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Abstract—Domain adaptation in pretrained language models
usually comes at some cost, most notably out-of-domain perfor-
mance. This type of specialization typically relies on pre-training
over a large in-domain corpus, which has the side effect of causing
catastrophic forgetting on general text. We seek to specialize a
language model by incorporating information from a knowledge
base into its contextualized representations, thus reducing its
reliance on specialized text. We achieve this by following the
KnowBert method, applied to the UMLS biomedical knowledge
base. We evaluate our model on in-domain and out-of-domain
tasks, comparing against BERT and other specialized models.
We find that our performance on biomedical tasks is competitive
with the state-of-the-art with virtually no loss of generality. Our
results demonstrate the applicability of this knowledge integration
technique to the biomedical domain as well as its shortcomings.
The reduced risk of catastrophic forgetting displayed by this
approach to domain adaptation broadens the scope of applicability
of specialized language models.

Index Terms—Knowledge based systems, Deep learning, Trans-
fer learning, Biomedical Computing, Natural language processing

I. INTRODUCTION

With the density and recurrence of specialized vocabulary
in some fields such as STEM or law, transformer-based
contextualized language models (LMs) such as BERT [1],
trained on general text, tend to underperform in those fields.
One obvious solution to this out-of-domain performance
problem is to reduce the distributional shift between pre-
training and deployment by pre-training on in-domain text.
This solution is the most commonly used, yet Arumae and
Bhatia [2] demonstrate that this approach tends to create models
that perform well on the target domain, but poorly on general
text, even when such text is part of the pre-training curriculum.

Our approach to language model specialization is to provide
it with an external source of relevant knowledge, reducing
the need for in-domain text during pre-training as well as the
risk of Catastrophic Forgetting (CF). This allows the model
to access information pertaining to concepts not seen in the
training corpus. This type of approach would usually imply
performing an Entity Linking (EL) step – i.e. identifying the
mentions of concepts in the input text – ahead of leveraging the
information in the knowledge base (KB). In practice, satisfying
this requirement with a good enough degree of accuracy to
render knowledge integration useful is a problem that has yet to
be solved. Peters et al. [3] on the other hand describe KnowBert,
a method to enable a pretrained LM such as BERT to utilize
information from a KB which relaxes this constraint, requiring

only candidate mentions. Following this procedure, we inject
knowledge from the Unified Medical Language System (UMLS)
Metathesaurus into a BERT-based language model. We name
the resulting model KnowBert-UMLS.

We expand on the context for this work and discuss other
approaches used for solving these problems in Section II.
Because of the scale, variety, and lexical polymorphism of
the concepts recorded in UMLS, as well as the relative scarcity
of corpora containing labeled examples, there are specific
challenges linked to applying KnowBert to UMLS, which we
detail in Section III. In Section IV, we discuss the relative
performance of our model with respect to relevant baselines
on in-domain and out-of-domain tasks. Finally, Section V is
dedicated to our conclusions and future work.

II. RELATED WORK

The most common approach for adapting LMs to a given
domain is to include text from that domain into the model’s
pre-training corpus. This is the approach taken, for instance,
by models such as BioBERT [4] and BlueBERT [5] in the
biomedical domain. The performance of this method and its
tendency for CF have been investigated by, among others,
Arumae and Bhatia [2]. Some solutions for domain adaptation
do not share this flaw, but are typically applied at the fine-
tuning stage, which means the process must be carried out for
each individual sub-task, and requires sets of labeled data for
both the source and target domain.

In contrast, knowledge integration typically leverages pre-
existing KBs at the pre-training stage, meaning the domain
adaptation step needs only be carried out once to benefit all
of the various downstream tasks. In addition, KBs are a much
denser source of information than raw text, potentially reducing
the amount of in-domain text required. In the interest of reduc-
ing the pre-training burden of Transformer-based LMs such as
BERT and expanding the range of concepts that they can predict,
multiple knowledge integration methods have been developed.
One of the main categories of approaches is to rely on the
Transformer’s attention mechanism to combine entity and word
information, as do ERNIE [6] and KnowBert [3]. Another
common type of approach is to align entity representations
with token representations as does CODER [7]. UmlsBERT [8],
in contrast, does not fit into the aforementioned categories as
it mainly consists of biasing the BERT input vectors for entity
mentions with a topic vector, and changing the Cross-Entropy
loss in the Masked Language Modeling (MLM) objective to a
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Binary Cross Entropy Loss, setting all synonyms of a medical
term as valid targets.

An important distinction between methods is whether they
require an upstream EL step. This property is one of the most
important criteria for selecting a knowledge integration method
in the biomedical case, and with UMLS in particular, as it is
currently an unsolved task. On the MedMentions corpus [9],
for instance, the Entity Linker used by UmlsBERT reaches
an F1 score of 0.178 as reported by Kraljevic et al.. The
aforementioned knowledge integration methods are subject to
this limitation, with the exception of KnowBert, which relaxes
the EL requirement, calling only for candidate entity mentions.
KnowBert is thus less limited by the EL performance than
other knowledge-based models, and does not require as much
in-domain text as pre-training-based approaches. It therefore
has considerable potential to effectively utilize the KB and is
unlikely to suffer from CF on general text.

III. KNOWBERT-UMLS

The blueprint for KnowBert-UMLS, detailed in Fig. 1 (a),
is based on KnowBert, and comprises three main sections: the
pretrained LM backbone, the KB with its candidate generator,
and a Knowledge Attention and Recontextualization module
(KAR).

A. Architecture

1) Pretrained LM backbone: BERT-based models comprise
L Transformer Blocks, with each block i taking as input N
partially contextualized token representations in RH , arranged
as a matrix Hi−1 ∈ RN×H , recontextualizing them using
attention, and returning a same-size matrix Hi. As a backbone,
we use BERTBASE, which is pretrained on the Wikipedia and
Books [11] corpora containing approximately 3.3 billion words,
and for which N = 512, L = 12 and H = 768. Despite having,
in theory, the option to use any transformer-based language
model, in an effort to isolate variables, we do not choose to
use a higher-performing or specialized alternative. Moreover,
BERT is better suited to the objective of this study, which is
to pursue knowledge enrichment without CF, rather than to
top state-of-the-art performance in any given task.

2) Candidate Generator: Whilst KnowBert does not require
an upstream Entity Linking step, it does require a set of
candidate mentions C in order to incorporate information from
the KB. Each candidate mention comprises a candidate span
s and a set Es of corresponding candidate entities from the
KB. Formally:

C = {(s, Es)|∀s} (1)

Each candidate entity e ∈ Es represents a concept in the KB
and is composed of an embedding e, and a prior probability p:

Es = {e : (ee, pe) | e ∈ RK ,
∑
e
pe = 1} (2)

where K is determined by the algorithm used to derive
entity embeddings from the KB. In the case of UMLS, we use

the pretrained embeddings provided by Maldonado et al. [12]
which set K = 50.

A candidate span can be any sub-string in the sentence
which is deemed sufficiently similar to an entity in the KB,
and can overlap, or be nested with other spans. For an instance,
consider the following phrase:

Pseudomonas aeruginosa (PA) infection in cystic
fibrosis (CF) patients [. . . ]

A candidate generator might generate the following candidate
spans, outlined in boxes:

Pseudomonas aeruginosa (PA) infection in

cystic fibrosis (CF) patients [. . . ]

Each of these candidate spans would be paired with a set of
candidate entities E .

3) KAR: On an abstract level, the KAR remains largely
unchanged from KnowBert. It slots in-between two BERT
layers i and i+1 and functions similarly to a Transformer Block,
taking as input partially contextualized word representations
Hi and outputting knowledge-enriched, recontextualized word
representations H′

i ∈ RN×H . As an additional input, it takes
a set of candidate mentions C.

The knowledge incorporation step is performed in the entity
embedding space RN×K ; the KAR thus linearly projects the
partially contextualized wordpiece embeddings to the entity
space and back:

Hproj
i = HiW + b

H′
i = H′ proj

i W′ + b′ +Hi

(3)

Where W, W′, b and b′ are learned and H′ proj
i is the

matrix of knowledge-enriched token representations embedded
in entity space (see Fig. 1 (b)).

The knowledge integration process itself comprises four
main steps. First, the token representations for each candidate
mention are pooled using an attention-based weighted sum
following Lee et al. [13] into a matrix S ∈ R|C|×K . In order to
identify false positives among nested or overlapping candidate
spans as well as commonly co-occurring entities, the span
representations exchange information using Multi-Head self-
Attention as in a standard Transformer block, resulting in the
contextualized span representations Se.

For every given span s, we write the corresponding contextu-
alized span embedding from Se as se ∈ RK , the vector of prior
probabilities of corresponding candidate entities ps ∈ R|Es|,
and the matrix of corresponding candidate entity embeddings
Es ∈ RK×|Es|.

ψψψψs = Softmax(MLP(ps, s
e ·Es))

ẽs = ψψψψs ·ET
s , ∈ RK (4)

Where ψψψψs is an estimate of the posterior probabilities of
each candidate entity for s, and ẽs is a weighted average
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Fig. 1. Overview of the structure of KnowBert-UMLS (a) with detailed breakdown of the KAR (b).

of candidate entity vectors for s. As an additional benefit
beyond knowledge integration, this can be used for Entity
Linking by simply choosing the entity in the KB which has
the embedding most similar to ẽs or the one with the highest
estimated posterior probability.

The knowledge-enriched span representations S′e ∈ R|C|×K

are then defined as the sum of the contextualized span
representations Se and the matrix of computed entity vectors Ẽ,
and the knowledge is transferred from the span representations
to the wordpiece embeddings using Multi Head Attention
(MHA) followed by a position-wise Multi-Layer Perceptron
(MLP), similarly to a Transformer block:

H′ proj
i = MLP(MHA(Hproj

i ,S′e,S′e)) (5)

The KAR can be inserted between any two transformer blocks
i and i+1, and multiple KARs can be inserted simultaneously
between different blocks. In the single-KAR case however,
using BERTBASE as the pretrained backbone, insertion is most
effective at block i = 10.

B. Training

The pre-training for KnowBert models is a three step
process. First the backbone is pre-trained on a language
modeling objective, specifically on a combination of the
MLM and next sentence prediction objectives in the case
of BERT. Then, the KAR is trained on the Entity Linking
(EL) objective, minimizing the log-likelihood of the estimated
posterior probabilities of candidate entities:

LEL = −
∑
s

log

(
exp(ψsg)
n∑

k=1

exp(ψsk)

)
(6)

The model is subsequently trained on both the language
modeling objective used in pre-training and EL. This step is
similar to an extended pre-training, but its main objective is
to allow the Transformer Blocks which receive knowledge
enriched information from the KAR to learn to interpret and
integrate it. To avoid ambiguity with regular pre-training, we
call this step re-training. Optimizing only one of the two
objectives during this phase leads to CF of the other, even
when the weights of the KAR are frozen. Once the KAR is
fully integrated into the model with this step, the model can be
fine-tuned to any task much like a typical BERT-based model.

C. Leveraging UMLS

UMLS indexes over four million biomedical concepts, such
as headache, spleen, or acetylsalicylic acid, grouped into 135
semantic types including organisms, anatomical structures, and
diseases or syndromes. So far, due in part to the difficulty of
reliably identifying UMLS concepts in text, leveraging the
concepts themselves from UMLS has been out of reach of
knowledge integration techniques. UmlsBERT, for instance,
only uses embeddings for clusters of semantic types and uses
UMLS as a thesaurus for single-word concepts.

Whilst the computational impact of the KAR is negligible,
making candidate generation tractable is non-trivial at the scale
of our KB and re-training corpus as discussed by Piat et al.
[14]. We have benchmarked a variety of algorithms, most of

10th International Workshop on e-Health Pervasive Wireless Applications and Services 2022

21



which were far too computationally inefficient for practical
use in this context. The combination of neural networks and
rules used by ScispaCy [15] was the most efficient candidate
generation method, yet was still too computationally expensive
to use in realtime during re-training, and the candidates had
to be pre-generated. Candidate generation on a 153.6 Billion
sentence corpus took approximately three days on a computing
cluster, using fourteen Xeon 36-thread CPUs clocked at 3GHz.

We compared the performance of KnowBert using both
UMLS Concepts and UMLS Semantic Types as KB entities
forming the basis of our knowledge integration. Attempting
to integrate knowledge from UMLS concepts did not work,
resulting in the model performing on par with an unmodified
BERT, as it learned to not take into account the knowledge
integrated by the KAR. We suspect two main factors are at
play, leading to the KAR being unable to accurately learn to
estimate the posterior probabilities for the candidate concepts.
First, the precision of the candidate generator is lower for
UMLS concepts. For the candidate generator, Recall bounds the
model’s ability to incorporate knowledge (since no knowledge
can be incorporated from an entity not identified by the
candidate generator), and Precision affects the imbalance
between positive and negative samples during the EL objective.
Therefore, whilst maximizing recall maximizes the model’s
potential, doing so at the cost of precision increases noise in
the EL dataset and makes learning more difficult.

The second factor we believe to be responsible for the
underperformance of Concept knowledge integration is the lack
of concept coverage in the training data, which is under 1%
of all concepts. Consequently, setting the weight of the KAR’s
contributions to 0 is the policy which most accurately predicts
masked tokens during training. Despite the Semantic Type
information being less insightful than the Concept information,
the increased quality of candidates and density of training data
in annotated examples (approximately 94% coverage of all
types) make Semantic Type information worth incorporating.
Henceforth, all mentions of KnowBert-UMLS assume that we
use Semantic Types as knowledge base entities.

IV. EXPERIMENTS

To evaluate our model, we choose two in-domain and two
out-of-domain tasks. For our in-domain tasks, we choose
Named Entity Recognition (NER) on the n2c2 (formerly
known as i2b2) 2010 dataset [16] and Relation Extraction
(RE) on the ChemProt [17] dataset. These tasks are fairly
standard, and are part of the BLUE [5] benchmark. For our
out-of-domain tasks, we choose Natural Language Inference
(NLI) and Linguistic Acceptability as Arumae and Bhatia [2]
demonstrated that these tasks were particularly affected by
extended-pretraining-induced CF with BioBERT. Specifically,
we choose the SNLI [18] dataset, and an altered version of the
CoLA [19] dataset (see section IV-D) respectively.

All performance scores have been scaled up (from [0, 1])
by a factor of 100 for readability. In all tables, the underlined
result is BERT which, as a general language model, is expected

TABLE I
PRE-TRAINING CORPUS SIZE (BILLIONS OF WORDS) BY TYPE FOR

BASELINES VERSUS KNOWBERT-UMLS.

Model Biomedical General

BERTBASE 0.0 3.1
BioBERT 18.0 3.1
PubMedBERT 3.2 0.0
BlueBERT 4.5 3.1
UmlsBERT 18.5 3.1
KnowBert-UMLS 2.2 3.1

to have the best performance on the general language tasks
(CoLA & SNLI). In bold is the best specialized model.

We choose our baselines to represent various amounts of
in-domain and out-of-domain pre-training corpus sizes, which
we break down in table I.

For all models and all tasks, final token or sequence
classification is performed using a linear classifier. For all
experiments, all models were fine-tuned with the following
hyperparameters: our models are trained for 10 epochs with
an initial learning rate of 2× 10−5 and weight decay of 0.01.
Our optimization algorithm is AdamW. The model state which
performed best on the validation split of each dataset was
evaluated on the test set. Results are averaged over multiple
experiments.

A. Biomedical NER

As the methodology of previously published results for
our baselines is inconsistent, we evaluate the various BERT-
based language models on this task ourselves. We use the
micro-averaged F1 score as computed by Seqeval [20] in strict
mode and provide a breakdown of precision and recall, as sub-
sequence classification (as opposed to sequence classification)
does not cause micro-averaged precision and recall to be equal.
We use IOB2 as our annotation and prediction scheme.

We expect an improvement over BERT due to specialization,
whilst UmlsBERT, as the most heavily pretrained model,
should perform best overall. From the results in Table II, we
gather that the KAR succeeded in specializing the model, as
KnowBert-UMLS outperforms BERTBASE by a considerable
margin. However, the KAR seems to not have been quite as
effective of a specialization method for NER as the others. We
hypothesize that its comparatively low precision is due in part
to the fairly high False Positive rate of the candidate generator,
which may falsely identify mentions of UMLS entities, and
through knowledge integration, lead the contextualized word
representations to include misleading information.

B. Biomedical Relation Extraction

This is a sequence classification task, wherein two entities
per sequence are marked with special characters, and the
model must determine which of five relation types (or no
relation) exists between them. Scores for BioBERT, PubMed-
BERT and BlueBERT are self-reported scores of the overall
best-performing version of each model. The performance of
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TABLE II
PERFORMANCE ON THE N2C2 2010 NER TASK.

Model P R F1

BERTBASE 82.71 86.21 84.42
BioBERT 85.20 87.74 86.46
PubMedBERT 86.62 88.28 87.44
BlueBERT 86.68 88.71 87.68
UmlsBERT 86.92 89.46 88.18
KnowBert-UMLS 86.63 85.84 86.23

TABLE III
PERFORMANCE ON THE CHEMPROT RE TASK, MICRO-F1

Model micro F1

BERTBASE 66.51
BioBERT 75.14
PubMedBERT 77.24
BlueBERT 69.15
KnowBert-UMLS 70.74

BERTBASE was measured by us using the version of the
ChemProt corpus distributed by Peng et al. [5].

As entities are explicitly marked in the training set, the
importance of a good model for grammar is lessened with
respect to other tasks. We therefore do not expect general
language understanding to be highly predictive of performance
on this task. Rather, knowledge of biomedical entities and their
relations is expected to be of greater importance. We therefore
expect KnowBert-UMLS, which seeks to acquire specifically
this type of knowledge, as well as the heavily pretrained
BioBERT, to perform well on this task, with BERTBASE

performing worst. Our results in Table III largely agree with our
predictions. PubMedBERT, however, which was pretrained only
on biomedical text, performs better than expected, implying
out-of-domain pre-training may in fact be detrimental.

Once more, we observe that KnowBert-UMLS outperforms
BERT, implying that specialization was successful, yet it
underperforms in comparison to other pretrained models.

C. General NLI

We evaluate all models ourselves on the SNLI task, in
which two sequences are fed to the LM. It must determine
whether their relationship is one of entailment, contradiction,
or neither. As this is a general language task, we don’t expect
any specialized model to significantly outperform BERTBASE,
and we expect KnowBert-UMLS to perform on par with BERT.
Due to the similarities with the WNLI task from GLUE and
given the findings of Arumae and Bhatia [2], we expect the
models with extended pre-training to perform poorly on this
task.

Table IV shows results in line with our predictions, i.e.
KnowBert-UMLS is the closest to BERTBASE in terms of F1

score. However, the gap in performance between the models
with extended pre-training and the others is narrower than
expected. This is likely due to SNLI not being as adversarial
as WNLI.

TABLE IV
PERFORMANCE ON THE SNLI TASK, MICRO-F1 .

Model micro F1

BERTBASE 89.24
BioBERT 88.90
PubMedBERT 88.81
BlueBERT 88.20
UmlsBERT 88.59
KnowBert-UMLS 89.03

TABLE V
PERFORMANCE ON THE MODIFIED COLA TASK, MICRO-F1 .

Model Matthews Corr.

BERTBASE 60.50
BioBERT 49.30
PubMedBERT 42.90
BlueBERT 39.76
UmlsBERT 44.24
KnowBert-UMLS 58.52

D. Linguistic Acceptability

Our dataset for the Linguistic Acceptability task is based
on the CoLA task from the GLUE benchmark. Since CoLA
does not make the labels of its test split public however, and
due to various submission restrictions, we have rearranged the
available annotated examples into new training, validation, and
test splits. In an effort to make our tests reproducible, we use
the validation split for final testing, and use the un-shuffled
final 500 entries of the train split of version 1.1 as our new
validation set.

The objective for this task is to classify sequences as
”linguistically acceptable” (i.e. grammatically correct and
natural-sounding) or not. We evaluate our model and baselines
using the Matthews Correlation Coefficient, which is the metric
used by GLUE and is generally preferred to F1 in a binary
classification setting as it isn’t biased in favor of the positive
class. Consistent with our predictions, our results in Table V
show that BERTBASE, as the general purpose language model,
performs the best, and KnowBert-UMLS comes second as the
way it is trained is meant to reduce CF.

V. CONCLUSIONS

KnowBert-UMLS outperforms BERT on Biomedical tasks
whilst outperforming every other specialized model in out-
of-domain tasks. Reducing extended pre-training in favor of
Knowledge integration therefore proves to be a successful way
of specializing a language model such as BERT to a given
domain whilst reducing the impact of CF. However, KnowBert-
UMLS does not perform as well as some other models in the
biomedical domain, meaning that its specialization method is
less effective. We explain this by the fact that the Concepts in
the UMLS KB are too numerous and annotated text too rare to
learn from effectively, and Semantic Type knowledge is not as
informative on an entity-mention level as being familiar with
the vocabulary is.
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Our results indicate several areas for improvement. In
particular, the n2c2 2010 NER task suggests that an improved
identification of False Positives from the candidate generator
may improve performance by reducing the amount of noise
the KAR includes as it incorporates knowledge. Furthermore,
the use of semantic types as a source of knowledge may not
be as effective to leverage in UMLS as a subset of commonly
used concepts, or a more fine-grained clustering.

As Peters et al. have shown, the KnowBert architecture is
capable of supporting multiple KBs concurrently. KnowBert-
UMLS may therefore be further specialized in the biomedical
domain with the integration of an additional KB, or it may
even support multi-specialization, using KBs from different
fields.

Lastly, the improvements brought by this method of knowl-
edge integration may be orthogonal to the improvements
brought by extended pre-training or other knowledge integration
methods. Using a biomedical LM as a pretrained backbone
may lead to a new state of the art in biomedical language
modeling.
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