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Construction, analysis and implementation of two nodal finite

volume schemes for the PN model for particle transport in 2D

Christophe Buet∗, Stéphane Del Pino† and Victor Fournet‡

Abstract

In this paper, we present two new nodal finite volume schemes for the PN model on
arbitrary polygonal meshes in 2D. We show that these schemes are well-defined, conser-
vative and stable, finally we prove their convergence. We also present some numerical
results.

1 Introduction

In this work we consider the linear kinetic equation that governs the evolution of a
particle distribution f

∂tf(x, ω, t) +∇ · (ωf(x, ω, t)) + (σa + σs)f(x, ω, t) =
1

4π
σs

∫
S2
f(x, ω, t)dω.

Under appropriate scaling this equation can be viewed as a simplified model of radiative
transfer (see for instance [17] or [13]). Because the function f lives on a high dimensional
space (one dimension of time, three of space and two for the velocity), solving this linear
kinetic equation by a discretization directly in the phase space is in general too expensive
with regard to the computational time. Moreover, the evolution of f is non-local due to
the collision operator, so it is necessary to use an approximate model. There are many
such models (we can mention PN [10], SN [7] and MN [4]). In this document, we are
interested in the PN model. It consists in using a spectral Galerkin discretization of the
velocity space using the spherical harmonics as basis. The dimension of the phase space
is thus reduced by two at the cost of replacing an equation by a system of equations,
which can be written, based on the work of Hermeline [10], in the form{

∂tg +A∂xh+B∂yh+ C∂zh = − ((σa + σs)I− σse1 ⊗ e1)g,

∂th+AT∂xg +BT∂yg + CT∂zg = −(σa + σs)h,

where e1 = (1, 0, . . . , 0)
T
and where g and h denote respectively the compound vectors

of even and odd moments of f .
On rectangular grids, finite volume and staggered discretizations have been proposed

in [15] and [19]. In [10], a DDFV scheme [9] was proposed to approximate the PN model
on general grids. A Trefftz Discontinous Galerkin method was studied in [14].

The strategy chosen here, is to discretize this new model using a nodal finite volume
scheme: the fluxes are not computed at the edges, but at the vertices of the mesh.
Such schemes have been first developed for Lagrangian hydrodynamics [12, 6, 11]. The
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construction and analysis of such a scheme has already been done for the P1 model in 2D
on polygonal meshes, in order to write a scheme called asymptotic preserving [1]. The
aim of this work, in order to generalize these results to the PN model for N > 1, is, in a
first step, to construct a nodal solver for this model.

In the work of Buet, Després, Franck [1], the authors have considered the P1 model{
∂tg +∇ · h = 0,

∂th+∇g = −σsh,

and they studied a nodal finite volume scheme. Here, we consider only the free streaming
case (σa = σs = 0), since it is the first step in order to write an asymptotic preserving
nodal scheme 1 for PN . Following the work of Després, Mazeran [12] for Lagrangian
hydrodynamics, the scheme proposed in [1] reads, when σa = σs = 0: for all cell j of the
mesh, 

d

dt
gj +

1

Vj

∑
r∈Rj

ljr(hr,njr) = 0,

d

dt
hj +

1

Vj

∑
r∈Rj

ljrgjrnjr = 0,

where Vj is the volume of the cell j, ljr := ∥∇xr
Vj∥ and njr = 1

ljr
∇xr

Vj . The fluxes are

given by 
gjr = gj + (hj − hr,njr),∑

j∈Jr

ljrnjr ⊗ njr

hr =
∑
j∈Jr

ljr(gjnjr + njr ⊗ njrhj),

where we denoted by Rj the set of nodes of the cell j and by Jr the set of cells connected
to the node r. They show in particular, in a very simple way, that the matrix∑

j∈Jr

ljrnjr ⊗ njr

is invertible as soon as the mesh is non-degenerate. In this paper, we write the analog
of this scheme for the PN model

d

dt
gj +

1

Vj

∑
r∈Rj

ljrUg
θjr
AUh

−θjrhr = 0,

d

dt
hj +

1

Vj

∑
r∈Rj

ljrUh
θjrA

TUg
−θjr

gjr = 0,

with 
gjr = gj + Ug

θjr
PgP

T
h Uh

−θjr (hj − hr),∑
j∈Jr

Mjr

hr =
∑
j∈Jr

Mjrhj +
∑
j∈Jr

ljrUh
θjrA

TUg
−θjr

gj .

Here, Ug
θjr

and Uh
θjr

are the rotation matrices that express the rotational invariance of

the spherical harmonics (known as Wigner D-matrices). The matrices Pg and Ph, whose
columns are orthonormal vectors, are defined in Proposition 2.8 page 9. Finally, the
matrices Mjr are defined by (3.21) or (3.28), according to the scheme.

The problem of the invertibility of the matrix
∑

j∈Jr
Mjr is much more difficult than

in the case P1. This is due in particular to the fact that the space generated by the odd
spherical harmonics is of higher dimension than the physical space, contrary to the case
N = 1 where the dimensions are equal. Our first main result establishes that under the

1. As it is shown in [1], it is important to consider nodal solvers to build a consistent scheme in the
diffusion limit.
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same mesh conditions as for the finite nodal volume scheme for the P1 model, this matrix
is invertible. Our second main result is the proof of convergence of the nodal schemes
for the PN model.

In the first part, we recall how to obtain the PN model from the linear kinetic equation
considered and we recall several properties of the PN model in 3D and 2D. In the second
part, we recall some results related to the PN model. In the third part, whose results
are new, we propose two nodal finite volume schemes and demonstrate their properties:
these schemes are well defined, conservative, L2-stable and finally they converge. Finally
in the fourth part, we show several numerical results.

2 The PN model

In this Section, we recall how to derive the PN model from the linear kinetic equation.
We then recall some important properties of the PN model which will allow us to write
the nodal finite volume scheme. We use the presentation of the PN model made in [10].

2.1 From linear kinetic equation to the PN model

Let Ω be a bounded lipschitz open set of R3 and f : Ω× S2 × [0,+∞[−→ R solution
of the linear kinetic equation

∂tf +∇ · (ωf) + (σa + σs)f =
1

4π
σs

∫
S2
fdω, in Ω× S2 × [0,+∞[,

f(x, ω, t) = f(x, ω − 2(ω · n)n, t), if ω · n ≤ 0, in ∂Ω× S2 × [0,+∞[,

f(x, ω, t = 0) = f0(x, ω), in Ω× S2,

(2.1)

with f0 ∈ L2(Ω× S2), n the outgoing normal at the boundary of Ω, and ω ∈ S2, σa and
σs are the absorption and scattering coefficients respectively. We use a parametrization
of the sphere

ω = (ω1, ω2, ω3) = (cosψ sinβ, sin sinβ, cosβ),

with 0 ≤ ψ < 2π and 0 ≤ β ≤ π. In the following, we assume σa = σs = 0.
Let k and m be two integers with 0 ≤ |m| ≤ k. Suppose that for all (x, t) ∈

R3 × [0,+∞[, the function (ψ, β) 7→ f(x, ψ, β, t) is in L2(S2). Consider the expansion of
f in the real spherical harmonics basis Xm

k (see [10] for the definition of the Xm
k )

∀(x, ψ, β, t) ∈ R3 × S2 × [0,+∞[ , f(x, ψ, β, t) =

+∞∑
k=0

k∑
m=−k

fmk (x, t)Xm
k (ψ, β),

where fmk are called the moments of f ,

fmk (x, t) =
1

4π

∫
S2
f(x, ψ, β, t)Xm

k (ψ, β)dψdβ.

We note X = (Xm
k )k∈N,|m|≤k and u = (fmk )k∈N,|m|≤k. Let us inject the development

of f in (2.1). Noting that f = X · u, we can write

X · ∂tu+

3∑
i=1

ωiX · ∂iu = 0.

Multiplying by X, one gets

X(X · ∂tu) +
3∑

i=1

ωiX(X · ∂iu) = 0,

which is also written

(X⊗X)∂tu+

3∑
i=1

ωi(X⊗X)∂iu = 0.
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Finally, by integrating over S2 and dividing by 4π, we find

1

4π

∫
S2
X⊗Xdω∂tu+

1

4π

3∑
i=1

∫
S2
ωiX⊗Xdω∂iu = 0.

Moreover, since the spherical harmonics form an Hilbertian basis of L2(S2), one gets

1

4π

∫
S2
X⊗Xdω = I.

We pose

Ai =
1

4π

∫
S2
ωiX⊗Xdω, 1 ≤ i ≤ 3. (2.2)

Note that the matrices Ai are symmetric. We then obtain the PN model

∂tu+A1∂xu+A2∂yu+A3∂zu = 0. (2.3)

Moreover, for 1 ≤ i ≤ 3∫
S2
ωiX⊗Xdω∂iu = ∂i

∫
S2
ωi X⊗Xu︸ ︷︷ ︸

=(X·u)X

dω,

= ∂i

∫
S2
ωifXdω,

= ∂i

(∫
S2
ωifX

m
k dω

)
k∈N

|m|≤k

.

After a calculation [10], we obtain 2

1

4π

∫
S2
ωfXm

k dω =

 εm(Am
k f

m+1
k+1 −Bm

k f
m+1
k−1 )− ζm(Cm

k f
m−1
k+1 −Dm

k f
m−1
k−1 )

ηm(Am
k f

−m−1
k+1 −Bm

k f
−m−1
k−1 ) + θm(Cm

k f
−m+1
k+1 −Dm

k f
−m+1
k−1 )

Em
k f

m
k+1 + Fm

k f
m
k−1

 ,

(2.4)
with the notations

Am
k =

√
(k +m+ 1)(k +m+ 2)

(2K + 1)(2k + 3)
, Bm

k =

√
(k −m− 1)(k −m)

(2k − 1)(2k + 1)
,

Cm
k =

√
(k −m+ 1)(k −m+ 2)

(2k + 1)(2k + 3)
, Dm

k =

√
(k +m− 1)(k +m)

(2k − 1)(2k + 1)
,

Em
k =

√
(k −m+ 1)(k +m+ 1)

(2k + 1)(2k + 3)
, Fm

k =

√
(k −m)(k +m)

(2k − 1)(2k + 1)
,

and

εm =



− 1
2 if m < −1,

0 if m = −1,√
2
2 if m = 0,
1
2 if m = 1,
1
2 if m > 1,

ζm =



− 1
2 if m < −1,

− 1
2 if m = −1,

0 if m = 0,√
2
2 if m = 1,
1
2 if m > 1,

ηm =



− 1
2 if m < −1,

−
√
2
2 if m = −1,√

2
2 if m = 0,
1
2 if m = 1,
1
2 if m > 1,

θm =



− 1
2 if m < −1,

− 1
2 if m = −1,

0 if m = 0,

0 if m = 1,
1
2 if m > 1.

2. with the convention that fm
k = 0 if |m| > k.
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For the moment, the matrices Ai and the vector u are infinite. The PN model consists
in truncating the development of f to the order N

fN (x, ψ, β, t) :=

N∑
k=0

k∑
m=−k

fmk (x, t)Xm
k (ψ, β),

which amounts to truncate the terms corresponding to k > N in u and the Ai and thus
to obtain a finite vector and matrices. For the following, based on [10], we note

g =
(
fm2p
)
2p≤N
|m|≤2p

,

the compound vector of even moments, and

h =
(
fm2p+1

)
2p+1≤N
|m|≤2p+1

,

the compound vector of odd moments. We will then reorder the basis of the spherical
harmonics in order to put first the even moments and then the odd moments, that is to
say multiplying u and the Ai by a permutation matrix, that we still denote u and Ai.
We obtain

u =

(
g
h

)
.

Moreover we notice that in this basis, from (2.4), the matrices Ai have the following
block structure [10]

A1 =

(
0 A
AT 0

)
, A2 =

(
0 B
BT 0

)
, A3 =

(
0 C
CT 0

)
.

Thus (2.3) writes {
∂tg +A∂xh+B∂yh+ C∂zh = 0,

∂th+AT∂xg +BT∂yg + CT∂zg = 0.

We note m3D the size of u, i.e. the number of unknowns in the system, m3D
e the number

of even moments and m3D
o the number of odd moments. Following [10, 14], one has

m3D = m3D
e +m3D

o = (N + 1)2, m3D
e =

1

2
N(N + 1) and m3D

o =
1

2
(N + 1)(N + 2).

2.2 3D configuration

In this Section, we recall some important properties of the PN model in dimension 3.
The first one is the eigenvalue structure of matrices Ai. The second one is the rotational
invariance of the 3D model.

2.2.1 Eigenvalue structure

We recall a result on the structure of the spectrum of matrices Ai, established by
Garrett and Hauck.

Proposition 2.1 ([8]). For any v, v∗ ∈ S2, the matrices defined by

M :=
1

4π

∫
S2
(v · ω)X⊗Xdω, and M∗ :=

1

4π

∫
S2
(v∗ · ω)X⊗Xdω,

have the same eigenvalues, and their eigenvectors differ only by one unitary transforma-
tion. That is, if M = λv, then M∗(Uv) = λ(Uv) with U a unitary matrix.

From this, they deduced the following Corollary which is important from both the
theoretical and the practical point of view.
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Corollary 2.2 ([8]). The eigenvalues of A1, A2 and A3 are equal and their eigenvectors
differ only by one unitary transformation. Moreover, if λ is a nonzero eigenvalue of Ai,
then −λ is also an eigenvalue.

We finally recall a last important result about the eigenvalues of AAT that has been
established in Morel’s PhD Thesis.

Proposition 2.3 ([14]). The matrix AAT is invertible and all its eigenvalues are strictly
positive.

2.2.2 Rotational invariance in 3D

We use the rotation matrices in the spherical harmonic basis (see [16])

U(α, β, γ) ∈ Rm3D×m3D

,

where α, β, γ are the rotation angles around the axes Ox, Oy, Oz respectively. In the
configuration stated above, U(α, β, γ) is a block matrix of the form (see [16, 14])

U(α, β, γ) = diag
(
∆0(α, β, γ),∆2(α, β, γ), . . . ,∆m3D

e
(α, β, γ), . . . ,∆m3D

o
(α, β, γ) ,

with
∆k(α, β, γ) = Wk(α)Dk(β)Wk(γ) ∈ R(2k+1)×(2k+1).

The matrix Dk ∈ R(2k+1)×(2k+1) is a Wigner D-matrix [21] and the matrix Wk has
nonzero elements only on its diagonal and its anti diagonal

Wk(α) =



cos kα sin kα
. . . 0 . .

.

cos 2α sin 2α
cosα sinα

0 1 0
− sinα cosα

− sin 2α cos 2α

. .
. 0 . . .

− sin kα cos kα


.

Let us consider a rotation of angle θ in the xy plane

Uθ := U(0, 0, θ) ∈ Rm3D×m3D

.

It reads
Uθ = diag

(
W0(θ),W2(θ), . . . ,Wm3D

e
(θ),W1(θ), . . . ,Wm3D

o
(θ)
)
.

The matrix U represents the action of an orthogonal transformation on X(ω), that is, if
Q ∈ R3×3 is an orthogonal matrix, then

X(Qω) = U(α, β, γ)X(ω). (2.5)

Proposition 2.4 (Invariance by 3D rotation [14]). The matrices A1 and A2 satisfy the
relations

A1 cos θ +A2 sin θ = UθA1U−θ, −A1 sin θ +A2 cos θ = UθA2U−θ.

Remark. An interesting particular case is θ = π
2

A2 = Uπ
2
A1U−π

2
.
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2.3 2D configuration

In the following, we limit ourselves to the 2D case. We assume that the solution has
a symmetry with respect to the xy plane. This is equivalent to the fact that f is an even
function of cosβ.

Proposition 2.5 ([10, 14]). If f is even with respect to cosβ, then the moments fmk
such that k +m is odd are zero.

This choice simplifies the Ai matrices by removing rows and columns such that k+m
is odd. We now describe the PN model in 2D. We have

m2D =
1

2
(N + 1)(N + 2), me =

1

4
(N + 1)2, mo =

1

4
(N + 1)(N + 3),

where m2D is the number of unknowns, me the number of even moments and mo the
number of odd moments. Note that we always have mo > me. The PN model in
dimension 2 writes

∂t

(
g
h

)
+A1∂x

(
g
h

)
+A2∂y

(
g
h

)
= 0, (2.6)

with

A1 =

(
0 A
AT 0

)
, A2 =

(
0 B
BT 0

)
. (2.7)

After deleting the rows and columns that correspond to moments such that k+m is odd,
the rotation matrix Uθ reduces to [14]

Uθ =

(
Ug
θ 0
0 Uh

θ

)
, (2.8)

with

Ug
θ =


W0

W2 0
. . .

0 WN−1

 , Uh
θ =


W1

W3 0
. . .

0 WN

 ,

and where the Wk are defined by

W2k+1(θ) =



cos(2k + 1)θ sin(2k + 1)θ
. . . 0 . .

.

cos 3θ sin 3θ

0 cos θ sin θ 0
− sin θ cos θ

− sin 3θ cos 3θ

. .
. 0 . . .

− sin(2k + 1)θ cos(2k + 1)θ


,

and

W2k(θ) =



cos 2kθ sin 2kθ
. . . 0 . .

.

cos 2θ sin 2θ

0 1 0
− sin 2θ cos 2θ

. .
. 0 . . .

− sin 2kθ cos 2kθ


. (2.9)
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Example 2.6. For N = 3, we have

A =


0 1√

3
0 0 0 0

1√
5

0
√

3
14 − 1√

70
0 0

0 − 1√
15

0 0
√

6
35 0

0 − 1√
5

0 0 − 1√
70

√
3
14

 ,

Ug
θ =


1 0 0 0
0 cos 2θ 0 sin 2θ
0 0 1 0
0 − sin 2θ 0 cos 2θ

 , Uh
θ =


cos θ sin θ 0 0 0 0
− sin θ cos θ 0 0 0 0

0 0 cos 3θ 0 0 sin 3θ
0 0 0 cos θ sin θ 0
0 0 0 − sin θ cos θ 0
0 0 − sin 3θ 0 0 cos 3θ

 .

For N = 5, we have

A =



0 1√
3

0 0 0 0 0 0 0 0 0 0

1√
5

0
√

3
14 − 1√

70
0 0 0 0 0 0 0 0

0 − 1√
15

0 0
√

6
35 0 0 0 0 0 0 0

0 1√
5

0 0 − 1√
70

√
3
14 0 0 0 0 0 0

0 0
√
2
3 0 0 0

√
5
22 − 1

3
√
22

0 0 0 0

0 0 − 1
3
√
14

√
5
42 0 0 0

√
14
11

3 − 1√
33

0 0 0

0 0 0 0 −
√

2
21 0 0 0 0

√
5
33 0 0

0 0 0 0
√

5
42 − 1

3
√
14

0 0 0 − 1√
33

√
14
11

3 0

0 0 0 0 0
√
2
3 0 0 0 0 − 1

3
√
22

√
5
22



,

Ug
θ =



1 0 0 0 0 0 0 0 0
0 cos(2θ) 0 sin(2θ) 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 − sin(2θ) 0 cos(2θ) 0 0 0 0 0
0 0 0 0 cos(4θ) 0 0 0 sin(4θ)
0 0 0 0 0 cos(2θ) 0 sin(2θ) 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 − sin(2θ) 0 cos(2θ) 0
0 0 0 0 − sin(4θ) 0 0 0 cos(4θ)


,

Uh
θ =



cos(θ) sin(θ) 0 0 0 0 0 0 0 0 0 0
− sin(θ) cos(θ) 0 0 0 0 0 0 0 0 0 0

0 0 cos(3θ) 0 0 sin(3θ) 0 0 0 0 0 0
0 0 0 cos(θ) sin(θ) 0 0 0 0 0 0 0
0 0 0 − sin(θ) cos(θ) 0 0 0 0 0 0 0
0 0 − sin(3θ) 0 0 cos(3θ) 0 0 0 0 0 0
0 0 0 0 0 0 cos(5θ) 0 0 0 0 sin(5θ)
0 0 0 0 0 0 0 cos(3θ) 0 0 sin(3θ) 0
0 0 0 0 0 0 0 0 cos(θ) sin(θ) 0 0
0 0 0 0 0 0 0 0 − sin(θ) cos(θ) 0 0
0 0 0 0 0 0 0 − sin(3θ) 0 0 cos(3θ) 0
0 0 0 0 0 0 − sin(5θ) 0 0 0 0 cos(5θ)


.

Finally we have as in 3D, the relations

Proposition 2.7 (Invariance by 2D rotation [14]). The matrices A1 and A2 satisfy the
relations

A1 cos θ +A2 sin θ = UθA1U−θ, −A1 sin θ +A2 cos θ = UθA2U−θ.

Let us give a last result that plays a significant role in the construction and in the
analysis of the numerical scheme that will be proposed in the next Section. Actually, we
will use a particular diagonalization of A1.

8



Proposition 2.8 ([3]). The matrix A1 admits the diagonalization A1 = PDPT with

P =
1√
2

(
Pg Pg 0

Ph −Ph

√
2P0,h

)
, D =

D+ 0 0
0 −D+ 0
0 0 0

 .

Such that

— D+ ∈ Rme×me is positive definite diagonal,

— Pg ∈ Rme×me is orthogonal,

— The columns of Ph ∈ Rmo×me are orthonormal vectors,

moreover, A = PgD+P
T
h .

Lemma 2.9 ([2]). We have dimKerA = mo −me =
N + 1

2
.

3 Finite volume scheme

In this Section, we define the Glace [12, 6, 5] and Eucclhyd [11] schemes for the PN

model. We first study the 1D case, using a formalism close to the 2D. Then we study the
2D case and we show that these schemes are well defined if the mesh is not degenerated,
i.e. under the same conditions as the nodal finite volume scheme for P1. We then give
several properties of the Glace and Eucclhyd schemes for PN , in particular we show their
convergences for a sufficiently regular initial data.

3.1 Definition of the scheme

In order to ease the introduction of the nodal finite volume scheme in 2D, we first
consider the 1D case.

3.1.1 Dimension 1

In dimension 1, the PN model recasts as

∂t

(
g
h

)
+A1∂x

(
g
h

)
= 0.

We use the Proposition 2.8 to write A1 = PDPT , with

P =
(
P+ P− P0

)
,

where P+ (respectively P−) is the matrix composed of the eigenvectors corresponding
to the positive (respectively negative) eigenvalues, and P0 the matrix composed of the
eigenvectors corresponding to the null eigenvalues. We then rewrite the system as

∂tw +D∂xw = 0,

with w = PT

(
g
h

)
the Riemann invariants.

Standard finite volume scheme The derivation of such a scheme is quite straight-
forward following [18] or [20]. It is detailed here to fix ideas and to enlighten the diffi-
culties that arise in the case of a nodal finite volume discretization.

Let M be an admissible mesh, and j ∈ J be a cell of the mesh. We note ∆xj the
length of the cell j (∆xj = xj+ 1

2
− xj− 1

2
). We write the finite volume scheme

d

dt
wj +

1

∆xj

D+ 0 0
0 D− 0
0 0 0

 (wj+ 1
2
−wj− 1

2
) = 0. (3.1)
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Recall that, due to the eigenvalue structure of A1, we have D− = −D+.
We compute the value of the first order fluxes by using the upwind value{

w+
j+ 1

2

= w+
j ,

w−
j+ 1

2

= w−
j+1.

With w±
j the vector of Riemann invariants corresponding to positive (respectively neg-

ative) eigenvalues. We also note w0
j the vector of Riemann invariants corresponding to

zero eigenvalues.
Injecting these fluxes in (3.1), we get

d

dt

w+
j

w−
j

w0
j

+
1

∆xj

D+ 0 0
0 −D+ 0
0 0 0

w+
j −w+

j−1

w−
j+1 −w−

j

0

 = 0.

Multiplying by P on the left, we finally find

d

dt

(
gj

hj

)
+

1

∆xj
P

D+ 0 0
0 −D+ 0
0 0 0

PT
+

0
0

(gj − gj−1

hj − hj−1

)
+

 0
PT
−
0

(gj+1 − gj

hj+1 − hj

) = 0.

(3.2)

Proposition 3.1. The scheme (3.2) is conservative.

Proof. The system (3.1) being entirely decoupled and composed ofm2D scalar equations,
we can write directly that

∑
j∈J

∆xj
d

dt
wj = −

∑
j∈J

D+ 0 0
0 −D+ 0
0 0 0

 (wj+ 1
2
−wj− 1

2
),

= −

D+ 0 0
0 −D+ 0
0 0 0

∑
j∈J

(wj+ 1
2
−wj− 1

2
) = 0,

where we used the fact that the sum of the second line is telescopic. Finally, since

w = PT

(
g
h

)
, we have ∑

j∈J
∆xj

d

dt

(
gj

hj

)
= 0.

Nodal finite volume scheme Following the work of [1, 5], we now write the solver
at nodes

d

dt

(
gj

hj

)
+

1

∆xj
A1

(
gj,j+ 1

2
− gj,j− 1

2

hj+ 1
2
− hj− 1

2

)
= 0. (3.3)

One should note that in view of writing a nodal solver in 2D, the fluxes gj,j+ 1
2
may differ

from gj+1,j+ 1
2
. The continuity of the fluxes and thus the local conservativity are no more

encoded directly in the scheme structure.
Also, in view of 2D case, we will write the scheme using new notations and substitute

A1 according to (2.7). It gives
d

dt
gj +

1

∆xj

∑
r∈Rj

ACjrhr = 0

d

dt
hj +

1

∆xj

∑
r∈Rj

ATCjrgjr = 0,
(3.4)
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with Rj = {j − 1
2 , j +

1
2}, and

Cjr =

{
+1 if r = j + 1

2 ,

−1 if r = j − 1
2 .

At this stage, there are more unknowns than equations. However, following [12], we first
restore the conservation of the scheme by adding the condition∑

j∈Jr

ATCjrgjr = 0, (3.5)

where Jr is the set of cells connected to the vertex r (for example if r = j + 1
2 , Jr =

{j, j + 1}).
Proposition 3.2. The scheme (3.4)-(3.5) is conservative.

Proof. Let us treat each equation of (3.4) separately. On the one hand, for the first
equation ∑

j∈J
∆xj

d

dt
gj =−

∑
j∈J

∑
r∈Rj

ACjrhr, (3.6)

=−
∑
r∈R

∑
j∈Jr

Cjr


︸ ︷︷ ︸

=0

Ahr = 0. (3.7)

On the other hand, for the second equation∑
j∈J

∆xj
d

dt
hj =−

∑
j∈J

∑
r∈Rj

ATCjrgjr, (3.8)

=−
∑
r∈R

∑
j∈Jr

ATCjrgjr


︸ ︷︷ ︸

=0 by (3.5)

= 0. (3.9)

The scheme (3.4)-(3.5) is therefore conservative.

As for standard finite volume schemes, the fluxes are computed thanks to the Riemann
invariants 

PT
+

(
gj,j+ 1

2

hj+ 1
2

)
= PT

+

(
gj

hj

)
, and (3.10)

PT
−

(
gj+1,j+ 1

2

hj+ 1
2

)
= PT

−

(
gj+1

hj+1

)
, (3.11)

with the notations of (3.3). We can write this system of equations in a unified way with
the use of the rotation matrices Uθ (2.8)

PT
+U−θjr

(
gjr

hr

)
= PT

+U−θjr

(
gj

hj

)
. (3.12)

As we are in 1D, the only possible values of θjr are

θjr =

{
0 if r = j + 1

2 ,

π if r = j − 1
2 ,

moreover we have
PT
+Uπ = PT

− .
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To calculate the gjr fluxes, we write the decomposition of the Proposition 2.8

PT
± =

(
PT
g ±PT

h

)
, Uθjr =

(
Ug
θjr

0

0 Uh
θjr

)
. (3.13)

We then develop the matrix products of (3.12)

PT
g Ug

−θjr
gjr + PT

h Uh
−θjrhr = PT

g Ug
θjr

gj + PT
h Uh

θjrhj ,

so we can compute
gjr = gj + Ug

θjr
PgP

T
h Uh

−θjr (hj − hr). (3.14)

We then inject (3.14) into (3.5) which gives∑
j∈Jr

ATUg
θjr
PgP

T
h Uh

−θjrCjrhr =
∑
j∈Jr

ATCjrgj +
∑
j∈Jr

ATUg
θjr
PgP

T
h Uh

−θjrCjrhj .

By writing the sum explicitly (with Jr = {j, j + 1}), we finally find that

ATUg
0 PgP

T
h Uh

0 hr +ATUg
πPgP

T
h Uh

−π(−hr)

= AT (gj − gj+1) +ATUg
0 PgP

T
h Uh

0 hj +ATUg
πPgP

T
h Uh

−π(−hj+1).

Denoting by I the identity matrix, one observes that

Ug
0 = −Ug

π = −I,
and Uh

0 = −Uh
π = −I.

Therefore we get

2ATPgP
T
h hr = AT (gj − gj+1) +ATPgP

T
h (hj − hj+1). (3.15)

Actually, the matrix ATPgP
T
h is not invertible. Indeed, we have AT ∈ Rmo×me and

PgP
T
h ∈ Rme×mo . By the Rank Theorem we have

dimKerPgP
T
h + rankPgP

T
h = mo.

As rankPgP
T
h ≤ me, then dimKerPgP

T
h ≥ mo −me > 0, thus KerPgP

T
h ̸= {0}. Take

v ∈ KerPgP
T
h not null, then

ATPgP
T
h v = AT0 = 0 and KerATPgP

T
h ̸= {0},

therefore the matrix is not invertible.
This is due to the fact that we started from the 2D equation to get to the 1D, assuming

that ∂y = 0. This has the expected effect that the matrix A1 always has zero eigenvalues.
We shall show in the following, that in 2D, the nodal finite volume scheme is well

defined, the nodal matrix will be invertible under classical assumptions on the mesh.

3.1.2 Dimension 2

We will now write the nodal scheme in dimension 2, still inspired by the work of [1, 5].

Glace scheme Recall that the PN model in 2D reads

∂t

(
g
h

)
+A1∂x

(
g
h

)
+A2∂y

(
g
h

)
= 0.

Let M be an admissible mesh, and j ∈ J , J denoting the set of cells of M. We write
the finite volume scheme in semi-discrete form

d

dt
gj +

1

Vj

∑
r∈Rj

ljr(n
x
jrA+ nyjrB)hr = 0

d

dt
hj +

1

Vj

∑
r∈Rj

ljr(n
x
jrA

T + nyjrB
T )gjr = 0,

(3.16)
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where njr = (nxjr, n
y
jr) is the outgoing normal to the vertex r of the cell j. More precisely,

following [5] for instance, one sets

Cjr = ∇xrVj , ljr = ∥Cjr∥ and njr =
1

ljr
Cjr.

Here, we also denoted by Rj the set of vertices of the cell j and Jr is the set of cells that
have r as a vertex, Vj denotes the area of the cell j.

In the following, we note njr = (cos θjr, sin θjr), and Uθjr the rotation matrix de-
scribed above (2.8). Using that

Uθjr =

(
Ug
θjr

0

0 Uh
θjr

)
,

we write

UθjrA1U−θjr =

(
Ug
θjr

0

0 Uh
θjr

)(
0 A
AT 0

)(Ug
−θjr

0

0 Uh
−θjr

)
,

=

(
0 Ug

θjr
AUh

−θjr

Uh
θjr
ATUg

−θjr
0

)
.

Thus (3.16) rewrites, using the Proposition 2.7
d

dt
gj +

1

Vj

∑
r∈Rj

ljrUg
θjr
AUh

−θjrhr = 0,

d

dt
hj +

1

Vj

∑
r∈Rj

ljrUh
θjrA

TUg
−θjr

gjr = 0.

(3.17)

By noting Pθjr the eigenvector matrix of UθjrA1U−θjr , we have

PT
θjr = PTU−θjr .

We then impose the Riemann invariants in the direction of the positive eigenvalues

PT
+U−θjr

(
gjr

hr

)
= PT

+U−θjr

(
gj

hj

)
,

by doing the same decomposition as for the 1D case, we obtain the system

PT
g Ug

−θjr
gjr + PT

h Uh
−θjrhr = PT

g Ug
−θjr

gj + PT
h Uh

−θjrhj .

Then recalling that according to Proposition 2.8, Pg is an orthogonal matrix, one gets

gjr = gj + Ug
θjr
PgP

T
h Uh

−θjr (hj − hr). (3.18)

At this stage, there are more unknowns than equations, so we add the following conser-
vation constraint ∑

j∈Jr

ljrUh
θjrA

TUg
−θjr

gjr = 0. (3.19)

Injecting (3.18) into (3.19), we obtain the following linear system∑
j∈Jr

Mjr

hr =
∑
j∈Jr

Mjrhj +
∑
j∈Jr

ljrUh
θjrA

TUg
−θjr

gj , (3.20)

with
Mjr = ljrUh

θjrA
TPgP

T
h Uh

−θjr . (3.21)
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Remark. The semi-discrete Glace scheme is thus defined by (3.17) with the fluxes given
by (3.18) and (3.19).

For the scheme to be well defined it remains to show that hr is uniquely defined. In
other words, one has to show that

Mr :=
∑
j∈Jr

Mjr

is invertible. This is the purpose of the remaining of this Section.

To do so, we shall first rewrite Mjr in a more convenient way. According to Propo-
sition 2.8, A = PgD+P

T
h , so

Mjr = ljrUh
θjrA

TPgP
T
h Uh

−θjr = ljrUh
θjrPhD+ P

T
g Pg︸ ︷︷ ︸
=I

PT
h Uh

−θjr ,

that is
Mjr = ljrUh

θjrPhD+P
T
h Uh

−θjr . (3.22)

Note that we have
ATA = PhD+P

T
g PgD+P

T
h = PhD

2
+P

T
h ,

so we can write
PhD+P

T
h =

(
ATA

)1/2
.

Finally

Mjr = ljrUh
θjr

(
ATA

)1/2 Uh
−θjr . (3.23)

Proposition 3.3. The matrix Mjr is a symmetric, positive semidefinite matrix.

Proof. It is clear from (3.23) that the matrix Mjr is symmetric. Let us show that it is
positive semidefinite. If x ∈ Rmo , then

(x,Mjrx) = ljr

(
x,Uh

θjrPhD+P
T
h Uh

−θjrx
)
,

= ljr

(
PT
h Uh

−θjrx, D+P
T
h Uh

−θjrx
)
,

= ljr

(
D

1/2
+ PT

h Uh
−θjrx, D

1/2
+ PT

h Uh
−θjrx

)
≥ 0,

hence the result.

In the following, we denote M = PhD+P
T
h =

(
ATA

)1/2
. We now show that Mr =∑

j∈Jr

Mjr is invertible and under which conditions.

Lemma 3.4. One has the equality

KerM = KerA.

Proof. On the one hand,
KerM = KerPT

h ,

indeed, let x ∈ KerM , then

0 = (x,Mx),

= (x, PhD+P
T
h x),

= (D
1/2
+ PT

h x, D
1/2
+ PT

h x),

so D
1/2
+ PT

h x = 0 and x ∈ KerPT
h . The other inclusion is obvious. On the other hand,

as the columns of Ph ∈ Rmo×me are orthogonal, rankPh = me, so by the Rank Theorem
dimKerPh = mo −me. D+P

T
h , and KerA and KerPT

h have the same dimension by the
Lemma 2.9, we have KerA = KerPT

h = KerM .
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We are thus brought back to study KerA.

Lemma 3.5. Let h = (hmk )k,m odd ∈ KerA, then hmk = 0 for all k,m > 0.

Proof. Let us make a remark about the notations. Let us note (ki,mi) the index of a row,
and (kj ,mj) the index of a column, and a(ki,mi),(kj ,mj) the coefficients of the matrix A.
Note that we necessarily have that ki and mi are even, while kj and mj are odd. We
prove by induction.

Initialization Let us study the result for N = 3. The matrix A is written as

A =


0 1√

3
0 0 0 0

1√
5

0
√

3
14 − 1√

70
0 0

0 − 1√
15

0 0
√

6
35 0

0 − 1√
5

0 0 − 1√
70

√
3
14

 .

If h ∈ KerA, the linear system Ah = 0 writes

1√
3
h11 = 0,

1√
5
h−1
1 +

√
3
14h

−3
3 − 1√

70
h−1
3 = 0,

− 1√
15
h11 +

√
6
35h

1
3 = 0,

− 1√
5
h11 − 1√

70
h13 +

√
3
14h

3
3 = 0.

So we get h11 = h13 = h33 = 0. The result is true for N = 3.

Heredity Let h = (h
mj

kj
)kj ,mj odd ∈ KerA. Recall that for (k,m) even then, accord-

ing to (2.4)

(Ah)mk = εm(Am
k h

m+1
k+1 −Bm

k h
m+1
k−1 )− ζm(Cm

k h
m−1
k+1 −Dm

k h
m−1
k−1 ),

with the convention hmk = 0 if k > N or |m| > k.
Suppose that for all kj < N − 1, 0 < mj ≤ kj , odd, h

mj

kj
=0. We distinguish three

cases:

— Line of index ki = N − 1 and mi < 0.

There is nothing to say because then mj = mi − 1 and mj = mi + 1 are always
negative.

— Line of index ki = N − 1 and mi = 0.

We have four a priori nonzero coefficients, which correspond to the index columns
(kj = N − 2,mj = −1), (kj = N − 2,mj = 1), (kj = N,mj = −1), (kj = N,mj =
1). The coefficient a(N−1,0),(N−2,−1) = ζ0D0

N−1 of A is null because ζ0 = 0. The
coefficient h1N−2 is zero by hypothesis. The coefficient a(N−1,0),(N,−1) = −ζ0C0

N−1

of A is null because ζ0 = 0. There remains then a coefficient, h1N which is thus
null.

— Line of index ki = N − 1 and mi > 0 even.

We have four a priori nonzero coefficients, hm−1
N−2, h

m+1
N−2, h

m−1
N and hm+1

N . The

coefficients hm−1
N−2, h

m+1
N−2 are zero by induction assumption. The fact that the last

coefficients are zero follows from the structure of the matrix A. This can be seen
by induction. The coefficient h1N is zero according to the previous case, and so, on
the next row, we will have the coefficients h1N and h3N , so h3N is also zero. Suppose
that on the line (N − 1,mi − 2) with mi > 2, the coefficients hmi−3

N and hmi−1
N are

zero. If we now look at the line (N − 1,mi), the two a priori nonzero coefficients
are hmi−1

N and hmi+1
N , but hmi−1

N = 0 according to the work done in the previous
line and so hmi+1

N is also zero. It follows that we have hmN = 0 if m > 0.

In conclusion, for any odd k, if m > 0, odd, then hmk = 0.
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Theorem 3.6. Take θ ∈ ]0, π[ , thus the matrix

Mθ =M + Uh
θ MUh

−θ

is invertible.

Proof. As M is symmetric positive semidefinite,

KerMθ = KerM ∩KerUh
θ MUh

−θ.

By using the Lemma 3.4
KerMθ = KerA ∩KerAUh

−θ.

We want to show that this intersection is null, as soon as θ ̸= 0 mod π. Let h = (hmk ) ∈
KerA, we want to show that if Uh

−θh ∈ KerA, then h = 0. By the Lemma 3.5, h is of
the form

h =



h−1
1

0
h−3
3

h−1
3

0
0
...


and therefore

Uh
−θh =



h−1
1 cos θ
h−1
1 sin θ

h−3
3 cos 3θ
h−1
3 cos θ
h−1
3 sin θ

h−3
3 sin 3θ
...


.

If Uh
−θh ∈ KerA then, hmk sin(−mθ) = 0 for all k and m < 0. Three cases are possible:

— First case: If θ = 0 mod π, this is forbidden by our assumptions.

— Second case: If hmk = 0 if m < 0, in this case we have h = 0.

— Third case: If hmk = 0 for all m < 0 odd except for the m which are written m = lp
with l ∈ N∗ and p a prime different from 2, in this case if we take θ = π

p , we would

have h ̸= 0 and Uh
−θh ∈ KerA. However, this is impossible, because if we suppose

that we are in this configuration and that h ̸= 0, we would then have at least
h−1
k = 0 for any k ≤ N odd, there are exactly N+1

2 coefficients of h of this form.

However, the dimension of KerA is N+1
2 , so this necessarily imposes that all the

other coefficients of h are zero, which gives rise to a contradiction.

In conclusion, we have shown that

KerMθ = {0}.

Corollary 3.7. If at least two njr with j ∈ Jr are non-collinear, then Mr is invertible.

Proof. One writes

Mr =Mj1r +Mj2r +
∑

j∈Jr\{j1,j2}
Mjr,

and we suppose that nj1r is not collinear to nj2r, we write

Mj1r +Mj2r = Uh
θj1r

MUh
−θj1r

+ Uh
θj2r

MUh
−θj2r

,
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so
Uh
−θj1r

(Mj1r +Mj2r)Uh
−θj1r

=M + Uh
−θj2r+θj1r

MUh
−(θj2r−θj1r)

.

We are thus brought back to the case of the Theorem 3.6 by posing θ = θj2r − θj1r ̸=
0 mod π. Let x ∈ KerMr, then

(x,Mrx) =
∑
j∈Jr

(x,Mjrx),

=
∑

j∈Jr\{j1,j2}
(x,Mjrx) + (x, (Mj1r +Mj2r)x).

AsMj1r+Mj2r is invertible and since it is positive semidefinite then it is positive definite.
If (x,Mrx) = 0, then (x, (Mj1r +Mj2r)x) = 0 and so x = 0, and Mr is invertible.

Finally we rewrite the obtained Glace scheme on a more convenient form
d

dt
gj +

1

Vj

∑
r∈Rj

ljrUg
θjr
AUh

−θjrhr = 0,

d

dt
hj +

1

Vj

∑
r∈Rj

Fjr = 0,

(3.24)

with 
Fjr = ljrUh

θjrA
TUg

−θjr
gj +Mjr(hj − hr),∑

j∈Jr

Fjr = 0, (3.25)

where Mjr = ljrUh
θjr
MUh

−θjr
.

Eucclhyd scheme The Eucclhyd version of the nodal scheme consists in considering
not one, but two Riemann invariants per cell and per vertex

PT
g Ug

−θ+
jr

g+
jr + PT

h Uh
−θ+

jr

hr = PT
g Ug

−θ+
jr

gj + PT
h Uh

−θ+
jr

hj ,

PT
g Ug

−θ−
jr

g−
jr + PT

h Uh
−θ−

jr

hr = PT
g Ug

−θ−
jr

gj + PT
h Uh

−θ−
jr

hj ,
(3.26)

and the conservation is given by∑
j∈Jr

l+jrUh
θ+
jr

ATUg

−θ+
jr

g+
jr + l−jrUh

θ−
jr

ATUg

−θ−
jr

g−
jr = 0. (3.27)

Note that since ljrnjr = l+jrn
+
jr + l−jrn

−
jr, a direct consequence of Property 2.7 is

l+jrUθ+
jr
A1U−θ+

jr
+ l−jrUθ−

jr
A1U−θ−

jr
= ljrUθjrA1U−θjr .

By injecting (3.26) into (3.27), we find∑
j∈Jr

Mjr

hr =
∑
j∈Jr

Mjrhj +
∑
j∈Jr

ljrUh
θjrA

TUg
−θjr

gj ,

with
Mjr = l+jrUh

θ+
jr

MUh
−θ+

jr

+ l−jrUh
θ−
jr

MUh
−θ−

jr

. (3.28)

This matrix is invertible according to the Theorem 3.6. We notice that, as for the Glace
scheme, the Eucclhyd scheme is put in the form (3.24)-(3.25) with the particular choice
of Mjr given by (3.28).
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3.1.3 Boundary conditions

General boundary conditions for the PN model can be quite complex. In the case of
nodal solvers, one can directly impose the fluxes hr or gjr in the same fashion that it
is done for Lagrangian hydrodynamics (see for instance [5]). For the sake of simplicity,
we limit ourselves here to the case of symmetry boundary conditions (periodic boundary
conditions treatment being straightforward).

Let us first recall the special case of particular interest where the boundary’s normal
vector is n = (1, 0).

Proposition 3.8 ([10]). Let n = (1, 0). If x ∈ ∂Ω, then the symmetry boundary condi-
tion

∀(ω, t) ∈ S2 × [0,+∞[ , f(x, ω, t) = f(x, ω − 2(ω · n)n, t), if ω · n ≤ 0, (3.29)

implies the condition on the moments of f

∀(x, t) ∈ ∂Ω× [0,+∞[ , fmk = 0 if m > 0 odd.

If we now set n = (cos θ, sin θ), i.e. the boundary of Ω is arbitrary, then considering
the rotation matrices Uθ, we come back to the case of the Proposition 3.8.

Proposition 3.9. Take n = (cos θ, sin θ) with θ ∈ [0, 2π[. If x ∈ ∂Ω, then the condition
at the symmetry boundary condition

∀(ω, t) ∈ S2 × [0,+∞[ , f(x, ω, t) = f(x, ω − 2(ω · n)n, t) if ω · n ≤ 0, (3.30)

implies the condition on u

∀(x, t) ∈ ∂Ω× [0,+∞[ , (U−θu)
m
k (x, t) = 0 if m > 0 odd.

To apply the boundary conditions to the scheme (i.e. to compute the fluxes), we
notice that we only need to make modifications on the computation of hr. Thus, if r is
a node of the boundary of Ω, we take the linear system

Mrhr = Br,

with Mr =
∑
j∈J

Mjr and Br =
∑

j∈Jr

Mjrhj +
∑

j∈Jr

ljrUh
θjr
ATUg

−θjr
gj . We must then

change the basis with the rotation matrices to return to the case of Proposition 3.8, and
delete the rows and columns that correspond to m > 0.

3.2 Properties of the nodal finite volume Schemes

We now discuss some properties of the schemes that we have just defined. For the
sake of simplicity we limit ourselves to the case of periodic boundary conditions. Other
boundary conditions could be considered at the price of technical adjustments.

3.2.1 Conservativity

In this Section, we show that the Glace and Eucclhyd schemes are conservative.

Lemma 3.10. We have the following equalities
∑
r∈Rj

ljrUg
θjr
AUh

−θjr = 0,
∑
j∈Jr

ljrUg
θjr
AUh

−θjr = 0,

∑
r∈Rj

ljrUh
θjrA

TUg
−θjr

= 0,
∑
j∈Jr

ljrUh
θjrA

TUg
−θjr

= 0.

Proof. This follows directly from the following equalities∑
j∈Jr

Cjr = 0,
∑
r∈Rj

Cjr = 0, (3.31)
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with Cjr = ljrnjr. Let us write the proof only for the first equality, the others being
treated in the same way.

One has ∑
r∈Rj

ljrUg
θjr
AUh

−θjr =
∑
r∈Rj

ljr(cos θjrA+ sin θjrB),

=

∑
r∈Rj

ljrn
x
jr


︸ ︷︷ ︸

=0

A+

∑
r∈Rj

ljrn
y
jr


︸ ︷︷ ︸

=0

B = 0,

where we used (3.31) to ensure that the sums are zero.

Proposition 3.11. The scheme (3.24)-(3.25) is conservative.

Proof. Let us treat each (3.24) equation separately. On the one hand, for the first
equation ∑

j∈J
Vj

d

dt
gj = −

∑
j∈J

∑
r∈Rj

ljrUg
θjr
AUh

−θjrhr,

=−
∑
r∈R

∑
j∈Jr

ljrUg
θjr
AUh

−θjr


︸ ︷︷ ︸

=0 using Lemma 3.10

hr = 0.

On the other hand, for the second equation∑
j∈J

Vj
d

dt
hj = −

∑
j∈J

∑
r∈Rj

Fjr,

= −
∑
r∈R

∑
j∈Jr

Fjr


︸ ︷︷ ︸
=0 with (3.25)

= 0.

Remark. This same result can be obtained in the same way for the discrete time scheme.

3.2.2 L2 stability

We place ourselves on Ω = R2/Z2, the 2D torus. We denote without distinction
∥·∥L2(Ω) and ∥·∥Hs(Ω) the norm L2 and Hs of a vector or scalar quantity for s ∈ N. Let
us write the PN model in dimension 2{

∂tu+A1∂xu+A2∂yu = 0,

u(·, t = 0) = u0 ∈ [Hs(Ω)]
m2D

,
(3.32)

with

u =

(
g
h

)
.

Proposition 3.12. Let u be a solution of (3.32), then ∀s ∈ N,

∀t ≥ 0, ∥u(t)∥Hs(Ω) = ∥u0∥Hs(Ω).

Proof. First we start by showing the result for the L2 norm. Taking the scalar product
with u and integrating over Ω we obtain

1

2
∂t∥u∥2L2(Ω) +

∫
Ω

(A1∂xu,u)dx+

∫
Ω

(A2∂yu,u)dx = 0.
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Using the fact that we are on a torus (which is a manifold without boundary), we obtain
after an integration by part∫

Ω

(A1∂xu,u)dx = −
∫
Ω

(A1u, ∂xu)dx,

finally, since A1 is symmetric, the right hand side rewrites

−
∫
Ω

(A1u, ∂xu)dx = −
∫
Ω

(u,A1∂xu)dx,

from which ∫
Ω

(A1∂xu,u)dx = −
∫
Ω

(A1∂xu,u)dx,

therefore ∫
Ω

(A1∂xu,u)dx = 0.

The same arguments give
∫
Ω
(A2∂yu,u)dx = 0. We obtain finally

∂t∥u∥2L2(Ω) = 0,

hence the result. Moreover the function ∂αu with α a multi-index, is also a solution of
the equation, so the same result is true in Hs norm, with s ∈ N.

Let us now study the L2-stability of the semi-discrete scheme (3.24)-(3.25), that we
recall here 

d

dt
gj +

1

Vj

∑
r∈Rj

ljrUg
θjr
AUh

−θjrhr = 0,

d

dt
hj +

1

Vj

∑
r∈Rj

Fjr = 0,

with 
Fjr = ljrUh

θjrA
TUg

−θjr
gj +Mjr(hj − hr),∑

j∈Jr

Fjr = 0,

whereMjr is defined by (3.21) for the Glace scheme, and by (3.28) in the case of Eucclhyd
scheme.

In the following, we denote uh(x, t) =
∑

j∈J 1j(x)uj(t) and we identify the function
uh and the vector (uj)j∈J . Also, we set

E(t) =
1

2

∫
Ω

∥uh(x, t)∥2dx ≥ 0. (3.33)

Proposition 3.13. The scheme (3.24)-(3.25) is L2 stable, in the sense that

∀t ≥ 0, E(t) ≤ E(0).

More precisely, we have

E′(t) = −
∑
j∈J

∑
r∈Rj

(Mjr(hj − hr),hj − hr) ≤ 0.

Proof. The proof is inspired by the one done in [1] for the case N = 1. We have

E′(t) =
1

2

d

dt

∫
Ω

∥uh(x, t)∥2dx,

=
1

2

d

dt

∑
j∈J

Vj∥uj(t)∥2,

=
1

2

d

dt

∑
j∈J

Vj ((gj(t),gj(t)) + (hj(t),hj(t))) ,

=
∑
j∈J

Vj
(
(gj(t),g

′
j(t)) + (h′

j(t),hj(t))
)
.
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Using the definition of the scheme, one gets

E′ = −
∑
j∈J

∑
r∈Rj

(gj , ljrUg
θjr
AUh

−θjrhr)︸ ︷︷ ︸
A1

−
∑
j∈J

∑
r∈Rj

(Fjr,hj)︸ ︷︷ ︸
A2

.

We develop the second term of the previous equation

A2 =
∑
j∈J

∑
r∈Rj

(Fjr,hj),

=
∑
j∈J

∑
r∈Rj

(ljrUh
θjrA

TUg
−θjr

gj ,hj) +
∑
j∈J

∑
r∈Rj

(Mjr(hj − hr),hj). (3.34)

Since ∑
r∈Rj

ljrUh
θjrA

TUg
−θjr

= 0,

by the Lemma 3.10, the first term of (3.34) is zero.
By taking the scalar product with hr and then summing over r in the second equation

of (3.25) and permuting the sums, we find∑
j∈J

∑
r∈Rj

(Mjrhr,hr) =
∑
j∈J

∑
r∈Rj

(Mjrhj ,hr) +
∑
j∈J

∑
r∈Rj

ljr(Uh
θjrA

TUg
−θjr

gj ,hr).

Thus

A1 =
∑
j∈J

∑
r∈Rj

(gj , ljrUg
θjr
AUh

−θjrhr),

=
∑
j∈J

∑
r∈Rj

(Mjrhr,hr)−
∑
j∈J

∑
r∈Rj

(Mjrhj ,hr),

= −
∑
j∈J

∑
r∈Rj

(Mjr(hj − hr),hr).

Finally, we find that

E′ =
∑
j∈J

∑
r∈Rj

(Mjr(hj − hr),hr)−
∑
j∈J

∑
r∈Rj

(Mjr(hj − hr),hj),

= −
∑
j∈J

∑
r∈Rj

(Mjr(hj − hr),hj − hr),

so, using Proposition 3.3, we get the desired result.

Remark. The proof is independent of whether the Glace or Eucclhyd scheme is used.

We now study the stability of the explicit time scheme
gn+1
j = gn

j − ∆t

Vj

∑
r∈Rj

ljrUg
θjr
AUh

−θjrh
n
r ,

hn+1
j = hn

j − ∆t

Vj

∑
r∈Rj

Fn
jr,

(3.35)

with 
Fn

jr = ljrUh
θjrA

TUg
−θjr

gn
j +Mjr(h

n
j − hn

r ),∑
j∈Jr

Fn
jr = 0. (3.36)

Let

En =
1

2

∑
j∈J

Vj∥un
j ∥2 =

1

2

∑
j∈J

Vj
[
(gn

j ,g
n
j ) + (hn

j ,h
n
j )
]
,

we note Gn
jr = ljrUg

θjr
AUh

−θjr
hn
r .
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Proposition 3.14. One has the following alternative

1. if un
h is constant i.e. ∃v ∈ Rm2D

s.t. ∀j ∈ J ,un
j = v, then set ∆tmax = +∞,

2. else, set

∆tmax =

∑
j∈J

∑
r∈Rj

(Mjr(h
n
j − hn

r ),h
n
j − hn

r )

∑
j∈J

1

Vj

∑
r∈Rj

Gn
jr,
∑
r∈Rj

Gn
jr

+

∑
r∈Rj

Fn
jr,
∑
r∈Rj

Fn
jr

 . (3.37)

Then the explicit scheme (3.35)-(3.36) is L2-stable if 0 < ∆t ≤ ∆tmax.

Proof. The first case is obvious. If un
h is constant then, for all j ∈ J and r ∈ R, hn

r = hn
j

and gn
jr = gn

j , so according to Lemma 3.10 page 18, ∀∆t > 0, En+1 = En.
Let us now focus on the second case. One has

En+1 =
1

2

∑
j∈J

Vj
[
(gn+1

j ,gn+1
j ) + (hn+1

j ,hn+1
j )

]
,

thus, substituting the scheme reads

En+1 =
1

2

∑
j∈J

Vj

gn
j − ∆t

Vj

∑
r∈Rj

Gn
jr, g

n
j − ∆t

Vj

∑
r∈Rj

Gn
jr


+

hn
j − ∆t

Vj

∑
r∈Rj

Fn
jr, h

n
j − ∆t

Vj

∑
r∈Rj

Fn
jr

 ,
which develops as

En+1 =
1

2

∑
j∈J

Vj

(gn
j ,g

n
j ) + (hn

j ,h
n
j ) − 2

∆t

Vj

∑
r∈Rj

(
gn
j ,G

n
jr

)
− 2

∆t

Vj

∑
r∈Rj

(Fn
jr,h

n
j )

+
∆t2

V 2
j

∑
r∈Rj

Gn
jr,
∑
r∈Rj

Gn
jr

+
∆t2

V 2
j

∑
r∈Rj

Fn
jr,
∑
r∈Rj

Fn
jr

 .
Using the calculation made in Proposition 3.13, we find

En+1 = En −∆t
∑
j∈J

∑
r∈Rj

(Mjr(h
n
j − hn

r ),h
n
j − hn

r )

+
∑
j∈J

∆t2

2Vj

∑
r∈Rj

Gn
jr,
∑
r∈Rj

Gn
jr

+

∑
r∈Rj

Fn
jr,
∑
r∈Rj

Fn
jr

 .
It is a polynomial of the second degree in ∆t, whose ∆t2’s coefficient is nonzero since
un
h is not constant in space. We choose to impose a time step that corresponds to the

minimum of this polynomial (which is negative)

∆tmax =

∑
j∈J

∑
r∈Rj

(Mjr(h
n
j − hn

r ),h
n
j − hn

r )

∑
j∈J

1

Vj

∑
r∈Rj

Gn
jr,
∑
r∈Rj

Gn
jr

+

∑
r∈Rj

Fn
jr,
∑
r∈Rj

Fn
jr

 .

Finally we obtain En+1 ≤ En.
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In view of showing that the scheme is convergent, we need to provide a positive lower
bound to ∆tmax in (3.37) that constrains the time step ∆t to ensure L2-stability.

Proposition 3.15. Let ∆tmax be defined by (3.37), then in the case of the Glace scheme,
one has

∆tmax ≥
min
j∈J

Vj

2max
j∈J

(1 + 2#Rj) max
j∈J
r∈Rj

ljr
> 0.

Proof. The proof is quite technical and thus is provided in Appendix A page 30.

Remark. Similar result could be obtained for the Eucclhyd scheme at the cost of tech-
nical adjustments.

3.3 Convergence

We shall now prove that the proposed nodal finite volume schemes converge under
some regularity assumptions. We first establish the convergence of the semi-discrete
schemes and then use the same argument as in [12] to conclude the convergence of the
fully discrete schemes.

Once again we assume that Ω = R2/Z2. We will also assume that the mesh M of Ω
is of size h and has a bounded aspect ratio. That is, there exists a constant C > 0 such
that

max
r,r′∈Rj

|xr − xr′ | ≤ h, h2 ≤ CVj ,∀j ∈ J . (3.38)

Let us recall that we denote uh(x, t) = uj(t) if x ∈ j, and that we identify the function uh

and the vector (uj)j∈J . The discrete initial condition u0
h is chosen such that

u0
h(x) =

1

Vj

∫
j

u0(y)dy, if x ∈ j.

Theorem 3.16. On unstructured meshes of size h (3.38), the semi-discrete Glace scheme
for the PN model converges to order h1/2 for an initial data u0 ∈ H3(Ω). More precisely,
there exists a constant C > 0 such that

∥uh(t)− u(t)∥L2(Ω) ≤ C
√
(1 + t)∥∇u0∥2L2(Ω) + t∥u0|2H3(Ω)h

1/2.

Proof. The proof is quite long, thus it is given in Appendix B.

Remark. Again, similar result could be obtained for the Eucclhyd scheme for PN using
slightly more complex algebra.

We are now interested in the convergence of the time explicit scheme.

Theorem 3.17. Let τh be the maximum time step given by the CFL condition of Propo-
sition 3.14. On unstructured meshes of size h (see (3.38)), the time-explicit node scheme
converges. There exists C > 0 such that

∥un
j − uh(n∆t)∥L2(Ω) ≤

1√
1− νh

√
T
√
τh

with 0 ≤ n∆t ≤ T and νh = ∆t
τh
< 1.

We do not give the proof of this statement, the proof being in all points identical to
that in [12]. Indeed, the time-explicit scheme being L2 stable under CFL of type dt

h < C,
the same arguments apply, the proof not depending on the discretization in space. This
implies, thanks to the convergence of the semi-discrete scheme, that the time explicit
scheme converges in h1/2.
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4 Numerical results

In this Section, we present numerical results for the Glace and Eucclhyd schemes.
Our first test case is a Riemann problem, which has the advantage of admitting an exact
solution. It is also easy to check that the scheme reproduces the expected wave velocities.
Our second test case is an initial condition equal to a Dirac distribution, this test case
is interesting because it is a classical test case of the wave equation. This test case
presenting important numerical artifacts, we propose a third test case which consists
in taking an initial condition equal to a ”regularized” Dirac distribution, i.e. an initial
condition of the form of an element of a regularizing sequence φn, with n sufficiently
large. Finally, we propose a last test case, for which we can compare the numerical
solution to a smooth exact solution and thus draw convergence curves.

4.1 Riemann problem

For this test case, we consider a Riemann problem. We set Ω = ]−1, 1[× ]−0.1, 0.1[.
The initial condition is

f00 (x, y) =

{
1, if x < 0,

0, if x > 0,

and fmk = 0 for all k > 0, |m| ≤ k.
To better understand the numerical results, let us look at the exact solution of this

problem at least in the case N = 3. Since there is no variation according to y, this is a
1D problem:

∂tu+A1∂xu = 0.

It is then classical that

u(x, t) =

m2D∑
i=1

wi(x, t)ri =

m2D∑
i=1

w0
i (x− λit)ri =

m2D∑
i=1

(
u0(x− λit), li

)
ri,

with li, ri, the i-th eigenvectors on the left and right of A1 and w = (wi)1≤i≤m2D the
Riemann invariants. Since A1 is symmetric, rTi = li for all i. Now the eigenvector matrix
P (with the eigenvalues ordered by decreasing modulus) of A1 is

P =



1
3
(−2)

√
2
35

(
4
√

30+75
)

2
3

√
2
35

(
4
√

30+75
)

0 0 0 0 2
3

√
2
35

(
75−4

√
30

)
1
3
(−2)

√
2
35

(
75−4

√
30

)
0 0

0 0
√

30 −
√

30 0 0 0 0 0 0

1
3

√
4
√

6
5
+6 − 1

3

√
4
√

6
5
+6 0 0 −

√
2

√
2 1

3

√
6−4

√
6
5

− 1
3

√
6−4

√
6
5

0 0

−
√

4
√

2
15

+2

√
4
√

2
15

+2 0 0 −
√

2
3

√
2
3

−
√

2−4
√

2
15

√
2−4

√
2
15

0 0

0 0 −
√

14 −
√

14 0 0 0 0 1√
14

−
√

15
14

2
(√

30+10
)

5
√

7

2
(√

30+10
)

5
√

7
0 0 0 0

2
(√

30−10
)

5
√

7

2
(√

30−10
)

5
√

7
0 0

0 0 −
√

15 −
√

15 0 0 0 0 0 1
0 0 1 1 0 0 0 0 1 0

−
√

3
5

−
√

3
5

0 0
√

5
3

√
5
3

−
√

3
5

−
√

3
5

0 0

1 1 0 0 1 1 1 1 0 0


.

We then notice that the only eigenvectors that correspond to positive eigenvalues that
have their first component not zero are those associated to the eigenvalues λtheo1 =√

1
35

(
2
√
30 + 15

)
and λtheo4 =

√
1
35

(
15− 2

√
30
)
. Thus, for P3, we expect to see only

two waves going to the right and two going to the left. By the same reasoning, we expect
to see three waves going to the right for the P5 model, and three going to the left.

Cartesian grid First, we place ourselves on a cartesian meshes. In Figure 1, we
measure wave velocities of λ1 = 0.339 and λ4 = 0.858 against λtheo1 ≈ 0.339981 and
λtheo4 ≈ 0.861136 for the theoretical values. We observe the correct structure of the
eigenvalues of A1, if λ is an eigenvalue: then −λ is also an eigenvalue. We also observe
an additional couple of waves for P5 which was expected. We observe a very similar
results in the case of the Eucclhyd scheme in Figure 2.
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Figure 1 – Riemann problem with the Glace scheme on a cartesian mesh 3840 × 4 at time
t = 0.8.
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Figure 2 – Riemann problem with the Eucclhyd scheme on a cartesian mesh 3840×4 at time
t = 0.8.

Random meshes We now consider the case of random meshes. The construction of
such meshes is done in the following way: we start from a cartesian mesh 320 × 4, we
move each node according to a uniform law in a way that cells remain untangled. The
results are illustrated in Figure 3 for the Glace scheme and in Figure 4 for Eucclhyd.

Notice that the scheme converges well while the initial condition is not in H3 (it is
not even in H1). This suggests that the regularity condition of the Theorem 3.16 is
suboptimal with regard to the minimal regularity of the initial condition.

4.2 Dirac

For this test case, we set Ω = ]−1.5, 1.5[
2
, and consider the initial condition

f00 (x, y) = δ(0,0).

Numerically, this initial condition is approximated by

f00 (x, y) =
1

Vj0
1j0(x, y)
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(a) Modèle P3
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Figure 3 – Riemann problem with the Glace scheme on a random mesh 320 × 4 at time
t = 0.8.
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Figure 4 – Riemann problem with the Eucclhyd scheme, random meshes 320× 4, t = 0.8.

where j0 is the cell located at the center of the mesh. We observe in Figures 5a and 5b
that this test case is problematic for these schemes. For the Glace scheme, we observe
that the solution looks like a 2D Dirac comb, and we observe many spurious modes along
the diagonal. For the Eucclhyd scheme, the Dirac comb and the spurious modes along
the diagonal disappear, however we observe that a large part of the particles remain in
the center of the domain. These parasitic modes seem to disappear when the mesh is no
longer cartesian for the Glace scheme (see Figure 5c). For the Eucclhyd scheme, this is
not the case and a large part of the particles still remain in the center of the domain (see
Figure 5d).

4.3 Regularized Dirac

For this test case, we set Ω = ]−1.5, 1.5[
2
and we consider the initial condition

f00 (x, y) = 30e−302(x2+y2).

We first use a random mesh (see Figure 6). We observe that the Eucclhyd scheme pro-
duces more numerical diffusion than the Glace scheme. Finally, we present the solution
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(a) Cartesian meshes 321 × 321, Glace
scheme
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scheme
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(d) Random meshes 321×321, Eucclhyd
scheme

Figure 5 – Solution for a Dirac-like initial condition for P3 at time t = 1.

on an unstructured Delaunay mesh. We observe spurious modes in the center of the
domain. The fact that the Eucclhyd scheme produces more numerical dissipation is still
present (see Figure 7).

4.4 Analytical solution

We now set Ω = ]−1, 1[
2
. The PN model is written

∂tu+A1∂xu+A2∂yu = 0.

Let (x, t) ∈ Ω × [0,+∞[, we are looking for a solution of the form u(x, t) = e−αtv(x),

with v : R → Rm2D

a function of class C1 and α > 0. By injecting into the equation, we
find

A1∂xv = αv,

that is, by diagonalizing the system

D∂xw = αw

with w = PTv and D = diag(λi)1≤i≤m2D the eigenvalue matrix of A1. Let 1 ≤ i ≤ m2D,
if λi = 0, then wi = 0, otherwise we find, by imposing for example wi(0) = 1

∀x ∈ ]−1, 1[ , wi(x) = e
α
λi

x
.
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(a) P3 on a random mesh 321×321 with
the Glace scheme
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(d) P5 on a random mesh 321×321 with
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Figure 6 – Solution on random meshes for a regularized Dirac type initial condition for P3

andP5 at time t = 1.

Finally, one has

∀(x, t) ∈ Ω× [0,+∞[ , u(x, t) = e−αtP


e

α
λ1

x

...

e
α

λ
m2D

x

 .

We study the case N = 3. The exact solution u is written, for all (x, t),

u(x, t) = e−αt(ui(x, t))1≤i≤10,

where the ui are given by

u1(x, t) =
2

3

√
2

35

(
−
√
4
√
30 + 75e

αx
λ1 +

√
4
√
30 + 75e

αx
λ2

+

√
75− 4

√
30e

αx
λ7 −

√
75− 4

√
30e

αx
λ8

)
,

u2(x, t) =
√
30
(
e

αx
λ3 − e

αx
λ4

)
,
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(a) P3 with the Glace scheme
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(c) P5 with the Glace scheme
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(d) P5 with the Eucclhyd scheme

(e) P7 with the Glace scheme
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Figure 7 – Solution for a regularized Dirac type initial condition on a Delaunay mesh (h =
3/320) at time t = 1.

u3(x, t) =
1

15

√
2

(√
10
√
30 + 75e

αx
λ1 −

√
10

√
30 + 75e

αx
λ2 − 15e

αx
λ5 + 15e

αx
λ6

+

√
75− 10

√
30e

αx
λ7 −

√
75− 10

√
30e

αx
λ8

)
,
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u4(x, t) =
1

5

√
2

3

(
−
√

10
√
30 + 75e

αx
λ1 +

√
10
√
30 + 75e

αx
λ2 − 5e

αx
λ5 + 5e

αx
λ6

−
√
75− 10

√
30e

αx
λ7 +

√
75− 10

√
30e

αx
λ8

)
,

u5(x, t) = −
√
14
(
e

αx
λ3 + e

αx
λ4

)
,

u6(x, t) =
2

5
√
7

((√
30 + 10

)
e

αx
λ1 +

(√
30 + 10

)
e

αx
λ2

+
(√

30− 10
)
e

αx
λ7 +

(√
30− 10

)
e

αx
λ8

)
,

u7(x, t) = −
√
15
(
e

αx
λ3 + e

αx
λ4

)
,

u8(x, t) = e
αx
λ3 + e

αx
λ4 ,

u9(x, t) = −3e
αx
λ1 + 3e

αx
λ2 − 5e

αx
λ5 − 5e

αx
λ6 + 3e

αx
λ7 + 3e

αx
λ8√

15
,

and
u10(x, t) = e

αx
λ1 + e

αx
λ2 + e

αx
λ5 + e

αx
λ6 + e

αx
λ7 + e

αx
λ8 .

For technical reasons, we will impose some Riemann invariants to be null. Indeed, we
impose on the edges ]−1, 1[× {−1} and ]−1, 1[× {1} conditions of symmetries, in order
not to break the 1D character of the solution. This imposes that the coordinates umk
with m > 0 must be null. We notice that it is enough to impose w3 and w4 to be null.
One can see in Figures 8-9 convergence curves for the L2 norm on cartesian, random and
Delaunay meshes. We observe numerically a first order convergence.

5 Conclusion

In this paper, we have proposed two nodal finite volume schemes for the PN model.
We have proved a number of new properties for these schemes: their well-defined char-
acters, their conservativities, their stabilities and their convergences for a sufficiently
regular initial condition. We note that the time-explicit Glace and Eucclhyd schemes are
much more expensive in computation time than the standard finite volume scheme. It
is however important to keep in mind that a standard finite volume scheme cannot be
asymptotic preserving [1], the study of nodal finite volume schemes for PN being done
in this perspective. Moreover, a way to remedy the problem of the high computational
cost would be to use an implicit scheme, we could hope to find a competitive method
compared to the standard finite volume scheme. It would be interesting to extend the
convergence results to more general boundary conditions than periodic boundary con-
ditions, for example Dirichlet boundary conditions. The numerical results suggest that
the convergence result is suboptimal with respect to the regularity of the initial solution.
The natural continuation of this work would be to focus the study on the addition of
the relaxation term in the flux calculation as in [1], in order to write an asymptotic
preserving scheme. Moreover, it remains to study the spurious modes observed in the
numerical results. One can also imagine extension to 3D or more straightforwardly to
second order of accuracy.

A Proof of Proposition 3.15

Here, we give the proof of the Proposition 3.15 which gives a lower bound to ∆tmax

∆tmax ≥
min
j∈J

Vj

2max
j∈J

(1 + 2#Rj) max
j∈J
r∈Rj

ljr
> 0.
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Actually setting

N =
∑
j∈J

∑
r∈Rj

(Mjr(h
n
j − hn

r ),h
n
j − hn

r ), and

D =
∑
j∈J

1

Vj

∑
r∈Rj

Gn
jr,
∑
r∈Rj

Gn
jr

+

∑
r∈Rj

Fn
jr,
∑
r∈Rj

Fn
jr

 ,
according to Property 3.14, L2-stability is ensured if

∆t ≤ ∆tmax =
N

D
.

Let us study the denominator D by first remarking that by (3.36)∑
r∈Rj

Fn
jr =

∑
r∈Rj

ljrUh
θjrA

TUg
−θjr

gn
j +

∑
r∈Rj

Mjr(h
n
j − hn

r ),

which simplifies to ∑
r∈Rj

Fn
jr =

∑
r∈Rj

Mjr(h
n
j − hn

r ),

since, by Lemma 3.10 page 18,
∑

r∈Rj

ljrUh
θjr
ATUg

−θjr
= 0.

Thus, one has∥∥∥∥∥∥
∑
r∈Rj

Fn
jr

∥∥∥∥∥∥
2

=
∑
r∈Rj

∥∥Mjr(h
n
j − hn

r )
∥∥2 + 2

∑
r,s∈Rj
r<s

(
Mjr(h

n
j − hn

r ),Mjs(h
n
j − hn

s )
)
,

which reads using Young’s inequality∥∥∥∥∥∥
∑
r∈Rj

Fn
jr

∥∥∥∥∥∥
2

≤
∑
r∈Rj

∥∥Mjr(h
n
j − hn

r )
∥∥2 + ∑

r,s∈Rj
r<s

(∥∥Mjr(h
n
j − hn

r )
∥∥2 + ∥∥Mjs(h

n
j − hn

s

∥∥2) ,
and then∥∥∥∥∥∥

∑
r∈Rj

Fn
jr

∥∥∥∥∥∥
2

≤
∑
r∈Rj

∥∥Mjr(h
n
j − hn

r )
∥∥2 + 2#Rj

∑
r∈Rj

∥∥Mjr(h
n
j − hn

r )
∥∥2 ,

≤ (1 + 2#Rj)
∑
r∈Rj

∥∥Mjr(h
n
j − hn

r )
∥∥2 . (A.1)

Using again Lemma 3.10, one has∑
r∈Rj

Gn
jr =

∑
r∈Rj

ljrUg
θjr
AUh

−θjrh
n
r =

∑
r∈Rj

ljrUg
θjr
AUh

−θjr (h
n
r − hn

j ).

The same calculation as previously applies, so that∥∥∥∥∥∥
∑
r∈Rj

Gn
jr

∥∥∥∥∥∥
2

≤ (1 + 2#Rj)
∑
r∈Rj

∥∥∥ljrUg
θjr
AUh

−θjr (h
n
j − hn

r )
∥∥∥2 . (A.2)

In order to finish the calculation we shall now bound from above
∥∥Mjr(h

n
j − hn

r )
∥∥2

and
∥∥∥ljrUg

θjr
AUh

−θjr
(hn

j − hn
r )
∥∥∥2. On the one hand

∥∥Mjr(h
n
j − hn

r )
∥∥2 =

(
MT

jrMjr(h
n
j − hn

r ), (h
n
j − hn

r )
)
.
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Now, since according to (3.22), Mjr = ljrUh
θjr
PhD+P

T
h Uh

−θjr
, one has

MT
jrMjr = l2jrUh

θjrPhD+ P
T
h Uh

−θjrUh
θjrPh︸ ︷︷ ︸

=I

D+P
T
h Uh

−θjr ,

since Ph and Uh
θjr

are orthogonal matrices. Thus MT
jrMjr = l2jrUh

θjr
PhD

2
+P

T
h Uh

−θjr
, so

∥∥Mjr(h
n
j − hn

r )
∥∥2 =

(
l2jrUh

θjrPhD
2
+P

T
h Uh

−θjr (h
n
j − hn

r ), (h
n
j − hn

r )
)
,

and ∥∥Mjr(h
n
j − hn

r )
∥∥2 ≤ max

j∈Jr

ljr

(
ljrUh

θjrPhD+P
T
h Uh

−θjr (h
n
j − hn

r ), (h
n
j − hn

r )
)
,

since the eigenvalues of D+ are positive and lower than 1 (see [8]). So one has∥∥Mjr(h
n
j − hn

r )
∥∥2 ≤ max

j∈Jr

ljr
(
Mjr(h

n
j − hn

r ), (h
n
j − hn

r )
)
.

On the other hand∥∥∥ljrUg
θjr
AUh

−θjr (h
n
j − hn

r )
∥∥∥2 =

(
l2jrUh

θjrA
TUg

−θjr
Ug
θjr
AUh

−θjr (h
n
j − hn

r ), (h
n
j − hn

r )
)
,

=
(
l2jrUh

θjrA
TAUh

−θjr (h
n
j − hn

r ), (h
n
j − hn

r )
)
.

Recalling that ATA = PhD
2
+P

T
h , one gets the same right hand side as previously∥∥∥ljrUg

θjr
AUh

−θjr (h
n
j − hn

r )
∥∥∥2 =

(
l2jrUh

θjrPhD
2
+P

T
h Uh

−θjr (h
n
j − hn

r ), (h
n
j − hn

r )
)
,

so ∥∥∥ljrUg
θjr
AUh

−θjr (h
n
j − hn

r )
∥∥∥2 ≤ max

j∈Jr

ljr
(
Mjr(h

n
j − hn

r ), (h
n
j − hn

r )
)
.

Injecting these upper bounds into (A.1) and (A.2), it yields∥∥∥∥∥∥
∑
r∈Rj

Fn
jr

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑
r∈Rj

Gn
jr

∥∥∥∥∥∥
2

≤ 2(1 + 2#Rj)max
j∈Jr

ljr
(
Mjr(h

n
j − hn

r ), (h
n
j − hn

r )
)
.

Finally, the denominator D is upper bounded by

D ≤
∑
j∈J

2

Vj
(1 + 2#Rj)max

j∈Jr

ljr
(
Mjr(h

n
j − hn

r ), (h
n
j − hn

r )
)
,

≤ 2
maxj∈J (1 + 2#Rj)

minj∈J Vj
max
j∈J
r∈Rj

ljr
∑
j∈J

(
Mjr(h

n
j − hn

r ), (h
n
j − hn

r )
)
.

Recognizing the expression of the numerator N , one gets

D ≤ 2
maxj∈J (1 + 2#Rj)

minj∈J Vj
max
j∈J
r∈Rj

ljr N.

So we established

N

D
≥

min
j∈J

Vj

2max
j∈J

(1 + 2#Rj) max
j∈J
r∈Rj

ljr
.
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B Proof of Theorem 3.16

We give the proof of Theorem 3.16 which establishes the convergence of the semi-
discrete scheme.

The scheme in the condensed form writes

d

dt
uj +

1

Vj

∑
r∈Rj

Ajrujr = 0,

with

uj =

(
gj

hj

)
, Ajr =

(
0 ljrUg

θjr
AUh

−θjr

ljrUh
θjr
ATUg

−θjr
0

)
, ujr =

(
gjr

hr

)
.

In all this Section, C denotes a strictly positive constant, which can change from one
line to another. The proof is given in the case of the Glace scheme, but it can be easily
extended to the case of the Eucclhyd scheme. We will study the quantity

E(t) = 1

2
∥uh(t)− u(t)∥L2(Ω)

for t ∈ ]0,+∞[. We compute

E ′(t) =
1

2

∫
Ω

(
u2
h

)′
dx︸ ︷︷ ︸

D1:=

+
1

2

∫
Ω

(
u2
)′
dx︸ ︷︷ ︸

D2:=

+

∫
Ω

− (u′
h,u) dx︸ ︷︷ ︸

D3:=

+

∫
Ω

− (uh,u
′) dx︸ ︷︷ ︸

D4:=

,

and we estimate each term of the sum.

B.1 Estimation of D1

Using Proposition 3.13, one has

D1 = −
∑
j∈J

∑
r∈Rj

(Mjr(hj − hr),hj − hr).

B.2 Estimation of D2

From Proposition 3.12,
D2 = 0.

B.3 Estimation of D3

A direct calculation gives

D3 = −
∑
j∈J

(
u′
j ,

∫
j

udx

)
=
∑
j∈J

∑
r∈Rj

(
Ajrujr,

1

Vj

∫
j

udx

)
,

and since
∑

r∈Rj

Ajr = 0,

D3 =
∑
j∈J

∑
r∈Rj

(
Ajr(ujr − uj),

1

Vj

∫
j

udx

)
.

Moreover,

D3 =
∑
j∈J

∑
r∈Rj

(
Ajr(ujr − uj),

1

Vj

∫
j

udx− u(xr)

)
+
∑
j∈J

∑
r∈Rj

(Ajr(ujr − uj),u(xr)) ,
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and since
∑
j∈J

∑
r∈Rj

(Ajrujr,u(xr)) = 0,

D3 =
∑
j∈J

∑
r∈Rj

(
Ajr(ujr − uj),

1

Vj

∫
j

udx− u(xr)

)
−
∑
j∈J

∑
r∈Rj

(Ajruj ,u(xr)) .

To simplify the notations, we denote(
δgjr

δhjr

)
=

1

Vj

∫
j

udx− u(xr).

With these notations, we have(
Ajr(ujr − uj),

1

Vj

∫
j

udx− u(xr)

)
= ljr

[
Ug
θjr
AUh

−θjr (hr − hj)
]
· δgjr

+ ljr

[
Uh
θjrA

TUg
−θjr

(gjr − gj)
]
· δhjr.

By the Young’s inequality, one gets(
Ajr(ujr − uj),

1

Vj

∫
j

udx− u(xr)

)
≤ 1

2
∥
√
ljrUg

θjr
AUh

−θjr (hr − hj)∥2︸ ︷︷ ︸
a:=

+
ljr
2
∥δgjr∥2

+
1

2
∥
√
ljrUh

θjrA
TUg

−θjr
(gjr − gj)∥2︸ ︷︷ ︸

b:=

+
ljr
2
∥δhjr∥2.

Let use first estimate the term a. One has

a =
(√

ljrUg
θjr
AUh

−θjr (hr − hj),
√
ljrUg

θjr
AUh

−θjr (hr − hj)
)
,

=
(
ljrUh

θjrA
TAUh

−θjr (hr − hj),hr − hj

)
.

Recalling that ATA = PhD
2
+P

T
h , one gets

a =
(
ljrUh

θjrPhD
2
+P

T
h Uh

−θjr (hr − hj),hr − hj

)
.

Since the eigenvalues of A1 are less than 1

a ≤
(
ljrUh

θjrPhD+P
T
h Uh

−θjr (hr − hj),hr − hj

)
,

which rewrites
a ≤ (Mjr(hr − hj),hr − hj) .

We now estimate b. Using the equality (3.18), one has

b = ∥
√
ljrUh

θjrPhD+P
T
h Uh

−θjr (hr − hj)∥2,

=
(
ljrUh

θjrPhD
2
+P

T
h Ug

−θjr
(hr − hj),hr − hj

)
,

and using the same arguments as previously

b ≤ (Mjr(hr − hj),hr − hj) .

Finally, one gets the following estimate

D3 ≤
∑
j∈J

∑
r∈Rj

(
ljr
2
∥δgjr∥2 +

ljr
2
∥δhjr∥2

)
+
∑
j∈J

∑
r∈Rj

(Mjr(hj − hr),hj − hr)−
∑
j∈J

∑
r∈Rj

(Ajruj ,u(xr)) .
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B.4 Estimation of D4

This last term does not depend on the scheme, we have

D4 =

∫
Ω

−(uh,u
′)dx = −

∑
j∈J

(uj ,

∫
j

u′dx).

By denoting Γjk the k-th edge of the cell j, and njk = (cos θjk, sin θjk) the associated
normal, which we choose so that

ljrnjr =
1

2
(l+jkn

+
jk + l−jkn

−
jk).

We have

−
∫
j

u′dx =

∫
j

A1∂xu+

∫
j

A2∂yudx,

=

∫
∂j

nxjA1udσ +

∫
∂j

nyjA2udσ,

=
∑
k∈Kj

∫
Γjk

(nxjkA1 + nyjkA2)udσ,

thus according to Proposition 2.7 page 8,

−
∫
j

u′dx =
∑
k∈Kj

∫
Γjk

UθjkA1U−θjkudσ,

therefore

D4 =
∑
j∈J

∑
k∈Kj

(
uj ,UθjkA1U−θjk

∫
Γjk

udσ

)
.

The idea is to rewrite this estimate at nodes in order to balance D3. We write D4 in the
form

D4 =
∑
j∈J

∑
k∈Kj

(
uj , ljkUθjkA1U−θjk

u(xr+) + u(xr)

2

)

+
∑
j∈J

∑
k∈Kj

(
UθjkA1U−θjkuj ,

∫
Γjk

udσ − ljk
u(xr+) + u(xr)

2

)
,

where xr and xr+ are the nodes on the edge Γjk, oriented in the trigonometric direction,
and Kj is the set of edges of the cell j. By grouping the sums on the edges into sums on
the nodes, we obtain∑

j∈J

∑
k∈Kj

(
uj , ljkUθjkA1U−θjk

u(xr+) + u(xr)

2

)
=
∑
j∈J

∑
r∈Rj

(Ajruj ,u(xr)) .

It remains to study the second term of the sum. We will use the following Lemma.

Lemma B.1 ([12]). If f ∈ H2(]0, a[ with a > 0, then∣∣∣∣∫ a

0

f(s)ds− a
f(0) + f(a)

2

∣∣∣∣ ≤ a5/2

2
√
30

∥f ′′∥L2(]0,a[).

Applying this Lemma on each edge Γjk, we obtain the estimate

D4 ≤
∑
j∈J

∑
k∈Kj

(Ajruj ,u(xr)) + C
∑
j∈J

∑
k∈Kj

l
5/2
jk ∥uj∥∥∇2u∥L2(Γjk).
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B.5 Estimation of E
Adding the four estimates, since Mjr is nonnegative, we obtain

E ′(t) ≤
∑
j∈J

∑
r∈Rj

(
ljr
2
∥δgjr∥2 +

ljr
2
∥δhjr∥2

)
+ C

∑
j∈J

∑
k∈Kj

l
5/2
jk ∥uj∥∥∇2u∥L2(Γjk).

Let us estimate the first term. We decompose the nodal term δgjr by introducing the
edge term δgjk as

δgjk =
1

Vj

∫
j

udx− 1

ljk

∫
Γjk

udσ,

and therefore

δgjr = δgjk +
1

ljk

∫
Γjk

gdσ − g(xr).

It is classical that
∥δgjk∥ ≤ C∥∇g∥L2(j).

On the other hand, a calculation shows that∥∥∥∥∥ 1

ljk

∫
Γjk

gdσ − g(r)

∥∥∥∥∥ =

∥∥∥∥∥ 1

ljk

∫
Γjk

gdσ − 1

ljk

∫
Γjk

g(r)dσ

∥∥∥∥∥ ,
≤
∫
Γjk

1

ljk
∥g − g(r)∥dσ,

≤
(∫

Γjk

1

l2jk
dσ

)1/2(∫
Γjk

l2jk∥∇g∥2dσ
)1/2

,

= l
1/2
jk ∥∇g∥L2(Γjk),

≤ Ch1/2∥∇g∥H1(j).

Therefore, for h bounded, one has

∥δgjr∥ ≤ C∥∇g∥H1(j).

The same calculation for δhjr gives∑
j∈J

∑
r∈Rj

(
ljr
2
∥δgjr∥2 +

ljr
2
∥δhjr∥2

)
≤ Ch∥∇u∥2H1(Ω).

Let us now estimate the second term. Since u ∈ H3(Ω) one has

∥∇2u∥L2(Γjk) ≤ C∥u∥H3(Ω).

We have∑
j∈J

∑
k∈Kj

l
5/2
jk ∥uj∥∥∇2u∥L2(Γjk) ≤

1

2

∑
j∈J

∑
k∈Kj

(
l3jk∥u∥2 + ljkC∥u∥2H3(j)

)
,

≤ C1h
∑
j∈J

Vj∥uj∥2 + C2h∥u∥2H3(Ω),

≤ C1h∥uh∥2L2(Ω) + C2h∥u∥2H3(Ω).

By Proposition 3.13, the scheme is dissipative, so

∥uh∥2L2(Ω) ≤ ∥u0
h∥2L2(Ω) ≤ ∥u0∥2L2(Ω).

Moreover, according to Proposition 3.12

∥u∥H3(Ω) = ∥u0∥H3(Ω),
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and therefore ∑
j∈J

∑
k∈Kj

l
5/2
jk ∥uj∥∥∇2u∥L2(Γjk) ≤ Ch∥u0∥2H3(Ω).

Finally we obtain the estimate on E ′(t)

E ′(t) ≤ Ch∥∇u∥2H1(Ω) + C ′h∥u0∥2H3(Ω).

We have the inequality (see [12])

E(0) ≤ Ch∥∇u0∥2L2(Ω),

and finally we obtain by integrating in time

∥uh(t)− u(t)∥L2(Ω) ≤ C
√

(1 + t)∥∇u0∥2L2(Ω) + t∥u0∥2H3(Ω)h
1/2.
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[12] C. Mazeran. Sur la structure mathématique et l’approximation numérique de
l’hydrodynamique lagrangienne bidimensionnelle. PhD thesis, Université de Bor-
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Figure 8 – Convergence curve for P3 with the Glace scheme (Log scale). Top: random
meshes, middle: Delaunay meshes, bottom: cartesian meshes.
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Figure 9 – Convergence curve for P3 with the Eucclhyd scheme (Log scale). Top: random
meshes, middle: Delaunay meshes, bottom: cartesian meshes.
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