detection lies within the 

detection of early system changes that indicate ongoing 

degradation rather than catastrophic failures, which are best 

addressed by hardware safety mechanisms [143]. Once an 

anomaly is detected, fault diagnosis involves a more detailed 

analysis of the root cause and location of the fault, allowing 

maintenance teams to take proactive action to prevent costly 

downtime. The process typically involves performing tasks like 

classification, regression, or clustering, leveraging relationships 

learned from training data. Table 3 summarizes fault detection 

and diagnosis methods for power converters, considering their 

practical advantages and limitations. 

The choice of fault detection and diagnosis method depends 

on the type of dataset, whether it is labeled, unlabeled, or 

partially labeled, and the category of the training algorithm 

family, which can be categorized into three groups: 

1) Supervised methods 

When it comes to machine learning, supervised learning is a 

popular technique that involves training an algorithm on labeled 

data, where input data is paired with corresponding output 

labels, and the algorithm learns to map inputs to outputs by 

analyzing these input-output pairs (Fig. 11). A range of 

techniques are employed in supervised learning, including 

decision trees (DT), support vector machines (SVM), k-nearest 

neighbors (kNN), neural networks, and ensemble methods 

aggregating the output of multiple classifiers such as Random 

Forests (RF). Supervised learning generally offers superior 

performance in terms of accuracy and efficiency compared to 

semi-supervised or unsupervised approaches [141] when 

labeled data are available, but is challenging for physical 

systems due to rare event classification. 

 



 

Fig. 11.  Supervised learning pipeline

In [168], a deep feed-forward neural network was used to 

detect open-circuit faults in IGBTs in a phase-shifted full bridge 

DC-DC converter. The transient features selected from current 

and voltage measurements were considered to be indicative of 

faults, such that the neural network achieved an average 

accuracy of over 97%, outperforming other popular classifiers 

such as RF, kNN, and SVM. 

In [142], SVM classifiers have also proven effective for 

detecting and classifying individual and simultaneous open 

circuit faults in power switches, even with substantial 

measurement errors and relying solely on the DC link voltage 

signals. A similar study proved the efficiency of SVM 

exploiting multivariate features [164]. 

The research in [145] uses an ANN to identify nine distinct 

faults associated with IGBT and diode wear-out in a single-

phase inverter. The algorithm effectively detected and 

classified faults in both component failure and accelerated 

degradation scenarios, achieving accuracies of 97.4% and 

94.2%, respectively. 

The work in [173] presents a fault diagnosis method based on 

one-dimensional CNNs that has shown promise for fault 

diagnosis in a two-level three-phase inverter. Faulty classes are 

identified through voltage measurements, obviating the 

requirement for additional processing and rendering the data 

amenable to direct modeling. The model shows a high 

classification accuracy of over 98% when confronted with 

different noise levels in 22 identified faulty classes.  

Ensemble learning methods, including bagging, boosting, and 

random sub-space have been combined with classical 

supervised learning algorithms like kNN, SVM, and DT for 

fault detection and diagnosis to enhance the predictive power 

and robustness of the overall model [174]. In one study [162], 

the objective was to leverage meta-algorithms and ensemble 

techniques to improve the effectiveness of kNN, SVM, and DT 

models in identifying and analyzing faults in a power converter-

connected PV system. The proposed methods showed superior 

fault diagnosis performance compared to classical supervised 

neural network models. Another approach presented in [163] 

involved an ensemble technique using SVM, DT, and kNN 

algorithms as baseline classifiers, along with ensemble learning 

methods. Interval-valued data are utilized to further improve the 

results when it comes to considering uncertainty, as the data are 

represented using an interval rather than a single value.  

2) Unsupervised methods 

Obtaining labeled data can be challenging, and for large 

sample sizes, impractical, particularly for applications like 

power converter systems. Unsupervised learning offers a 

solution by training algorithms on unlabeled input data, 

effectively extracting valuable information from large datasets 

(Fig. 12). Some common examples of unsupervised learning 

include clustering, anomaly detection, and dimensionality 

reduction using some classical architectures, including 

autoencoders (AE), restricted Boltzmann machines, and 

generative adversarial networks (GAN). 
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Fig. 12. Unsupervised learning pipeline, example of an autoencoder

In one approach [157], Jiang et al. use unsupervised learning 

for fast online fault detection and diagnosis of DC-DC 

converters. The normal output range is estimated based on 

Gaussian process regression (GPR) [175], and a genetic 

algorithm calculates extreme values of statistical features. 

These extreme values represent normal operating ranges, aiding 

in detecting anomalies caused by deviations from normal 

behavior as well as changes in operating conditions. 

Chen et al. [165] employed binary threshold-based Hotelling's 

T² and Q statistics as anomaly detectors for SiC MOSFETs. The 

training data comprises both thermal and electrical time-domain 

features in their healthy state, with deviations from these 

parameters indicating semiconductor degradation. PCA is used 

to select key indicators that determine the type of failure, which 

reduces the dimensionality of the data while maintaining the 

essential trends. 

In [169], He et al. introduced a fault prognostics approach for 

a three-phase grid-tied inverter. They employed a Gaussian 

mixture model with two distinct data clusters. The first one 

represented the healthy baseline, while the second cluster 

represented an inverter state that is to be predicted. By 

measuring the difference between the two clusters using the 

Jensen-Shannon Divergence, a health indicator was constructed 

for prognostics, triggered when a given threshold is exceeded. 

In [160], Pham et al. developed a fault detection and isolation 

algorithm that uses an Autoadaptive and Dynamical Clustering 

approach to cluster feature data into classes that characterize 

normal and faulty operation modes. The classes are labeled 

based on knowledge of the system, and the similarity between 

recent feature vectors and the labeled classes is used to detect 

and isolate faults [159]. The Mahalanobis distance (MD) [176] 

is used to measure the closeness between a new feature vector 

and existing classes in the learning stage. The proposed 

algorithm also allows for online updating of existing faults and 

detection of unknown faults. Experimental results demonstrate 

the method’s rapid and effective detection of single and double 

open-circuit faults. 

3) Hybrid methods 

Obtaining labeled samples for supervised learning can be 

challenging for fault detection and diagnosis. Unsupervised 

learning, while adaptive, often requires a large dataset [170], 

[177]. Hybrid models combine both labeled and unlabeled data, 

improving accuracy, especially when human expertise is 

limited [167]. Some classical hybrid learning methods and 

architectures include self-training, co-training, transfer 

learning, graph-based methods, and deep learning architectures 

such as variational autoencoders (VAE) and combined 

architectures such as CNN-RNN networks. 

In response to the need for hybrid models, Markovic et al. 

[143] presented a custom approach for monitoring power 

electronic systems. Building on the work in [178] which focuses 

on handling modeling uncertainties to enhance fault detection 

reliability, this work addresses the inevitable problem of 

intermittent errors in learning-based approaches, which make 

them impractical for use in real-world systems. To address this 

challenge, the authors propose a novel hybrid model that 

integrates neural and statistical components with cross-

temporal hypothesis testing. This approach applies sequential 

methods for multi-hypothesis testing to classify the system's 

current state, incorporating M-ary sequential probability ratio 
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tests. This framework delivers complete reliability upon the 

measurement of selected Buck converter signals. The proposed 

cross-temporal integration approach achieves 100% 

classification results for every state, test scenario, and feature 

vector choice, such that neural classifiers with cross-temporal 

integration provide an encouraging path forward, combining 

interpretable instantaneous classifier outputs with statistically 

derived decision thresholds. 

Meta-learning [179] also offers solutions for limited labeled 

and unlabeled data. It involves training a model for new tasks 

with limited data by leveraging prior experience from related 

domains. For instance, few-shot learning, as proposed in [170], 

harnesses prior knowledge from related tasks to diagnose faults 

from limited labeled data. The method accurately detects open-

circuit IGBT faults in a three-phase converter using data from 

both a grid-connected converter and a three-phase PMSM drive 

converter. By generating synthetic fault samples using a 

disturbance autoencoder generation model, the method 

achieves over 95% fault diagnosis accuracy with limited labeled 

samples, highlighting the potential of few-shot learning and 

meta-learning approaches for similar challenges. 

In [171], a semi-supervised fault detection and diagnosis 

method for power transformers combines feature extraction and 

a generative adversarial network (GAN) to address the issue of 

imbalanced labeled and unlabeled datasets. The GAN [180], 

consisting of an LSTM-based generator model and a CNN-

based discriminator, generates synthetic samples for 

underrepresented labeled samples. The labeled and unlabeled 

datasets are then combined to construct a graph network that 

achieves a high fault classification accuracy of more than 80%.  

Table 3. Advantages and limitations of fault clustering and classification methods for power converter applications 

 Method  Advantages  Limitations  

Clustering  Self-Organizing Map (SOM) 

[141], [152], [154]  

Handles directly high 

dimensional problems, 

topological interpretability. 

Sensitive to hyperparameters, 

limited scalability for nonlinear 

problems. 

k-means [141] Fast and scalable, few 

parameters to tune. 

Predefined number of clusters, 

depends on initialization, 

converges to local optima, 

accuracy in complex non-linear 

data. 

Mahalanobis distance (MD) [153] Robust to outliers, suitable for 

multivariate data distribution.  

Sensitive to covariance matrix 

estimation, computational 

complexity increases with data 

size. 

Interval-based method [153], 

[163] 

Handles uncertainty in data, 

provides interval-based 

clustering results. 

Subjectivity of interval 

construction, sensitivity to interval 

overlapping and similarity 

metrics, limited interpretability. 

Gaussian mixture model (GMM) 

[160], [169] 

Flexible modeling of complex 

data distributions, soft 

assignment of data points to 

clusters. 

Sensitive to initialization, 

converges to local optima, 

struggles with high dimensional 

data. 

Dynamical clustering [159], [160] Accounts for non-stationary 

data, evolving clusters, 

combines the benefits of GMM 

and MD. 

Sensitive to initialization 

parameters such as the covariance 

matrix and membership threshold, 

limited interpretability. 

Classification Relevance Vector Machine 

(RVM) [138]  

Automatic relevance 

determination, space solution, 

good generalization. 

Computationally expensive, 

sensitive to hyperparameters. 



Feedforward Neural Network 

[141], [142], [145], [147], [151], 

[158], [168] 

Nonlinear modeling capability, 

adaptive learning. 

Prone to overfitting, requires 

sufficient training data, black box 

nature. 

Support Vector Machine (SVM) 

[141], [142], [146], [150], [168]  

Low programming complexity, 

effective in high dimensional 

spaces, works well with small 

datasets, global optimal 

solution. 

Hyperparameter sensitivity, 

computationally expensive for 

large datasets. 

Probabilistic Neural Network 

(PNN) [142] 

Fast training, efficient memory 

usage, pattern classification. 

Limited generalization, low 

sensitivity to training data. 

Naïve Bayes (NB) [142] Fast training and prediction, 

suitable for high dimensional 

data, works well with small 

datasets. 

Assumes independence between 

features, may not capture complex 

relationships. 

k-Nearest Neighbors (kNN) [164], 

[168] 

Simple implementation, handle 

multiclass problems. 

Computationally expensive during 

testing, sensitive to noise, requires 

appropriate distance metric. 

Random Forest (RF) [134], [168]  Good performance with large 

datasets, high dimensional data, 

resistant to overfitting and 

outliers. 

Interpretability challenge, 

computationally expensive for 

high dimensional data or large 

number of trees, struggles with 

extrapolating to unseen data. 

Neural controlled differential 

equations [154]  

Incorporates temporal 

dynamics, handles multimodal 

data, suitable for fusion-derived 

data accommodating 

irregularities. 

Computationally heavy especially 

for large dataset, impact of data 

imbalance on performance, 

sensitivity to learning rate and 

batch size. 

Convolutional Neural Network 

(CNN) [173] 

Embedded feature extraction 

capability, spatial invariance, 

hierarchical representation of 

data content, ability to capture 

local patterns. 

Sensitivity to hyperparameter 

selection, limited awareness of the 

broad relationships within data, 

computationally extensive. 

C. RUL prediction 

Data-driven methods have been increasingly applied to predict 

the RUL of power devices, as model-based approaches lack 

complete physical representation [181]. RUL estimation 

involves regression modeling with historical nominal or 

accelerated data and predicts the time until degradation reaches 

a failure threshold [132], [182]. In addition to the expected 

value, it is important to enclose it within a range of uncertainty 

metrics. Artificial intelligence techniques are commonly 

employed for RUL estimation. By learning degradation 

patterns, the regression model can project future degradation 

levels and estimate the RUL with greater accuracy. 

The paper in [161], presents a power IGBT prognostic 

approach using accelerated aging data from thermally 

overstressed IGBTs. It employs a feature extraction process and 

a maximum likelihood estimator (MLE) and demonstrates 

enhanced accuracy and robustness, particularly near end-of-life 

stages.  

Another study [183] compared machine learning models for 

real-time prediction of IGBT RUL under thermal overstress. 

The Back Propagation Neural Network (BPNN) outperformed 

other models, including the Random Forest Regressor and 

Extreme Learning Machine algorithms. 

In [184], IGBT RUL prediction combines the gray Verhulst 

model and the particle filter algorithm. The underlying 

assumption is the coexistence of two degradation regimes. A 

slow one, with subtle degradation effects, and a rapid one, 

directly leading to failure. The gray Verhulst, which is a data-

driven method suitable for predicting short and medium-term 

data, is used to predict slow degradation trends, while the 



particle filter algorithm handles rapid degradation owing to the 

fact that it is suitable for predicting sample data with nonlinear 

or unstable degradation laws. A double Gaussian function 

model is used to characterize the state equations for the particle 

filter and is found to be more accurate than the usual double 

exponential function model. The two-stage approach improves 

RUL prediction accuracy, especially for nonlinear and unstable 

degradation trends.  

Table 4 summarizes the main RUL prediction methods and 

parameter update model of the references discussed in this 

paper. 

Table 4. Comparison of RUL prediction methods 

Ref Model Model parameter 

update 

[68] ANN Minimization of 

cost function 

[185] Wiener process 

with linear drift 

Similarity 

measurement 

[127] Zonotopic 

intervals 

Polynomial 

update 

[156] Stochastic 

degradation 

Bayesian update 

[181] Mission profile 

based 

Linear 

accumulated 

damage theory 

[182] Gamma process Unscented 

particle filter 

[161] Gaussian process Maximization of 

MLE cost 

function 

[183] BPNN, RF, 

Extreme 

machines 

Minimization of 

cost function 

 

V. PHYSICS-INFORMED MACHINE LEARNING 
The learning approaches and methods discussed in the 

previous section have primarily relied on data. While data-

driven models may accurately fit observations, machine 

learning predictions may lack physical plausibility or even be 

physically impossible. Therefore, it is essential to accommodate 

both accuracy and interpretability when developing and 

implementing machine learning models to ensure that they 

provide reliable and insightful predictions. Moreover, when it 

comes to learning, it is desirable to make use of all available 

resources, including prior knowledge and experience. 

Integrating this knowledge into the learning process can help 

improve the accuracy and generalization of the models 

developed [10]. Therefore, it is important to strike a balance 

between data-driven approaches and incorporating prior 

knowledge in order to achieve the best possible results. 

There are many approaches that fall under the Physics-

Informed Machine Learning (PIML) paradigms, and they serve 

as bridges connecting the empirical power of data-driven 

algorithms with deep-rooted physical laws and theories. PIML, 

as a multidisciplinary field, can be dissected into distinct yet 

interconnected categories, each tailored to address specific 

challenges. To navigate this landscape, we classify these 

methods into two main categories: (i) physics-informed loss 

functions and (ii) physics-guided architectures, which can be 

themselves subdivided into many others. The choice of which 

class to employ for a given problem hinges on a multitude of 

factors. It takes into account not only the availability and 

efficacy of existing models but also the overarching 

computational objectives at play. These objectives encompass 

priorities such as improving prediction accuracy, enhancing 

model interpretability, optimizing computational efficiency, or 

ensuring adherence to known physical principles.  

A. Physics-informed loss 

In the realm of physics-informed machine learning (PIML), a 

great insight lies in the ability to utilize a subset of initial data 

to effectively penalize constraint violations across the input 

space of the ML model [186]. By incorporating specific 

information from labeled data and leveraging unlabeled data 

points, we can regulate deviations from desired constraints in 

the model's predictions. This powerful approach not only 

enhances the model's performance but also ensures its 

adherence to the fundamental physical principles governing the 

system being modeled. Though most ML training routines 

would ignore parts of the input space without data, physics-

informed training structures can instead enforce general 

physical knowledge of the system we know to be true.  

While many variations and applications exist [187], the most 

common method is to add these constraint violations directly to 

the loss function during ML model training. The loss function 

evaluates how well the model is performing and is minimized 

by changing model parameters over the training routine. By 

including knowledge directly in the loss function, the resulting 

model parameters will be biased towards the embedded 

knowledge. This can be thought of as a soft constraint, as there 

is no guarantee that it will be totally satisfied. Rather, the 

learning task balances the two learning goals simultaneously: 

improving model agreement with data and adjusting model 

parameters to follow known constraints. This is useful if the full 

engineering model is too computationally expensive to simulate 

repeatedly.  

1) Physics-informed neural networks (PINNs) 

PINNs are one of the prominent forms of physics-informed loss 

models. They have been employed owing to the fact that they 

rely on the neural network backbone, which offers several 

advantages, such as being a universal function approximator.  



The work in [188] leverages the power of automatic 

differentiation to directly compute derivatives of neural 

network outputs during training, enabling the inclusion of 

differential and algebraic equations describing power systems 

in the training procedure. This approach has been used to model 

PDEs when model outputs are differentiable with respect to 

model inputs, and applied to accurately determine solutions of 

differential equations and estimate uncertain power system 

parameters. The authors use collocation points, which are 

discretized points strategically placed within the problem 

domain, to ensure that the network's predictions adhere to the 

underlying physics. 

Unlike labeled points that provide known target outputs, 

collocation points do not have explicit labels but are chosen to 

enforce the governing constraints even when labeled data are 

limited, enabling the network to capture the physics and 

generalize well to unseen scenarios. The location and sampling 

distribution of these points play an important role in improving 

the performance of PINNs and have been the subject of 

previous studies. The work in [189] explores various classical 

non-adaptive sampling methods and other adaptive sampling 

ones that are seen to improve the sampling efficiency and the 

accuracy of PINNs, among which the residual-based adaptive 

distribution (RAD) and residual-based adaptive refinement 

(RAR) methods are the main ones. Evolutionary sampling has 

also been proposed to gather collocation points in areas with 

high PDE residuals with minimal computational burden [190]. 

The framework in [188] not only demonstrated superior 

performance in identifying power system parameters but also 

required fewer data and significantly reduced computation time 

by up to two orders of magnitude compared to classical machine 

learning and numerical schemes. 

The general form adopted in this work has also been used in 

similar works, which is a parametrized nonlinear PDE and is 

presented in equations (3)-(5):  

 𝜕𝑢

𝜕𝑡
 +  𝑁[𝑢, 𝜆] =  0,   Ω,   𝑡  [0, 𝑇] (3) 

 𝑢(0,  ) = ℎ( ),   Ω (4) 

 𝑢(𝑡,  ) =  𝑔(𝑡,  ),   𝜕Ω,  𝑡  [0, 𝑇] (5) 

here 𝑢(𝑡,  ) denotes the solution which can be seen as the state 

variables and 𝑁[𝑢, 𝜆] is a nonlinear term parametrized by 𝜆 and 

dependent on 𝑢 ant its derivatives. The nature of 𝜆 determines 

whether the problem is an inverse problem where the goal is to 

identify the parameters that satisfies the equation, or that of a 

forward problem. This framework spans a range of problems 

including conservation laws, system dynamics and kinetic 

equations. 

Without loss of generality, a physics-informed equation 

𝑓(𝑡,  ) that enforces physical laws in the description of a 

system, to which we will refer as auxiliary equation, is defined 

as in (6):   

 𝑓(𝑡,  ) = 𝑀[𝑡,  , 𝜆] (6) 

In their formulation, [15] and [191] added equalities (7) and 

inequalities (8) representing the physical constraints mainly in 

algebraic form: 

 𝐺(𝑡,  , 𝑢) = 0 (7) 

 𝐻(𝑡,  , 𝑢) ≤ 0 (8) 

By construction, both of the networks 𝑓(𝑡,  ) and the desired 

output 𝑢(𝑡,  ) share the same parameters, but only use different 

activation functions [188]. Therefore, the shared parameters of 

the two neural networks are optimized by minimizing the 

generalized loss function introduced by the physics guided 

neural network [13], [15], [191]: 

 𝜃∗ = argmin ℒ𝑢 + 𝛼𝑟𝑒𝑔ℛ(𝜃) + 𝛼𝑝ℎ𝑦ℒ𝑃ℎ𝑦 (9) 

such that: 

 ℒ𝑝ℎ𝑦 = ℒ𝑎𝑢𝑥 + 𝛼𝑒𝑞ℒ𝑒𝑞 + 𝛼  𝑒𝑞ℒ  𝑒𝑞  (10) 
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where the first term in (9) represents the empirical loss which 

was chosen to be the mean squared error corresponding to the 

initial data such that: 
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with 𝑁𝑢 being the batch number of training data. This 

formulation accommodates in (14) the inclusion of initial and 

boundary condition equations, if they are relevant to the 

problem at hand. In scenarios where the number of labeled data 

points differs from the number of boundary conditions, or initial 

conditions, the empirical loss function can be decomposed into 

separate components: the training loss and the losses associated 

with the other categories mentioned. By breaking down the loss 

in this way, it becomes possible to assess and optimize each 

aspect independently, allowing for a more nuanced and targeted 

approach to model training and parameter estimation.  

The second term in (9) represents the complexity of the model 

and is seen as the structural error. Typically, it constrains the 

weights of the model using    norm (Lasso regularization) to 

enforce sparsity,    norm (Ridge regularization) to control the 

magnitude of the weights, or a combination of both for a convex 

optimization problem with a sparse and smooth solution.  



The third term denotes the physical penalty term as expressed 

in (10) and is used to enforce the physics of the dynamical 

system over a finite set of collocation points, for the auxiliary 

equation 𝑁𝑟 as in (11),  the equalities 𝑁𝑔 in (12), and 

inequalities 𝑁ℎ in (13). The 𝑅𝑒 𝑈 function in (13) is one way 

to measure the violation of the inequality constraints and has 

been used widely [191]. The hyperparameters 

𝛼𝑟𝑒𝑔 , 𝛼𝑝ℎ𝑦 , 𝛼𝑒𝑞 , 𝛼  𝑒𝑞  can be adjusted using grid search 

techniques [192], [193] or Lagrangian optimization [194]. Note 

that since the term representing scientific consistency does not 

require actual observations of the target variable 𝑢(𝑡𝑢
 ,  𝑢

 ) but 

depends only on the estimate 𝑓, the method is also well suited 

for unlabeled data instances, in contrast to traditional loss 

functions.  

With this formulation, PINN can also be implemented in 

physical simulations, replacing ODE solvers and performing 

identification tasks. For example, the study in [195] reports that 

PINNs can  approximate any continuous function with a desired 

degree of accuracy, which is completely opposite to what we 

are used to with the classical model order reduction approaches 

in time-domain simulations. The PINN training process 

incorporates the governing differential equations and an 

implicit Runge-Kutta (RK) integration scheme, which allows 

the model to predict the behavior of a dynamical power system 

at any discrete time step. The trained Runge-Kutta-based 

PINNs (RK-PINNs) can evaluate the dynamics of a system up 

to two orders of magnitude faster than standard time-domain 

simulations without requiring any simulation of training data. 

It is worth noting that this loss formulation was first employed 

with the widely used stochastic gradient descent method (SGD) 

with fixed learning rate as in [195], however in practice, there 

are many caveats to using it that are related to unbalanced back 

propagated gradients during the training. Many methods have 

been designed to counteract those instabilities, such as the 

learning rate annealing (LRA) [196] as it dynamically modifies 

the learning rates for different components of the objective 

function during gradient descent in order to account for the 

inherent difficulty in optimizing under equality constraints. 

Other methods have looked into modifying the optimization 

framework rather than changing the underlying optimization 

method. This includes the self-adaptive method for PINNs (SA-

PINN) that employs trainable adaptation weights at each 

training point that allow PINNs to autonomously identify and 

focus on the challenging stiff regions of PDE solutions [197]. 

In contrast, the Augmented Lagrangian relaxation method, 

termed AL-PINNs, takes a different approach [198]. It handles 

the initial and boundary conditions of the PDE and relaxes them 

into the objective function through Lagrangian duality. The 

constrained optimization problem is thus transformed into a 

sequential max-min problem. Another method has looked into 

the issue of accuracy of soft constraints in standard PINNs and 

proposes a gradient enhancement (gPINNs) [199] for smooth 

PDEs that not only enforces the PDE residual to go to zero, as 

it is the case with the formulation presented, but also enforces 

the derivatives of the residual to be zero as well. The issue of 

accuracy was treated as well using hard constraints within the 

hPINN framework, enforcing the constraints using the penalty 

method [200]. 

 Fig. 13 presents a versatile framework for a physics–informed 

neural network architecture, including the discussed elements 

above. This implementation offers flexibility in 

accommodating different types of governing constraints, which 

can be mathematical equations, simulation parameters, or even 

derived from neural networks themselves. This architecture 

allows notably for leveraging varying degrees of knowledge 

about the governing equations, enabling flexible modeling 

approaches. The regularization term is formulated as a 

combination of Ridge and Lasso penalties, which serve as 

effective means to control the complexity of the model and 

prevent overfitting. However, it is worth noting that there are 

other implemented techniques that can be tailored to further 

enhance the regularization performance.   

 

Fig. 13. Generic physics-informed neural network architecture. 



2) Gaussian processes 

Among ML models, Gaussian Process architectures stand out 

for incorporating physical knowledge as constraints. Recent 

research has delved into the integration of physical constraints 

and prior information within Gaussian Process Regression 

(GPR) to augment datasets with limited information and 

effectively regulate model behavior. GPR's widespread acclaim 

stems from its versatility and capacity to provide closed-form 

predictions, making it one of the favored choices for predictive 

maintenance. 

In his work [201], Agrell presented a framework that encodes 

sets of linear constraints, whether they be monotonicity, 

convexity, or boundedness to the GPR, with sampling-based 

inference that is suitable for developing ML models for safety-

critical engineering applications. In [202], Swiler et al. 

surveyed ways by which constraints can be implicitly enforced 

through tailored sample space constructions, modified 

covariance kernels, or adjustments to the output or likelihood of 

Gaussian processes. In another study [203], a novel machine 

learning approach that combines PDEs and sparse measurement 

data is introduced, relying on GPR to address data scarcity. The 

method integrates physical knowledge from both linear and 

nonlinear PDEs into the learning process. Similar to collocation 

points in PINN design, the paper also introduces an active 

framework for the optimal design of PDE points, effectively 

leveraging PDE information based on the GPR model and 

measurement data. An expectation-maximization algorithm is 

developed for parameter estimation and PDE point selection in 

this context. In [204] a maximum likelihood estimation for GPR 

hyperparameter estimation using well-established differential 

equations is used to ensure physical consistency in inverse 

problems, with applications in model validation and health 

monitoring. In another study [205], physics-based penalization 

terms have been incorporated into the marginal likelihood 

function for kernel parametrization as a way to instill physics-

based knowledge to the machine learning model. Results have 

shown that the method improves prediction performance, 

mitigates overfitting problems, and captures underlying 

physics. 

B. Physics-informed architecture 

Within the domain of PIML, the architecture of machine 

learning models holds a crucial role in bridging data-driven 

techniques with prior physical knowledge. These physics-

informed architectures take diverse forms, designed to match 

specific problem characteristics. They can, for instance, embed 

physical properties directly into the model's nodes and layers, 

enhancing interpretability. Physics-informed activation 

functions can also be seen as mirroring physical behaviors, 

rendering the model physically consistent. Hybrid PIML 

models combine physics-based models with machine learning, 

integrating differently domain knowledge with data-driven 

techniques, while Bayesian PIML framework quantifies 

uncertainties and incorporates various prior knowledge forms. 

In this section, we explore these architectures, focusing on their 

design variations and applications, particularly within neural 

networks, where they are mostly used. 

1) Embedding physics in ML 

Physics-informed architectures empower machine learning 

models by seamlessly incorporating established physical 

principles. These architectures adapt to the model's structure, 

harnessing techniques like neural networks to actively encode 

prior physics knowledge into the architecture. This process 

entails crafting nodes or layers that directly represent 

recognized physical phenomena, setting them apart from 

physics-embedded loss functions, which passively constrain 

network training through specific physical equations.  

In [206], a Physics-Informed LSTM (PI-LSTM) architecture 

is presented as a combination of a physics-based calendar and 

cycle aging (CCA) model with an LSTM layer. The emphasis 

is on leveraging the entire layer's capabilities to capture 

relationships between degradation and operating conditions. 

This integration involves incorporating physics-based 

knowledge into the structure and behavior of the LSTM layer 

to improve battery health modeling and RUL prediction.  

In [207], the authors introduce a novel approach to machine 

degradation modeling that integrates signal processing 

techniques with a neural network structure. The proposed 

network comprises several hidden layers designed to process 

temporal signals, directly linking the network with fault 

frequencies and their harmonics in the frequency domain. This 

approach enhances transparency, interpretability, and the 

stability of health indices used in predictive maintenance. It 

combines physics-based methods with machine learning, 

providing structural and weight interpretations for better 

machine health monitoring and prognostics. 

The work in [208] introduces a novel method for battery 

capacity prediction that directly incorporates physics-based 

insights into machine learning models. It utilizes a specialized 

neural network architecture, the aging mechanism-informed 

bidirectional LSTM, to integrate physics principles. The aging 

mechanism layer is made of LSTM cells to identify related 

features. This approach results in faster, more accurate 

predictions with broad application prospects, surpassing the 

best-performing data-driven benchmark by a significant margin 

of 50%. 

Gokhale et al. [209] developed two distinct physics-informed 

prediction frameworks that integrate fundamental physics 

principles into a DNN. In the first approach, a dedicated 

dynamics module is designed to incorporate the physics of the 

system. This module utilizes encoded latent representations of 

high-dimensional state inputs, along with observable state 

information, actions, and other external data, to predict the 

subsequent observable state. Importantly, the encoded latent 

representation is influenced by the system's underlying physics, 



ensuring that it contains vital information pertaining to the 

system's dynamics. The second employs a conventional neural 

network with physics knowledge incorporated through specific 

equations, using a latent representation as a regularization term 

to guide learning of system dynamics and hidden parameters. 

These architectures enhance machine learning models with 

physics information, offering different approaches for 

integrating physics within the neural network structure. 

Notably, these models have demonstrated remarkable accuracy 

improvements, yielding three times less error in predicting 

hidden state variables in the latent space compared to their data-

driven counterparts. 

In another study, a PINN-based online impedance 

identification of voltage-source converters (VSCs) under 

changing operating points was developed [166]. The proposed 

method is specifically designed to address the issue of limited 

data availability for online impedance identification, which is 

crucial for the online stability evaluation of VSCs. To overcome 

this limitation, the PINN is constructed based on the derived 

analytical impedance model of VSCs, which takes Park's vector 

transformation of the three-phase currents, voltages, and 

frequency as inputs to account for the changing operating 

points. The neural network can thus have a shallower 

representation with a smaller number of layers and fewer 

neurons per layer, reducing the number of parameters that need 

to be trained and the computational complexity of the network. 

This makes online impedance identification faster and more 

efficient while maintaining accuracy. By employing a two-step 

impedance identification approach based on transfer learning 

theory, the efficiency of the methods is improved. This is 

achieved by enhancing the online impedance identification 

efficiency through the transfer of the offline impedance model 

to online impedance identification of different VSCs. 

Neurons can also be tailored towards embedding physics, for 

example, [206] uses a custom LSTM cell that extracts 

functional information from the monitoring data and feeds 

specific cells and gates as in a standard LSTM cell. In [210], 

each RNN unit is made of a combination of physics-based, data-

driven and Bayesian nodes. In another study [9], LSTM cells 

incorporated augmented and hidden states to better capture the 

state of charge of batteries. 

2) Physics activation function 

Just as neurons can be physics-informed, so can model 

mechanisms such as activation functions and initialization 

procedures [211]. The choice of activation function has a 

significant impact on the success of training PINNs to solve 

PDEs. While common activation functions such as sigmoid or 

𝑡𝑎𝑛ℎ may suffer from the vanishing gradients problem, 𝑅𝑒 𝑈 

function on the other hand, does not suffer from this problem 

but poses challenges with regard to its PINN use [212]. For 

integrating physical knowledge, it is sometimes necessary to 

take high-order derivatives of the NN with respect to network 

inputs to calculate the loss function. However, higher-order 

derivatives of 𝑅𝑒 𝑈 are equal to zero, and this makes the 

training process ineffective.  

The study in [213] evaluates the effectiveness of PINN in 

predicting out-of-distribution testing data [214]. The results 

indicate that PINNs struggle to predict out-of-distribution data, 

consistent with previous findings. To address this issue, the 

study proposes the replacement of the generic activation 

functions by the customizable Physical Activation Functions 

(PAFs) that are inspired by the physical behavior of the 

investigated phenomena. PAFs are theoretically based on the 

analytical solution of the physical phenomena being studied, 

meaning the AF resembles and takes the form of the expected 

physical response if such information exists, or can be obtained 

under simpler assumptions from the initial or boundary 

conditions of the system. For example, let’s assume that the 

physical solution to a problem is a multivariate function 

𝑓(  ,   ,   ,   ) that is the sum of two other functions 𝑔 and ℎ 

that are only partially known, a PAF 𝜎 can be designed with 

fewer variables 𝜎(𝑧 , 𝑧 ) such that the PAF has the global 

behavior of the function 𝑔. Following this construction, several 

PAFs can be included in the same model, one for 𝑔 and another 

for ℎ, continuing with the previous example. Similarly, if an 

initial or boundary condition function is partially known, PAFs 

can be constructed the same way.  

PAFs make PINNs more physically constrained as compared 

to NN without physical loss and PINNs with generic activation 

functions and can therefore be seen as a complement to the 

PINN architecture. This reduces the errors of out-of-

distribution predictions, and helps reducing the training 

complexity of PINNs. PAFs are shown to improve the 

extrapolation capability of PINNs for domains that are out of 

training range, and reduce the size of the network by up to 75%, 

a size where they are the most effective. Furthermore, the use 

of PAFs reduces training complexity, decreases the loss term by 

up to 2 orders of magnitude, and reduces the computation time 

to facilitate the implementation of PINNs in real-world 

applications. The study concludes that the use of PAFs offers a 
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more physically constrained and valid approach to PINNs, 

enabling accurate predictions for longer ranges.  

A diverse collection of PAFs may also be employed to create 

a broader search area, which includes a reservoir of potential 

activation functions [215]. Instead of selecting a single 

function, the adaptive activation function is created using 

physics-informed activation function (PIAC), where a set of 

candidate functions is linearly combined with optimized 

coefficients. PIAC allows the neural tangent kernel of PINNs to 

be trainable, leading to a noticeable improvement in 

performance. Similar methods of the physics-based activation 

function have been implemented in power systems [216].  

3) Hybrid modeling 

Traditional approaches often grapple with incomplete physics-

based models and limited representative training datasets, 

posing significant challenges to achieving accurate predictions 

for complex real-world systems [217]. In response to these 

challenges, Hybrid PIML allows for more accurate, robust, and 

interpretable models. Many hybridization techniques exist, 

such as the one that allows concurrent operation of physics-

based models and machine learning models before merging 

both of their outputs for decision-making or the one using them 

sequentially, or the one combining both and many other (Fig. 

14). This adaptability positions Hybrid PIML as an invaluable 

tool in scenarios marked by data scarcity and the pivotal role of 

physical principles. By virtue of these strategies, hybrid PIML 

not only finds application in enhancing predictive accuracy but 

also extensive utility in constructing surrogate models and 

facilitating numerical simulations.  

For example, a framework presented in [218] controlled 

physics-informed data generation with deep learning-based 

prognostics. It introduces a controlled physics-informed GAN 

to produce synthetic degradation trajectories aligned with 

underlying physical laws. These synthetic trajectories enhance 

the accuracy of RUL predictions by more than 17% compared 

to baseline data-driven methods, especially when real time-to-

failure data is limited and does not cover all relevant operating 

conditions. Key components of the framework include 

surrogate models to infer health parameters, and the GAN that 

builds on the TimeGAN generation framework [219] and 

adheres to basic physics constraints and maintains physical 

consistency. It leverages deep neural networks and 

synchronization techniques for robust generation of synthetic 

time-to-failure data. Future research avenues include pro-active 

data generation based on prediction uncertainty and extending 

the framework to various application domains, highlighting its 

versatility and potential impact in predictive maintenance 

scenarios, whether for condition monitoring or, more 

importantly, RUL prediction. 

The study of hybrid PIML expanded to the area of model 

identification for power converters. It allows the discovery of 

governing equations [220] and underlying models that describe 

the behavior of a physical system, with the aim of gaining a 

deeper understanding of the system's behavior. In this sense, a 

scalable and permutation invariant graph neural network for 

circuit identification is proposed in [221] with a proper feature 

representation model for electric circuit parameters. The 

method suggests an optimal feature representation based on 

bond graphs that can be easily interpreted and processed by 

machine learning algorithms, regardless of the connection or 

the number of components the circuit has. This technique is 

based on bond graph representation for circuit synthesis, which 

can also be valuable for simulating power converters. 

Another approach to condition monitoring hybridization is 

presented in [9], which integrates physical knowledge by 

decoupling voltage signals into open circuit voltage, 

polarization voltage, and ohmic response components. This 

augmentation of input data enables the employed DNN to better 

understand battery voltage characteristics, improving the state 

of charge (SOC) estimation root mean square error by over 

30%. Another key enhancement involves introducing ampere-

hour counting information, which reflects the SOC change 

between two adjacent moments. Traditional DNN-based 

methods overlook this physical information. By incorporating 

the Ampere-hour counting information through an online 

Kalman filter and Monte-Carlo dropout technique, the DNN 

can provide not only SOC estimates but also their associated 

uncertainties, resulting in more precise and reliable SOC 

estimations.  

In [222], a hybrid PINN combines concepts from CNNs and 

finite volume methods to solve PDEs. Unlike traditional 

PINNs, this method employs a differential operator 

approximation instead of automatic differentiation, 

contributing to improved convergence rates and prediction 

accuracy. This marks a significant advancement as it introduces 

the concept of a convergent rate in machine learning-based PDE 

solvers, akin to numerical methods. Furthermore, this hybrid 

PINN exhibits versatility, catering to various problem domains, 

including surface PDEs and inverse problems. It offers higher 

accuracy and maintains adaptability even when boundary 

conditions or right-hand side terms change, making it suitable 

for transfer learning and parallel learning. While it inherits the 

robustness of numerical methods, there are considerations for 

stability, particularly in the context of parabolic and hyperbolic 

equations, where the local fitting method's stability may need 

further attention. Nevertheless, the Hybrid PINN presents a 

promising fusion of machine learning and numerical techniques 

for tackling complex PDEs efficiently and accurately. 

The paper in [223] introduces a Finite Element Mimetic 

Neural Network, a hybrid PIML model designed for fault 

detection and localization. It combines finite element methods 

with machine learning techniques. The model leverages physics 

parameters and raw vibration acceleration signals for input, 

incorporating known physics relationships. The hybridization 

of the model involves the integration of finite element methods 



with NN layers. Unlike traditional FEM, which relies on 

complete analytic physical knowledge and parameter values, 

this framework takes advantage of partial knowledge, which 

includes partially known parsing relationships and parameter 

values. This hybrid approach combines the strengths of FEM, 

which captures physical principles, with the flexibility and 

adaptability of neural networks. It allows the model to leverage 

physics-based knowledge without being restricted by the need 

for complete analytic solutions. Instead, it combines the 

physics-based output with data-driven adjustments to enhance 

the model's diagnostic capabilities. Experimental validation 

demonstrates that the model’s total accuracy surpasses that of 

the non-physics-informed ML model by over 130%. 

In [224], a Physics-based Neural Network (PbNN) is utilized 

to construct a physical model for an industrial control system 

(ICS) by integrating the underlying physics and operational 

data. PbNN is specifically designed for real-time settings and 

employs the residual sequence generated by the comparison of 

the actual and predicted values to quantify nonrandom hence 

physical patterns to detect anomalies. The PbNN enables live 

detection of both sequential and concurrent anomalies, 

achieving a remarkable 100% detection rate and 0% false alarm 

for tested cases, offering more accurate results compared to 

state-of-the-art methods that solely rely on data-driven 

approaches. The PbNN is constructed through a two-phase 

process. In the offline phase, the interactions among the state 

variables of the system under study are modeled using a CNN. 

The latter is trained using collected operational data, which 

aims to capture the complex relationships among the state 

variables that are extracted using mathematically modeled 

components. The CNN, which is commonly used for image and 

speech recognition, is used in this case to model the interactions 

among the state variables of the ICS. Once the CNN is trained, 

it is used in the online phase of the PbNN method to detect 

anomalies. In this phase, the expected behavior of the ICS is 

obtained from the CNN, and any perceived deviation between 

the actual and predicted behavior is flagged as a fault. 

Specifically, it utilizes a statistical approach to detect 

nonrandom physical dynamics. Anomalies are detected by 

characterizing patterns in the residual sequence that stems from 

the comparison of actual and predicted values. To quantify the 

magnitude of residues, the CUmulative Sum (CUSUM) 

approach is integrated with the CNN. CUSUM uses the time 

sequences of the predicted and observed states to detect 

abnormal deviations corresponding to process anomalies. By 

computing the CUSUM of the residual sequence, even minor 

deviations in magnitude can be detected.  

Another study presents a modeling approach for planar 

magnetic components based on a knowledge-aware ANN, 

which integrates small training data with specific domain 

knowledge [225]. The proposed ANN employs two types of 

input data with different properties: measured or simulated data 

with high accuracy but limited amount, and analytical data with 

lower accuracy. By synergistically combining the measured 

data and analytical models, two ANNs are trained to build a 

correlation between the analytical models and the optimal 

mapping function that serves as a regression tool. In this 

framework, the analytical models initialize the mapping and 

remove nonphysical results. The proposed method is compared 

to existing modeling tools and demonstrates improved 

performance with regard to the balance between accuracy and 

computational efficiency, particularly in reducing errors 

associated with measured data, which are mainly located 

around 3%. This is notably different from the broader error 

density within 20% for both the purely analytical and purely 

data-driven models. 

4) Bayesian PIML 

In the domain of predictive maintenance, a pivotal requirement 

extends beyond obtaining precise diagnostics and prognosis 

predictions; it involves understanding the associated 

uncertainties. This necessity has prompted the development of 

various methods for reliability inference, including Bayesian 

Networks, Universal Generate Function, Fault Tree Analysis, 

and others [226]. Among these, Bayesian Networks have 

gained considerable popularity, recognized for their robustness 

and efficacy.  

Building upon the PIML foundation, Bayesian PIML retains 

the fundamental strengths of PIML but introduces Bayesian 

statistics into the framework. This enhancement allows 

Bayesian PIML to not only serve as a prior in a general 

Bayesian Inference but also generate estimators for posterior 

distributions, thereby offering valuable insights into uncertainty 

quantification [227]. The comparative advantage of Bayesian 

PIML, when measured against its traditional counterpart, is its 

capacity to provide narrower credible intervals. This attribute 

significantly enhances predictive potential, particularly when 

venturing beyond the boundaries of the training data. However, 

it is important to note that while Bayesian PINNs offer 

substantial advantages, they do come with increased 

computational cost. Nonetheless, their versatility, combining 

the strengths of various methods, makes them an invaluable tool 

for tackling a wide array of nonlinear dynamical systems. Linka 

et al. [227] also discuss the inherent advantages and 

disadvantages of different methodologies within the NN and 

Bayesian inference families and provide valuable guidelines for 

model selection. The integration of physics principles within 

the Bayesian PIML architecture enables effective modeling 

even with limited data, while the statistics enrich the toolkit by 

offering a deeper understanding of uncertainty (Fig. 15). 

The work in [226] explores a novel approach for 

reconstructing the temperature field of a high-density 

functionally integrated satellite circuit board and quantifying 

data uncertainty. Traditional deep learning models like the 

CNNs often require extensive labeled data, which is impractical 

for real-world satellite engineering scenarios where only noisy, 

unlabeled data is available. To address this challenge, the paper 

presents a physics-informed deep Monte Carlo quantile 



regression method. This unsupervised technique combines a 

CNN with known physics knowledge to accurately reconstruct 

the desired temperature field using solely monitoring point 

temperatures. Moreover, this approach quantifies temperature 

data uncertainties through the application of Monte Carlo 

quantile regression. This information feeds into the Bayesian 

network, enriching its ability to model reliability under 

conditions of uncertainty.  

 

Fig. 15. Example of Bayesian PIML in a NN integration, with 

probability distribution estimates over the activations (blue) 

and for the weights (orange) 

The research [210] introduces a Bayesian PIML framework 

that seamlessly integrates physics-based knowledge with 

machine learning techniques to ultimately deliver robust and 

reliable RUL estimates. It first integrates temporal 

dependencies and the physical governing equations within a 

RNN, enabling accurate simulations of battery behavior under 

varying operational conditions. To capture model-form 

uncertainty inherent in real-world scenarios, multi-layer 

perceptrons are employed, enhancing the predictive power of 

the framework by addressing deviations from pure physics-

based modeling. Leveraging Bayesian principles, the 

framework integrates data from a fleet of similar batteries as 

informative priors, enriching the understanding of battery 

health and performance using variational multi-layer 

perceptrons. A unique strength lies in quantifying aging 

uncertainty, even in cases where comprehensive usage history 

data is lacking, enhancing the practicality of RUL estimation 

for in-service fleets. 

C. PIML for predictive maintenance 

Predictive maintenance is a critical aspect of ensuring the 

reliability and longevity of complex systems across various 

industries. Traditionally, predictive maintenance methods have 

leaned heavily on data-driven approaches, where failure states 

are predicted using machine learning models. Incorporating 

PIML strategies into predictive maintenance frameworks can 

significantly enhance their effectiveness. Predictive 

maintenance encompasses a wide range of tasks, including fault 

diagnosis, degradation modeling, RUL prediction, health 

management, and maintenance scheduling. 

1) Fault diagnosis and condition monitoring 

Predictive maintenance aims to predict when equipment or 

machinery is likely to fail so that maintenance can be performed 

just in time, minimizing downtime and costs. In predictive 

maintenance, continuous monitoring of equipment health and 

diagnosis of faults is crucial. In [228], condition monitoring is 

approached from the perspective of data compression, as 

efficient data transmission is arguably one of the most 

important aspects of predictive maintenance. The study uses 

Deep Convolutional Autoencoders with local structure and 

physics-informed loss terms that incorporate domain-specific 

knowledge, such as the importance of frequency content for 

fault diagnosis. This aligns with the idea of enhancing machine 

learning models with physics-informed constraints. 

Additionally, the paper proposes the use of Fault Division 

Autoencoder Multiplexing to mitigate the effects of multiple 

disjoint operating conditions on data reconstruction. This is an 

extension of the PIML approach to address the challenges posed 

by diverse machine conditions. 

In [229], parameter identification of a DC-DC Buck converter 

is being investigated using a PINN framework. The PINN 

combines a DNN and the dynamic models of the converter, 

effectively coupling the data-driven part and physical model 

part. This method employs supervised learning and is capable 

of estimating the component parameters of the converter, given 

the collected data of the inductor current and output voltage 

during transient behavior due to load changes. The proposed 

method utilizes a peak-to-peak sampling mechanism to enable 

efficient data acquisition and to infer the switching state of the 

converter, significantly reducing the data requirements for 

training, and highlighting the data-light characteristic of the 

method. The PINN model comprises two parts: a data-driven 

component and a physical model component. The former 

employs a DNN with various hidden layers and neurons, taking 

in initial states of the inductor current, output voltage, switch 

state, and time period as inputs. Its outputs are the latent states 

of the inductor current and output voltage, which are passed on 

to the physical model component. This second part is 

formulated using the q-stage Runge-Kutta scheme and the 

dynamic model of the Buck converter. Notably, the connection 

between the two components differs in that the former's hidden 

layer connections depend on neural network weights, while the 

latter's connections depend on equations with physical 

implications. In addition, the training error variation is 

consistent while the average estimation error remains below 

0.1%, even for cases with disturbance factors such as ADC 

quantization error, noise immunity capability, and 

synchronization error. 

The study in [230] employed a PINN technique to monitor the 

state of a DC-DC power system. The deep learning model was 

augmented with a state space model as prior knowledge to 

estimate the degradation parameters of the DC-DC converter. 

To capture temporal dependencies in the data, the LSTM 

architecture was chosen as the data-driven model, resulting in a 

PI-LSTM network that utilizes the output voltage and inductor 

current as inputs. The output voltage, which represents the 

operating state of the Buck converter, and the inductor current, 

Physics-informed
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which represents the input current of the circuit, are used to 

estimate the capacitance, capacitor equivalent resistance, 

inductance, inductor equivalent resistance, and triode on-

resistance parameters. 

To enhance the performance of the PINN in solving the 

physical equation of the Buck converter, the study proposed a 

multi-task learning approach that shares data sets and low-level 

features across tasks. A task-based uncertainty determination 

coefficient strategy was also adopted to optimize the weighting 

coefficients of the data fitting and physical law fitting subtasks 

in the multi-task loss function, enabling an adaptive fusion of 

data and physical knowledge. This approach proved useful in 

addressing the challenge of limited data, where the uncertainty-

based weighting approach balances the contribution of data 

fitting and physical information fitting tasks. The proposed PI-

LSTM model demonstrated superior reliability, higher 

estimation and generalization abilities compared to the LSTM 

model, particularly in cases of scarce data, where it showed a 

20% error reduction. 

Yan et al. [207] propose an architecturally explainable 

network for machine degradation modeling, emphasizing the 

integration of physics-based signal processing techniques and 

machine learning in a single-layer network structure. This 

approach enhances the interpretability and transparency of 

health indicators used in machine diagnostics and prognostics. 

The network utilizes signal processing methods like Hilbert 

transform and Fourier transform to map temporal signals into 

demodulated signals, directly linking the network with fault 

frequencies. A knowledge-guided loss function is introduced 

for feature extraction for improved health indicator stability and 

robustness compared to existing methods. 

Other studies have applied the different PIML frameworks 

presented for fault detection and diagnosis. For example, the 

study in [231] proposes a physics-informed deep learning 

approach for fault detection. The takeaways from this approach 

include a threshold model that assesses health classes based on 

known physics and a deep CNN model that extracts high-level 

characteristic features from the input data. The unique aspect is 

the use of a customized data-and-physics-driven loss function 

that selectively amplifies the effect of physical knowledge 

assimilated by the threshold model when embedding this 

knowledge into the CNN model. 

In [232], Wu et al. implemented an unsupervised anomaly 

detection approach that uses a physics-informed gated recurrent 

graph attention unit network. The key innovation lies in 

combining prior knowledge into a topological structure to 

enhance model performance and interpretability. A physics-

informed learning module explicitly models variable 

dependencies in a directed graph, introducing prior knowledge 

as graph regularization to align the model with the underlying 

physics. Subsequently, the attention unit network is proposed to 

capture both structural dependencies between variables and 

temporal dependencies of each variable, improving anomaly 

sensitivity. The work allows for better interpretability and 

localization of detected anomalies, especially in high-

dimensional data, where the F-score is improved by more than 

30% and recall by more than 40%, as compared to other purely 

data-driven methods. 

The architecture proposed in [233], is a multi-task deep 

learning framework. It leverages synthetic data generated by 

physics-based simulations and integrates domain-specific 

physical parameters into the loss function. Simulated finite 

element method responses in the time domain serve as input, 

and physical parameters such as natural frequencies and mode 

shapes, known damage indicators, are used to train the 

intermediate layers of the network. This architecture effectively 

combines the strengths of neural networks with physics 

knowledge, enabling generalized damage detection and 

localization in dynamic systems. It operates based on structural 

response measurements obtained from simulated models and is 

adaptable to various damage scenarios, enhancing the damage 

classification accuracy, especially as the modeling error 

increases with improvements of over 10% compared to black-

box models.  

When dealing with diagnostics, training and test data often 

differ in operating scenarios. The study in [234] introduces a 

physics-informed feature weighting technique. This approach 

leverages prior physical knowledge related to faults to extract 

robust and distinguishing features that remain resilient to 

variations in operational parameters. Specifically, it 

incorporates a unique physics-informed feature weighting 

layer, which enhances the model's sensitivity to features 

associated with faults. Similar to an attention mechanism, the 

weighting layer assigns higher importance to features relevant 

to fault conditions. By imposing constraints on the distribution 

of feature weights, prior physical knowledge is seamlessly 

integrated into the model.  

2) Prognostics 

In the domain of RUL estimation, PIML has emerged as a 

powerful approach to enhance the accuracy of predictive 

maintenance methods. Traditional data-driven approaches 

utilizing neural networks often yield unreasonable RUL 

estimates due to a lack of consideration for the physical 

properties of the system.  

For instance, Lu et al. [235] present the integration of PINN 

into RNN based RUL estimation methods. By incorporating 

monotonicity and boundary condition constraints into the 

neural network's loss function, the experiments conducted over 

an IGBT dataset, the first application of its kind to estimate the 

RUL of power electronic devices, reveal significant 

improvements in regression performance, as indicated by 

improved Mean Square Error and coefficient of determination 

in comparison to baseline RNN methods.  



The paper in [206] discusses a new approach to modeling 

battery degradation and predicting the RUL of batteries under 

varying operating conditions. The work focuses on the 

integration of a physics-based calendar and cycle aging model 

constructed from various other stress sources into a machine 

learning framework made of a custom LSTM layer, as 

discussed in the previous section on physics informed 

activation functions. The approach is demonstrated using 

experimental data, showing accurate state estimation that 

outperforms state-of-the-art data-driven methods by up to 

fivefold in degradation modeling, while RUL estimation 

conducted with the physics-informed model provides accurate 

results. 

In [217], a hybrid PIML framework is utilized to derive the 

RUL of safety-critical systems. The hybrid framework merges 

the strengths of physics-based performance models with deep 

learning algorithms for prognostics. Within this framework, 

physics-based models serve to deduce unobservable parameters 

linked to the health of the system's components through a 

calibration process. These inferred parameters are then 

integrated with sensor data and serve as inputs for a DNN. This 

fusion results in a data-driven prognostic model enriched with 

physics-derived features. Experimental results demonstrate the 

superiority of the hybrid approach compared to purely data-

driven methods, extending the prediction horizon by more than 

120%, while offering greater robustness with less reliance on 

extensive training data, making it less sensitive to dataset 

representativeness issues. 

The work in [236] presents a health prognostics approach, 

addressing the challenges of predicting the RUL under complex 

systems’ physics and external operational conditions. A 

knowledge-constrained machine learning framework is 

introduced to model the stochastic degradation of battery 

performance over working cycles. The method points out a 

synchronized Kalman-Filter and ANN combination as a 

diagnosis tool that extracts battery’s health information. Then a 

knowledge-constrained Gaussian Process method is developed, 

incorporating prior knowledge about battery capacity fade as 

additional constraints. These constraints enhance the fidelity of 

machine learning models, leading to improved RUL predictions 

during operation. 

Another study looked at RUL estimation using multisensory 

data under dynamic operating conditions and multiple failure 

modes [237]. It combines the auto-regressive moving average 

(ARMA) mechanism with a graph convolutional network and 

gate recurrent unit for efficient information extraction. The 

method incorporates maintenance physics-based knowledge 

into the loss function, ensuring high-fitting accuracy with 

strong security. Fig. 16 summarizes the main application areas 

of some prominent PIML models. 

 

Fig. 16. Application areas of main PIML models for predictive 

maintenance 

VI. CONCLUSION AND PERSPECTIVES 

Knowledge of the degradation mechanisms under different 

stresses is important to gain a fundamental understanding of 

driving forces of power converter failures, and to design 

appropriate strategies for predictive maintenance. Huge effort 

has been spent on understanding the underlying mechanisms 

from a component perspective, based on failure experiments 

and accelerated aging. Following the development of scientific 

paradigms, maintenance strategies have gone through 

empirical, physics-based, and data-based modeling, with 

remaining shortcomings of accuracy, applicability, resource 

allocations, and comprehensiveness.  

PIML-based modeling has great potential to overcome those 

challenges. PIML is a rapidly growing field that combines the 

strengths of machine learning and physics to solve complex 

problems. In the context of predictive maintenance, PIML 

techniques have emerged as a promising approach for 

improving the reliability and performance of power converters. 

This work discussed many ways in which PIML can be used to 

participate in the predictive maintenance effort for power 

converters. Encouraging results have been coming so far, but 

there are more research directions in which PIML can be 

beneficial including model reduction, inverse modeling, and 

synthetic data generation. As we go towards integrating physics 

in the machine learning models for complex and multiphysical 

systems such as power converters, the activity of predictive 

maintenance needs to rely on understanding the complex 

degradation mechanisms. However, obtaining reliable data is a 

challenge in this field, often limited to electrical and 

temperature parameters. To address this, we need a holistic 

approach, considering parameters beyond electricity and 

temperature. These include humidity, vibrational 

characteristics, including acoustics and ultrasounds. High-

quality, diverse data is crucial for robust predictions, 
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particularly in complex models prone to overfitting such as 

PIML models. 

In the same way, and while PIML strategies have become 

indispensable for modeling complex system behavior, they 

have, thus far, not received sufficient attention in terms of data 

collection and adaptive sampling strategies. The location from 

which samples are collected, whether for experimental data 

acquisition or numerical sampling for solving PDEs, 

significantly influences convergence and accuracy. Deliberate 

considerations in this regard are imperative. This pursuit for 

more comprehensive data inherently presents challenges in data 

storage and processing speed, especially when dealing with 

fast-paced dynamics. Advanced compressed sensing (CS), with 

a focus on representing key physical characteristics, becomes 

indispensable in managing these limitations effectively. 

Besides, for more robust predictive maintenance solutions, we 

need to elevate our understanding of system-level physics. 

Often, there is an imbalance between component-level and 

system-level physical knowledge. The more insights we glean 

into broader system physics, the more adeptly we can harness 

various PIML frameworks, harmonizing them to make 

predictions that are more accurate. 

If we take a closer look at PIML models, we can see that those 

employing physics-informed loss functions or hybrid models, 

that combine physics-based and data-driven models, often rely 

on empirical ways to determine the weights of the multi-task 

learning formulation. There is a clear need for comprehensive 

studies and guidelines to establish principled weight 

determinations. 

Moreover, the inherent complexity of PIML methods, which 

integrate various types of constraints, demands dedicated 

optimization techniques. Traditional optimizers may falter 

when confronted with these intricate problems, and although we 

have presented many different optimization techniques, they 

have been developed particularly for PDE solving, but 

knowledge sources are not just PDEs, therefore there is an 

increasing need for optimization strategies tailored explicitly to 

PIML methodologies with various knowledge inputs. These 

optimized approaches promise improved performance and 

accelerated convergence. 

Another promising research avenue is the continuous update 

of predictive maintenance models with new observations, 

drawing inspiration from data assimilation techniques for 

example. This adaptive approach ensures that predictive 

maintenance models remain attuned to evolving real-world 

conditions. This can further enhance the capabilities and 

accuracy of uncertainty quantification methods over time as 

new predictions inform the prior probability distributions of 

inputs, directly benefiting maintenance professionals that are as 

interested in the predictions as the associated uncertainties.  

Also, from a practical angle, hybrid models show remarkable 

versatility, capable of learning from limited labeled data. They 

emerge as a very promising tool to bridge the gap between 

measured and simulated data, a common challenge in predictive 

maintenance and especially for expensive to label and diagnose 

systems such as power converters. 

Furthermore, embedding PIML algorithms at the edge holds 

the potential to revolutionize online predictive maintenance. By 

developing edge AI frameworks tailored for PIML, we can 

enhance performance and address the critical concerns 

surrounding data privacy. 

Lastly, there is immense scope for leveraging predictive 

maintenance insights for control strategies. Techniques like 

reinforcement learning or model predictive control can help 

optimize power profiles and load distribution depending on the 

prediction outputs, ensuring cost-efficient maintenance 

planning while accommodating external factors like supply 

chain disruptions or weather forecasts. 
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