
HAL Id: cea-04511220
https://cea.hal.science/cea-04511220v1

Submitted on 19 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

An open-source natural language processing toolkit to
support software development: addressing automatic
bug detection, code summarisation and code search

Cristian Robledo, Francesca Sallicati, Gaël de Chalendar, Marcos Fernández,
Pablo de Castro, Eduardo Martín, Javier Gutiérrez, Yannis Bouachera

To cite this version:
Cristian Robledo, Francesca Sallicati, Gaël de Chalendar, Marcos Fernández, Pablo de Castro, et
al.. An open-source natural language processing toolkit to support software development: addressing
automatic bug detection, code summarisation and code search. Open Research Europe, 2022, 2, pp.37.
�10.12688/openreseurope.14507.1�. �cea-04511220�

https://cea.hal.science/cea-04511220v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

METHOD ARTICLE

 An open-source natural language processing toolkit to

support software development: addressing automatic bug

detection, code summarisation and code search [version 2;

peer review: 1 approved, 1 approved with reservations]

Cristian Robledo 1, Francesca Sallicati 1, Gaël de Chalendar2,
Marcos Fernández1, Pablo de Castro 1, Eduardo Martín1, Javier Gutiérrez1,
Yannis Bouachera2

1Tree Technology, Llanera, Asturias, Spain
2CEA, Paris, Île-de-France, France

First published: 14 Mar 2022, 2:37
https://doi.org/10.12688/openreseurope.14507.1
Latest published: 27 Oct 2023, 2:37
https://doi.org/10.12688/openreseurope.14507.2

v2

Abstract
This paper aims to introduce the innovative work carried out in the
Horizon 2020 DECODER project – acronym for “DEveloper COmpanion
for Documented and annotatEd code Reference” – (Grant Agreement
no. 824231) by linking the fields of natural language processing (NLP)
and software engineering.

The project as a whole addresses the development of a framework,
namely the Persistent Knowledge Monitor (PKM), that acts as a central
infrastructure to store, access, and trace all the data, information and
knowledge related to a given software or ecosystem. This meta-model
defines the knowledge base that can be queried and analysed by all
the tools integrated and developed in DECODER. Besides, the
DECODER project offers a friendly user interface where each of the
predefined three roles (i.e., developers, maintainers and reviewers)
can access and query the PKM with their personal accounts.

The paper focuses on the NLP tools developed and integrated in the
PKM, namely the deep learning models developed to perform variable
misuse, code summarisation and semantic parsing. These were
developed under a common work package – “Activities for the
developer” – intended to precisely target developers, who can perform
tasks such as detection of bugs, automatic generation of
documentation for source code and generation of code snippets from

Open Peer Review

Approval Status

1 2

version 2

(revision)
27 Oct 2023

view

version 1
14 Mar 2022 view view

Miltos Allamanis , Google DeepMind,

London, UK

1.

Abdelwahab Hamou-Lhadj , Concordia

University, Montreal, Canada

2.

Any reports and responses or comments on the

article can be found at the end of the article.

Open Research Europe

Page 1 of 32

Open Research Europe 2023, 2:37 Last updated: 05 MAR 2024

https://open-research-europe.ec.europa.eu/articles/2-37/v2
https://open-research-europe.ec.europa.eu/articles/2-37/v2
https://open-research-europe.ec.europa.eu/articles/2-37/v2
https://orcid.org/0000-0002-1017-670X
https://orcid.org/0000-0001-9981-8360
https://orcid.org/0000-0002-4828-6568
https://doi.org/10.12688/openreseurope.14507.1
https://doi.org/10.12688/openreseurope.14507.2
https://open-research-europe.ec.europa.eu/articles/2-37/v2
https://open-research-europe.ec.europa.eu/articles/2-37/v2#referee-response-35896
https://open-research-europe.ec.europa.eu/articles/2-37/v1
https://open-research-europe.ec.europa.eu/articles/2-37/v2#referee-response-28824
https://open-research-europe.ec.europa.eu/articles/2-37/v2#referee-response-29626
https://orcid.org/0000-0002-5819-9900
https://orcid.org/0000-0002-3319-5006
http://crossmark.crossref.org/dialog/?doi=10.12688/openreseurope.14507.2&domain=pdf&date_stamp=2023-10-27

natural languages instructions, among the multiple functionalities
that DECODER offers. These tools assist and help the developers in the
daily work, by increasing their productivity and avoiding loss of time in
tedious tasks such as manual bug detection.

Training and validation were conducted for four use cases in Java, C
and C++ programming languages in order to evaluate the
performance, suitability, usability, etc. of the developed tools.

Plain language summary
Software engineers usually spends a lot of time in tedious activities
like debugging and documenting code or finding examples of code
snippets to use as a basis for their new programmes. Given the large
and complex software systems that exist nowadays, being forced to
perform these tasks manually causes a considerable drop in the
overall productivity of programmers. The models developed in this
work target Java, C and C++ programming languages and aim to
alleviate software developers’, maintainers’ and reviewers’ efforts, by
proposing automatic NLP solutions to carry out tasks such as bug
detection, documentation generation and code search.

Keywords
Natural Language Processing, Variable Misuse, Code Summarisation,
Semantic Parsing, Deep Learning, Software Engineering

This article is included in the Horizon 2020

gateway.

This article is included in the Advances in

Natural Language Generation collection.

Open Research Europe

Page 2 of 32

Open Research Europe 2023, 2:37 Last updated: 05 MAR 2024

https://open-research-europe.ec.europa.eu/gateways/h2020
https://open-research-europe.ec.europa.eu/gateways/h2020
https://open-research-europe.ec.europa.eu/collections/natural-language-generation
https://open-research-europe.ec.europa.eu/collections/natural-language-generation
https://open-research-europe.ec.europa.eu/collections/natural-language-generation

Corresponding authors: Cristian Robledo (cristian.robledo@treelogic.com), Francesca Sallicati (francesca.sallicati@treelogic.com), Javier
Gutiérrez (javier.gutierrez@treetk.com)
Author roles: Robledo C: Investigation, Methodology; Sallicati F: Investigation, Methodology; de Chalendar G: Investigation,
Methodology; Fernández M: Investigation, Methodology; de Castro P: Software; Martín E: Software; Gutiérrez J: Project Administration,
Supervision; Bouachera Y: Investigation, Methodology
Competing interests: No competing interests were disclosed.
Grant information: This research was financially supported by the European Union’s Horizon 2020 research and innovation programme
under the grant agreement No 824231 (DEveloper COmpanion for Documented and annotatEd code Reference [DECODER]).
Copyright: © 2023 Robledo C et al. This is an open access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
How to cite this article: Robledo C, Sallicati F, de Chalendar G et al. An open-source natural language processing toolkit to support
software development: addressing automatic bug detection, code summarisation and code search [version 2; peer review: 1
approved, 1 approved with reservations] Open Research Europe 2023, 2:37 https://doi.org/10.12688/openreseurope.14507.2
First published: 14 Mar 2022, 2:37 https://doi.org/10.12688/openreseurope.14507.1

Open Research Europe

Page 3 of 32

Open Research Europe 2023, 2:37 Last updated: 05 MAR 2024

mailto:cristian.robledo@treelogic.com
mailto:francesca.sallicati@treelogic.com
mailto:javier.gutierrez@treetk.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/openreseurope.14507.2
https://doi.org/10.12688/openreseurope.14507.1

1. Introduction
We live in a world where many important aspects of our daily
lives rely on software. As a consequence, it is crucial for soft-
ware to be of good quality to be maintainable or updated. How-
ever, it has been estimated that developers lose about 60% of
their productivity1 in struggling to understand badly written
code or in tasks like detecting bugs or searching the Internet for
documentation or snippets of code.

Recently, research groups started to advance in the application
of machine learning in the field of software engineering,
by adapting deep learning architectures to suit the needs of soft-
ware engineering tasks, finding solutions to assist software
engineers in tasks like automatic repair, code completion, code
search and code summarisation among others.

This paper focuses on the work carried out in the DECODER
project, which aims to improve the productivity of IT profes-
sionals. This project developed a set of NLP-based tools to
automatically generate code, detect bugs and perform code
summarisation and code search, with the objective of supporting
developers in their day-to-day work for the selected languages
(Java, C and C++).

Finding bugs in source code is a core problem in software engi-
neering and programming language research. The challenge
in this domain lies not only in correctly characterising source
code that contains a bug with high precision, but also being
able to correct it. Among all the possible errors that can be
found, those that affect the correct behaviour of the software
are of especial interest. An example of this kind of bug is vari-
able misuse (VarMisuse)2, which refers to the wrong use of
variables and is perhaps one of the most common errors that
cause programme breaks: given a programme, a VarMisuse
bug exists when a correct variable differs from the current one
at a certain location. These types of errors may occur when, for
example, a programmer copies some code into a new context

but forgets to rename a variable from the old context, or when
two variable names within the same scope are easily confused.

Many people may think that repairing variable misuses is a
trivial task that can be done manually. However, identifying the
locations of faults in source code has been recognised to be
tedious3, given not only the necessity of a rich background
knowledge and complex logical reasoning about the original
programmer’s intent, but also the size of large-scale software
systems today. Thus, in order to alleviate the workload concen-
trated on debugging variable misuse bugs, we present an approach
that takes advantage of deep learning sequence-to-sequence
models to locate and repair a wrong use of variables in source
code files, as well as classify programmes as correct or
faulty.

Another crucial activity within the software development life-
cycle is documenting source code. Often times, large software
repositories lack a proper documentation, which can be impre-
cise, vague, outdated or even missing. It is well-know that
good code summaries can help in avoiding time loss and that
they are essential to improve code comprehension and code
search, especially during maintenance or evolution of a software
project4. Thus, generating natural language description for
source code can positively impact on developers’ daily work,
facilitating a tool that works in synchrony with them in the
monotonous task of documenting snippets of code.

In the last few years, a consistent number of solutions to
achieve the task of code summarisation were already proposed,
especially working with Java. The common basis for these
approaches typically consists of using encoder-decoder neural
networks, being usually sequence-to-sequence or transformer
models. Based on 5, our approach introduces widely used pro-
gramming languages such as C and C++ in the context of code
summarisation, achieving good performances with the usage
of transformers models.

As we mentioned previously, these tools aim to make easier
the workflow of IT professionals, independent of whatever their
role in a software development project. They lie on the idea
of getting developers familiar not only with the code but also
with a whole project in a simple and fast way. However, recent
works go beyond this concept nowadays, such as semantic
parsing.

Semantic parsing consists of transforming natural language into
more formal ones like programming languages. Therefore, it
can be seen as the reverse task of code summarisation. Recent
works inspired by sequence-to-sequence processing propose
architectures based on encoder-decoder neural networks whose
decoder is constrained to conform to the grammar of the target
language. Such techniques have already been experimented to
generate code from a description in natural language6. In this
work, we improve existing models with the latest developments
in NLP and also apply them on a new language pair, namely
the pair {natural language, C++}.

      Amendments from Version 1
The second version of the article contains minor changes that
respond some of the comments received from reviewers. In
particular, we have added more information about the datasets
used in this work, such as the total number of code lines
contained on each use case dataset and the datasets used for
the data augmentation. In addition, we have also included a
clarification about how this data augmentation was carried out in
the case of the VarMisuse task.

Regarding the three specific tools presented in the article,
this new version also includes the hyperparameter values of
each model used for each use case, as well as a more detailed
comparision with the original work for the VarMisuse task. We
have also added a couple of figures that illustrate how well the
VarMisuse tool works for each different use case addressed in
the article.

Any further responses from the reviewers can be found at
the end of the article

REVISED

Page 4 of 32

Open Research Europe 2023, 2:37 Last updated: 05 MAR 2024

The paper is structured across five main sections: Section II
presents the most recent works and state-of-the-art models
related to the three NLP tools, emphasising those techniques
that are based on deep learning architectures. Section III details
all the methods adopted for building each model in terms of data,
pre-processing techniques and architectures selected for the
final deployment in the DECODER framework. Section IV
covers the results obtained, providing commonly used met-
rics to assess performances for each tool, as well as displaying
some concrete application examples. Finally, Section V sums
up the achievements reached with these tools and gathers
possible approaches for future research in this field.

2. Related work
2.1 Variable misuse
Within the automated program repair (APR) field, several works
have focused on the variable misuse problem. Most of them
present learning-based repair solutions that learn how to fix
this type of error directly from source code examples.

The work already mentioned in 2 introduces the VarMisuse
problem. This is addressed by using a graph neural network on
syntactic and semantic information to make individual predic-
tions for each variable use in a program and reporting back all
variable discrepancies above a threshold.

In 7, a neural model for semantic code repair – where one of
the classes of bugs is variable replace (VarReplace) – is pre-
sented. This is similar to the VarMisuse problem. In particu-
lar, VarReplace refers to an incorrect local variable that is used
at a particular location and should be replaced with another
variable from the snippet. This framework adopts a two-stage
approach where first a large set of repair candidates are
generated by rule-based processors, and then these candidates
are scored by a statistical model using a novel neural
network architecture to select the best one.

Finally, 8 presents an approach that, unlike previous studies,
jointly and directly localises and repairs variable misuse bugs,
and classifies the programme as faulty or correct. To achieve
this, the authors use a novel multi-headed pointer network
where two pointers are trained: the first pointer corresponds
to the location of the bug, and the second pointer corresponds
to the location of the repair variable.

Our approach is also based on this last work and makes use
of pointer networks to detect and fix wrong uses of variables.
In essence, it could be seen as an extension of the original
method, which just targets programming languages like Python
(RRID:SCR_008394) and C#. We have been able to extend the
approach to other programming languages historically more
used – according to the TIOBE programming Community
Index – as Java, C and C++ with good results.

2.2 Code summarisation
Although in the last few years, research in code summarisation
tasks offered many innovative solutions, often based on deep
learning models, this kind of applications still remains quite

unexplored and usually involves few programming languages.
For instance, a huge proportion of papers published on the
topic use Java (few use Python) as the object of study.

One example is the model proposed by 5, consisting of a
transformer-based architecture that is fed with source code
token-level information, rather than working with complex
representations like path sequences from the programmes’
abstract syntax trees (ASTs). The results reported in this study
represent a significant improvement over previous studies,
especially for the summarisation of methods written using
Python.

Other experiments in Java come from 9 and 10. Both stud-
ies are focused on code summarisation tasks but propose a
different approach. In the first paper, they propose DeepCom,
a sequence language model, where information is fed from
ASTs, with the introduction of a new structured-based traver-
sal method to help keep sequences unambiguous and revers-
ible to its original form. In the second study, TLCodeSum is
presented, consisting in an attention sequence-to-sequence
model that incorporates previously learned information from
API sequences as an additional encoder. The aim is to produce
natural language description for snippets of code.

In 11, ASTs are also employed as the input layer for a new pro-
posed type of Tree-LSTM (long short-term memory) model
attention model. Since standard Tree-LSTMs cannot han-
dle a node that has an arbitrary number of children and their
order in ASTs simultaneously, the authors developed an exten-
sion of Tree-LSTM, which they called Multi-way Tree-LSTM,
to be set as the encoding layer for their network, handling such
representations.

Another approach involving Python is proposed by 12. This
model uses both AST extracted sequences and token-level
information to feed a deep reinforcement learning model, which
instead of using a simple decoder to greedily predict the next
most probable correct word, introduces at each time step an actor
and a critic network that jointly select the best candidate word.

By further investigating the state of the art, few studies involving
other programming languages can be found, apart from a
couple of papers that focus of SQL and C#. Developed under
the framework of the DECODER project, our approach on
code summarisation involves a transformer-based architecture
inspired by 5, where the main novelty consists in the implemen-
tation of these techniques not only for the Java language but
also for C and C++ programming languages, which are widely
used languages, even though they have not been used in the
context of automatic documentation generation for source code.

2.3 Semantic parsing
Translating natural languages into formal languages is called
Semantic Parsing. It has been applied to the generation of
formal languages like λ-calculus13 or the abstract meaning
representation (AMR)14. It has also been largely used to help
user query databases by converting their requests into SQL15

Page 5 of 32

Open Research Europe 2023, 2:37 Last updated: 05 MAR 2024

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/

or other kinds of instructions16,17. Moreover, semantic parsing
is also used to generate programming languages like Python18
and Java19. Recently, BERT-based models have been designed,
like RecycleBERT20, a transformer model whose encoder
has been replaced by pre-trained BERT (RRID:SCR_018008).

In semantic parsing, target languages are formal ones respecting
a strict grammar. Several works have tried to take into account
this fact. For example, 15 filters out invalid generated SQL
queries. 21 generates a sequence of grammar derivation steps
and grammatical constraints. Rabinovich18 uses a more abstract
representation, the abstract syntax network (ASN), which
encodes ASTs represented with the generic abstract syntax
description language (ASDL) framework22. The already men-
tioned TRANX6 uses this approach to generate programming
languages, SQL and Python.

Our goal in this work is to use jointly RecycleBERT and
TRANX to generate accurate and valid Java and C++ code
in the framework of the DECODER environment.

3. Methods
The tools presented in this work are available from GitHub
and archived with Zenodo23–25.

3.1 Data
3.1.1. Use cases datasets
DECODER datasets include four uses cases, whose main fea-
tures are presented in Table 1 and can be found as Underlying
data26–28. Note that these datasets represent a common basis
for the development of the models involved in this work. For
the variable misuse model, bugs were automatically gen-
erated for the source code methods according to the rules
described in the following section, whereas the natural language
descriptions for the code summarisation model were already
provided by the consortium partners together with the code.

Drivers and OpenCV use cases collect source code files
written in C and C++ respectively. The former use case,
led by SYSGO, consists in a collection of Linux drivers source
code, while TREE OpenCV use case gathers programmes
belonging to a human-robot interaction application.

Java source code files come from MyThaiStar and Java use
cases. The first use case, led by CAPGEMINI, is an application

that manages orders and reservations for an Asian restaurant,
while the OW2 Java use case brings together four independent
projects (Joram, Lutece, Sat4J and Authzforce projects).

It is worth noting that C and C++ files were merged to develop
both Variable Misuse and Code Summarisation models, due
to the scarcity of available training data. Therefore, from here
on we will refer to C/C++ and Java models/use cases.

3.1.2. Datasets for variable misuse
Focusing on the VarMisuse task, the need to augment the train-
ing set with publicly available code from GitHub was needed
for the C/C++ model, due to the scarcity and quality of the
data covering these two programming languages. As Table 1
displays, there are only 911 (319+592) source code files pro-
vided by the Drivers and OpenCV use cases, respectively,
which would be an important limitation.

The new programme files extracted from GitHub public
projects were selected based on two requirements: firstly,
they must have belonged to projects that use the OpenCV
library, because it corresponds to one of the use case
datasets provided, so their code could be similar. On the
other hand, the programmes contained on the projects
should have been simple, in order to verify that they did not
contain any bug easily. Then, after the search on Github, the
number of source code files for the C/C++ use case increased
in 1,618 files and 50,646 lines of code. The corresponding
links to these public projects are also attached in
the Underlaying Data section.

3.1.3 Datasets for code summarisation
Concerning the code summarisation implementation of the
augmented model versions, two datasets are involved:

• �Java DeepComm9 dataset that gathers about 600k pairs
of Java methods (7,606,605 lines of code) and asso-
ciated NL description, which were already selected
and processed by the authors of the paper.

• �The augmented C/C++ dataset, built by extracting
250k observations in C and 250k observations in C++
from a SQL database provided by 29. They collected
source code files from GitHub repositories written in
C, C++, Java and Python; extracted comments using
Doxygen and condensed such pairs into the database.
Since the data were not previously filtered or crafted
for direct training, the augmented dataset has been
selected with a minimum length for the natural language
description to avoid considering empty descriptions.

3.1.4. Datasets for semantic parsing
For the generation of JAVA, we based our experiments on the
Concode corpus30. For C++, we used the DECODER OpenCV
use case corpus presented above and a larger but less clean
corpus, from the “Code and comments dataset”29, of substan-
tial size, named “C&C” below. This dataset contains a total of
16,115,540 pairs of comment and code, mined from 106,304
GitHub projects coded in Python, Java, C and C++31.

Table 1. DECODER use cases datasets overview.

Use Case Leader Programming
Language

Files Lines
of code

Drivers SYSGO C 317 38,078

OpenCV TREE C++ 593 18,435

MyThaiStar CAPGEMINI Java 471 906

Java OW2 Java 7,553 116,867

Page 6 of 32

Open Research Europe 2023, 2:37 Last updated: 05 MAR 2024

https://github.com/doxygen/doxygen

3.2 Data preparation, preprocessing and feature
extraction
3.2.1 Variable misuse
Dataset preparation
An important aspect of the models to be developed for train-
ing and evaluating this variable misuse tool is that they
have to be presented with both buggy and non-buggy files
so as to be able to tell them apart. Assuming that all the
code provided has no mistakes regarding the use of the vari-
ables, we should generate synthetic datasets in which the bugs
are created programmatically as follows:

• �The first step is to tokenise all the different source code
files and identify all the variables for every snippet.

• �After this initial phase to identify all the variables, the
next step is to flag those variables that appear more than
once for a given snippet as candidates for introducing
a bug. This presents the second assumption made by
the tool, by which we are assuming that the variables for
fixing a bug in a certain snippet should be contained
within the same snippet – meaning that the snippet
contains at least two different variables. Therefore, we
are only introducing bugs in the position of a variable
repeated within the same source code file. The candi-
dates for replacing the original variable are all the rest of
the variables existing in the same file, and one of them
is picked at random for every snippet.

• �We iterate over all variable slots within a snippet in
order to obtain as many buggy files as repeated variables
locations exist. In addition, we include a copy of the
original file for each buggy file created with the objec-
tive of ensuring a 50/50 balance between buggy and
non-buggy files.

• �Finally, it is important to highlight that we are only
considering that each of the synthetic files created only
contains a single bug per file.

Since the new application proposed can be stated as a clas-
sification problem, the models to be implemented in this tool
need to receive the corresponding labels. Here, two different
labels are used and included to the tokenised files as vectors,
one of them is called “location”, whose purpose is to mark
the position of a token in a source code considered as buggy.
This vector, which has the same length than the programme,
is 1 at the location containing bug and 0 otherwise. In case
the programme does not contain any variable misuse bugs, the
location vector will point to the first position or token of it.
The other label is called “repair” and marks all the occur-
rences of the variable that fixes a bug within the same file. As
a result, this second vector contains all 0 except for the posi-
tions of the correct variable for the location of the bug, which
should be 1. Again, if there is no error in the file, the repair
vector will not point to any position of the programme.

By following this process, we have created two different data-
sets: one for those programmes written in Java, and one for
C and C++ files. For this latter case, a first tokenisation of the

available source code files showed that most of them were too
long, so it was decided to extract just the methods contained
on each file with the aim of continuing to increase the
number of data available for the model. Table 2 shows the
number of available source code files for each model, as well
as the number of created buggy files associated with them. It is
important to note that the number of files used by the model
doubles the number of these buggy files due to the goal of a
50/50 balance with non-buggy files.

Preprocessing and feature extraction
Besides, before feeding them to the models built, programmes
need to be pre-processed so that models can consume them.
In this case, the source code files are processed according to
the following steps:

• �First of all, programmes must be tokenised in order to
represent them as a token sequence. This tokenisation
step is done using Pygments, a tool which offers a
variety of lexers for the most popular programming
languages to split the source into tokens. These
tokens are accompanied by their corresponding type,
that determines what the text represents semantically
(e.g., keyword, string, or comment).

• �After having parsed the source code files, token-
ised programmes are filtered by the number of tokens
they contain. In this case, we filtered files that contain
less than 200 tokens.

• �In the next step tokens are mapped to a numerical
representation, allowing for constructing a vocabulary for
each use case before training phase.

• �While building the vocabulary, a <UNK> (‘Unknown’)
token is added for those words not present in the
training set, which, otherwise, would not have a repre-
sentation in the validation/test sets or in a new predicting
setting.

• �As a last step, those sequences that are shorter than the
number of tokens established in the previous filtering
must be padded. Additionally, sequences that exceed
that value must be truncated at the end.

3.2.2. Code summarisation
As already mentioned, the data coming from either
DECODER use case leaders or augmented open-source
datasets already came with natural language description
associated with source code methods. Therefore, no further data

Table 2. Generated datasets for variable misuse.

Use Cases Number of files

Original files Created buggy files

Java 8,058 54,448

C/C++ 2,539 29,166

Page 7 of 32

Open Research Europe 2023, 2:37 Last updated: 05 MAR 2024

http://www.pygments.org/

preparation is needed as a preliminary step to perform source code
summarisation.

Preprocessing and feature extraction
The essential steps to follow to preprocess the data resembles
the previous points used for VarMisuse, with some modifications
that are applied to adapt to this task. The main points in this
setting are listed below:

•	 Tokenisation into units of interest and creation of
the training vocabularies. In this work the methods’
tokenisation was done with Pygments, before fur-
ther tokenisation of variables is applied to split
identifiers according to naming conventions adopted
by developers, such as snake_case and CamelCase.
On the other hand, the natural language descriptions
were tokenized with a traditional tokeniser.

•	 Discarding of tabs, new lines, punctuation and low
frequency tokens, that is, tokens that appear less
than 3 times.

•	 Lowercasing final tokens.

•	 Addition of <START> and <END> tokens to the target
sequences to facilitate the decoder block to process
them.

•	 Conversion of tokens to numerical labels using
dictionaries,where an <UNK> label is assigned to
words that are not represented in the training set. This
is particularlyimportant in inference settings, since
words that were not previously known by the models
can beassigned to this predefined label.

•	 Extraction of sequences of equal maximum length,
by either padding shorter sequences with 0s or
truncating longer sequences to such maximum
value. The maxim length has been fixed for code
summarisation models at a length of 200 tokens for
the input source code and to 15 tokens for the natural
language descriptions.

Therefore, the type of information flowing into the networks
are token-level sequences derived from both the source code
methods and the corresponding natural language descrip-
tions of their functionality, extracted with the above-mentioned
tokenisers. This implies that two vocabularies are also involved,
representing respectively the set of training tokens for meth-
ods and descriptions, which result from the preprocessing
techniques and feature extraction methods mentioned in the
list above.

3.2.3. Semantic parsing
The Java corpus, the Concode one, was already prepared and
did not necessitate other changes. Particularly, the corpus is
already split into train, development and test sets.

For C++, the related data were retrieved from the C&C corpus.
After preprocessing to eliminate duplicates and missing
values, the final size of the corpus is then 150,000 comment

and code pairs. However, the natural language part of the cor-
pus consists of comments and not of real instructions or exact
descriptions, which makes the corpus less suitable for a task
such as code generation, as not all information about the devel-
oped function is given. Moreover, the corpus is very noisy
at the comments level: some of them do not bring any infor-
mation about the code and simply indicate a potential bug
or the necessity to modify the code.

3.3. Model implementation
3.3.1 Variable misuse
Our architecture is based on the work in 8. As briefly explained
in Section 2, this approach allows performing joint predic-
tion of both the location and the repair for VarMisuse bugs.
In essence, this model is similar to an encoder-decoder model
that combines a long short-term memory (LSTM)32 recurrent
neural network with pointer networks.

Given a programme token sequence, first the proposed model
embeds the tokens using a trainable embedding matrix. Then,
as an encode step, it runs a LSTM over the token sequence
to obtain hidden states for each embedded programme token.
It is at this point where our model differs from the original
one, as it does not use a masking vector to only consider those
hidden states that correspond to states of the variable tokens.
Therefore, these encoder states are directly used to train two
pointers corresponding to the location of the bug and the
location of the repair variable. This pointer mechanism is
proposed in 33, and is a very simple modification of the atten-
tion model that allows applying the method to problems where
the output dictionary size depends on the number of elements
in the input sequence and whose outputs are discrete and
correspond to positions in the input. Since the output of this
approach is a softmax distribution, these pointers can essentially
be described as distributions over the programme tokens.

Figure 1 illustrates and summarises the architecture of the
model and how it works.

3.3.2 Code summarisation
The transformer language model architecture illustrated in
Figure 2 was introduced in 2017 in the paper ‘Attention is
all You Need’34 and rapidly became a state-of-the-art model to
solve a variety of NLP tasks, such as neural machine translation
and text generation among others. This architecture substituted
traditional recurrent neural networks (RNNs) architectures,
such as LSTMs and gated recurrent units (GRUs)35, which were
widely used in NLP tasks, due to numerous advantages such as
its ability to learn long-range dependencies without assuming
temporal/spatial relationship across input data. Moreover, trans-
formers proportion a huge benefit in terms of scalability, due
to parallel computing capabilities.

Our model consists in an implementation of a transformer model,
based on 5. The model is composed of two main parts: the
encoder and the decoder, which are blocks of encoder/decoder
layers stacked on the top of each other. The internal configuration
for the encoder and decoder is a combination of multi-head

Page 8 of 32

Open Research Europe 2023, 2:37 Last updated: 05 MAR 2024

Figure 2. Transformer architecture (From , Vaswani et al. (2017)34 under CC-BY).

Figure 1. Variable misuse bug detection and repair architecture.

Page 9 of 32

Open Research Europe 2023, 2:37 Last updated: 05 MAR 2024

attention and feedforward layers. The main features involved
in this architecture are:

• �Positional encoding: Information added to the embed-
ding vector regarding the tokens position in the sentence.
This way, words will be closer to each other in the space
based on both words meaning similarity, thanks to the
embedding vectors, and their position in the sentence
due to the positional encoding of tokens.

• �Masking: This mechanism consists in a binary vec-
tor which is used as an indicator of which tokens should
or should not be processed.

• �Multi-head attention: Each multi-head attention block
receives three inputs; Query, Key and Value, which
are put through dense layers and split up into multiple
heads. This allows the model to jointly pay attention
to the information at different positions from different
representational spaces.

3.3.3 Semantic parsing
Several models were trained and evaluated on the Concode
and C++ corpora:

• �A classical transformer model, coded using the
nn.Transformer module of PyTorch (RRID:SCR_
018536), and trained with the classical PyTorch training
procedure;

• �CONCODE’s encoder-decoder model. However, we
were not able to reproduce its results. The model has not
been updated for several years and the instructions on
the project’s repository were unclear about the versions
of the modules required to work correctly;

• �TRANX, in order to evaluate the performance of a model
generating syntactically correct code. An adaptation of
the TRANX code to JAVA generation was necessary
at the level of the ASDL grammar and the parser;

• �RecycleBERT to evaluate the performance of a transla-
tion model using BERT embeddings, and thus compare
its performance with that of a classical transformer;

• �A modified version of RecycleBERT in which the
encoder is not a pretrained BERT model but a pretrained
CharacterBERT36 model, still for comparison purposes.
CharacterBERT replaces the BERT wordpiece tokenisa-
tion by character-based embeddings based on ELMO
model. It should allow to better handle out of BERT
vocabulary tokens which are numerous in comments
and even more in code.

RecycleBERT is a transformer model whose encoder has been
replaced by pretrained BERT. Unlike the usual monolingual
tasks in which BERT excels (named entity extraction, classifica-
tion...), translation still requires an encoder-decoder structure.
Finetuning BERT on a translation task would be like applying
this finetuning operation to a transformer model whose encoder
is in fact a pretrained BERT. However, unlike the classical case

where a single layer with relatively few parameters is placed
at the output of BERT, the decoder of a transformer has almost
as many parameters as BERT. The number of parameters to be
learned from scratch is then as large as the number of pretrained
parameters, which makes finetuning the model difficult and
often too unbalanced to provide good results. Nevertheless,
it is possible to reuse BERT for machine translation in a more
suitable way, by training in two steps. This is what is proposed
in RecycleBERT20 (Figure 3):

1. �Training the decoder alone, with all BERT parameters
frozen. This allows training the decoder parameters that
have never been trained before and for which a simple
finetuning with a low learning rate would not be enough.
At the same time, computing resources are saved;

2. �Finetuning of the whole model, which can now be done
in order to optimise all the parameters of the model,
including those of BERT.

In order to generate code from a natural language instruction,
a model must be able to capture the meaning of this instruction
and to provide a machine-readable representation of it. Code
is a formal language, this is why it is preferable to generate
inherently valid code by generating grammar production rules,
forming an AST. The ASDL formalism allows simply describ-
ing ASTs (and how to form them) in a way that is common
to all languages.

TRANX is based on a transition system to link an instruction
in natural language to an AST, thanks to a series of actions
building a part of the tree at each step and using the ASDL
grammar (Figure 4). Once the ASDL AST is fully generated,
it is converted into an AST adapted to the target language,
and then into source code. These two conversions are easy to
perform and can be done with hardcoded functions, simply from
the grammar of the target language.

The different actions allowing the generation of the tree are
determined in a sequential way by a neural network of type
encoder-decoder with attention, the encoder and the decoder
being constituted of LSTM cells. The decoder also has a “par-
ent feeding” option, which aims to reflect the topology of the
ASTs and thus improves performance when generating code
for an object-oriented language. The parent feeding consists
in concatenating to the last hidden state a vector pt, which
encodes the information of the position in the tree.

If models like TRANX already allow obtaining good results for
simple code generation problems, it is often difficult to gen-
erate correctly a class method when it must call methods or
variables already defined within the class. The Concode model
should better allow taking into account this “programming
context”, through a particular encoder-decoder structure and
an innovative training procedure, The corpus used for
Concode training is constituted by the authors from more than
33,000 Java projects on GitHub. The datasets are not com-
posed of only {natural language, code} pairs. The specificity
of this corpus lies in the fact that the training takes into account

Page 10 of 32

Open Research Europe 2023, 2:37 Last updated: 05 MAR 2024

Figure 4. AST of ASDL type of a line of Python code and list of actions generating the tree (From [tranx], under CC-BY).

Figure 3. RecycleBERT architecture (From [recyclebert], under CC-BY). [CLS] and [SEP] are two special tokens added before and after
the source tokens si. hj are tensors for each token at the output of the encoder. <bos> is a special token added at the beginning of the tk
target output tokens and . Likewise, <eos> is a special token generated at the end of the sequence of generated output tokens.

all member variables and methods of the class from which
each example is extracted.

4. Results
4.1 Variable misuse
This section shows the results obtained for each use case by
the implemented model. We use four different metrics for
evaluating its performance:

1. �True negative: Percentage of the bug-free programmes
in the ground truth classified as bug free.

2. �Classification accuracy: Percentage of total programmes
in the test set classified correctly as either bug free
or buggy.

3. �Localisation accuracy: Percentage of buggy programmes
for which the bug location is correctly predicted by
the model.

4. �Localisation + repair accuracy: Percentage of buggy
programmes for which both the location and repair
are correctly predicted by the model.

Page 11 of 32

Open Research Europe 2023, 2:37 Last updated: 05 MAR 2024

Figure 5. Java model confusion matrix.

The evaluation of the approach is done over two large test sets
composed by 16,334 programmes written in Java, and 2,917 C
and C++ source code files.

4. 1. 1. Java model
Hyperparameters

•	 Sequence length: 200

•	 Embedding size: 200

•	 LSTM number of units: 350

•	 Dropout rate: 0.0

•	 LSTM dropout rate: 0.0

•	 Batch size: 32

•	 Learning rate: 0.0015

When focusing on the classification task, the confusion matrix
represented in Figure 5 shows how well the model imple-
mented for this Java use case classifies programmes, since most
of the non-buggy and buggy programmes are classified cor-
rectly. This conclusion is supported by two of the calculated
performance metrics presented in Table 3: true negative rate
and classification accuracy, which are around 1 and 0.94 for
the test set, respectively.

With respect to the localisation and the repair accuracy, this
model is able to point the exact bug location for most of the Java
source code files used in this task, achieving a high localisation
accuracy around 0.87. Moreover, the the localisation + repair
accuracy reaches 0.71, which shows the good repair capability

of the model when it comes to fix the located bugs in the faulty
programmes analysed.

4.1.2. C/C++ model
Hyperparameters

•	 Sequence length: 200

•	 Embedding size: 200

•	 LSTM number of units: 50

•	 Dropout rate: 0.0

•	 LSTM dropout rate: 0.0

•	 Batch size: 36

•	 Learning rate: 0.0075

Following the same structure as in the previous sub-section,
the classification ability of this model can be seen in Figure 6,
which shows its good classification performance. Moreover, true
negative rate and classification accuracy are high and similar
to those obtained by the Java model, since they are around 1
and 0.93 for this C/C++ test set, as shown in Table 3.

The real difference between the two models evaluated in this
section lies in their predictions for both the localisation and
the repair of the buggy variable. When comparing with the
Java use case, the model for C/C++ also reaches a very good
localisation accuracy, showing that it is able to predict correctly
the localisation of the bug for 85% of the buggy programmes
in the test set. However, after locating the error, it repairs a
lower percentage of wrong source code files than the Java
model, fixing 60% of them, which means approximately 11%

Page 12 of 32

Open Research Europe 2023, 2:37 Last updated: 05 MAR 2024

Table 3. Variable misuse results.

Use
Cases

Performance metrics

True
Positive

Classification
Accuracy

Localisation
Accuracy

Localisation +
Repair Accuracy

Java 99.7% 93.7% 88.6% 71.1%

C/C++ 99.6% 92.9% 85.4% 60.6%

Figure 6. C/C++ model confusion matrix.

less. This may be due to the smaller size of the dataset, being a
limitation when training the model.

Although the programming languages covered in this paper
are out of the scope of the original work 8, considering the
results presented in this section and comparing them with
those presented for Python and C#, one could affirm that
the performance obtained on the VarMisuse task has
been improved. But we should be careful and underline a
couple of important aspects of our modelling that distingish
it from the original model and can clarify the differences
in results:

•	 Dataset size. The DECODER datasets are really
small, even with the data augmentation carried out.
The different use cases are composed of just a few
projects, so the source code files used in the analysis and
modelling form a very small context that can facilitate
thetask of our model.

•	 Dataset split. As it was explained in Section III, for
each buggy file generated artificially we include a
copy of the non-buggy original file to ensure a 50/50

balance in the dataset. This balanced dataset is splitted
into train, validation and test sets, so the set of pro-
grammes used for the evaluation come from the same
projects that appear in the train and validation data-
sets, which can mean an increase in the results obtained
in test predictions.

•	 Type of bugs. When the bugs are generated automati-
cally, we don’t filter any kind of error that could be
potencially detected by the compiler easily, such as type
check errors. Thus, this type of bugs is also easy to be
noticed by our model.

4.1.3. Examples
Figure 7 below is an example of how the models work. The
example displayed corresponds to a source code file written
in Java extracted from the use case MyThaiStar and reserved
for this purpose. The first image contains a method that
has been modified to introduce a VarMisuse bug on it
intentionally. This bug is marked with a red circle. On the sec-
ond image, we can see how our Java model has corrected this
programme by changing the variable entry for application,
which is the correct variable to use in that position.

Page 13 of 32

Open Research Europe 2023, 2:37 Last updated: 05 MAR 2024

Figure 7. Java example - XPage application.

For the next example (Figure 8), we have inserted a bug manu-
ally in a C programme extracted from Drivers dataset. Again,
the misused variable is highlighted with a red circle. In
this case, and different from the Java example, the model
is not able to fix the error properly, since the change it
proposes (read, marked with a yellow circle) does not corre-
spond to the correct variable (ret_val). This exposes the dif-
ference between the two models regarding the localisation
and repair accuracy, which is higher for the Java case.
However, the C/C++ model makes a good assumption,
because it suggests a boolean variable that could fit perfectly
in an if statement.

4.2 Code summarisation
This section reports the evaluation of the Java and C/C++
transformers models that have been trained both on DECODER
datasets and the augmented datasets versions presented in
Section II.

The generated natural language descriptions have been evalu-
ated with two different families of metrics: the BLEU37
score – which is mainly used in machine translation settings
– and the ROUGE sets of metrics38 – which are often used to
evaluate performances in summarisation tasks:

• �Sentence level BLEU_4 score (+ smoothing function)

• �Corpus level BLEU_4 score

• �SacreBLEU

• �ROUGE – L

The BLEU score compares sentences by matching n-grams
between the original references and the decoded sentences.
Among the BLEU metrics the most adopted version is the
BLEU_4, which counts up to 4 n-grams overlap between the
generated sentences and the ground truth, although it tends
to penalise short sequences assigning a zero value when-
ever any order n-gram is not encountered. This behaviour has
been studied and mitigated with a variety of solutions, some of
them involving the adoption of a smoothing function. In this
work, the smoothing function (NLTK ‘method4’) is adopted
to score the models’ decoded sentences.

On the other hand, the corpus-level BLEU score accounts
for the micro-average precision for each hypothesis-refer-
ence pair. Being already pondered, no smoothing function is
needed when computing this metric. Finally, the sacreBLEU
is proposed in 39 and is introduced to overcome the
problem of different pre-processing schemes impacting on
scores and comparability across models’ implementations,
by utilising an internal pre-processing.

Besides BLEU scores, belonging to the ROUGE sets of met-
rics, the ROUGE-L score is also used to assess the quality of
the generated descriptions. The L stands for Longest Common
Subsequence since the metric computes f1-score, precision
and recall by taking into account sentence level structure simi-
larity and identifying the longest co-occurring sequences
n-grams.

Hyperparameters
Java model

•	 Sequence length: 200 (source code), 15 (descriptions)

Page 14 of 32

Open Research Europe 2023, 2:37 Last updated: 05 MAR 2024

Figure 8. C/C++ example – Access debug.

•	 Embbeding size:
o	 Decoder: 512
o	 Augmented: 512

•	 Number of layers:
o	 Decoder: 1
o	 Augmented: 3

•	 Feed fordward layes dimensionality:
o	 Decoder: 128
o	 Augmented: 512

•	 Number of attention heads:
o	 Decoder: 8
o	 Augmented: 4

•	 Dropout rate:
o	 Decoder: 0.2
o	 Augmented: 0.1

•	 Batch size:
o	 Decoder: 8
o	 Augmented: 128

•	 Learning rate warmup steps:
o	 Decoder: 12,000
o	 Augmented: 16,000

C/C++ model
•	 Sequence length: 200 (source code), 15 (descriptions)

•	 Embbeding size:
o	 Decoder: 256
o	 Augmented: 512

•	 Number of layers:
o	 Decoder: 1
o	 Augmented: 1

•	 Feed fordward layes dimensionality:
o	 Decoder: 32
o	 Augmented: 512

•	 Number of attention heads:
o	 Decoder: 4
o	 Augmented: 4

•	 Dropout rate:
o	 Decoder: 0.2
o	 Augmented: 0.1

•	 Batch size:
o	 Decoder: 16
o	 Augmented: 512

•	 Learning rate warmup steps:
o	 Decoder: 8,000
o	 Augmented: 8,000

Below, and show the results obtained for all the indicated
metrics across training, validation and test sets for the mod-
els developed upon the use case datasets as well as those
obtained with data augmentation. For the Java augmented
model, the choice of working with a sample of the original
dataset has been taken, keeping approximately 300k
observations, motivated by the fact that the model covers a
single language. Sets were obtained by splitting the datasets
according to proportions of (80%-10%-10%) for training,
validating and testing, respectively.

4.2.1. Models’ performances
Focusing on models built on DECODER datasets, the Java
use case model (Table 4) outperforms the version of the
C/C++ (Table 5). In contrast to what happens with the Java
DECODER model, the performances of the C/C++ drop a
little bit by switching from the validation set to the unknown
data in the test set.

On the other hand, the augmented models present slightly
better performances for C and C++ programming languages,

Page 15 of 32

Open Research Europe 2023, 2:37 Last updated: 05 MAR 2024

Table 4. Code summarisation results for the Java models.

Java DECODER UseCases
Model

Java Augmented Model

Metric Training Validation Test Training Validation Test

BLEU_4 83.36 31.70 37.06 51.04 27.82 27.48

BLEU_4 smooth 88.61 42.78 47.01 55.50 31.99 31.85

Corpus BLEU 93.38 43.85 48.35 58.90 36.04 35.73

Sacre BLEU 93.89 44.07 48.53 59.30 36.39 36.18

Rouge-L Precision 95.53 58.05 60.80 72.10 51.27 51.20

Rouge-L Recall 96.1 60.58 62.77 76.68 55.24 55.31

Rouge-L F1-score 95.40 58.61 61.23 73.15 51.64 51.59

Table 5. Code summarisation results for the C/C++ models.

C/C++ DECODER UseCases
Model

C/C++ Augmented Model

Metric Training Validation Test Training Validation Test

BLEU_4 95.98 30.21 26.06 59.27 31.67 32.00

BLEU_4 smooth 97.1 41.51 38.64 66.47 41.54 41.75

Corpus BLEU 97.9 39.45 36.85 71.14 42.20 42.96

sacreBLEU 97.94 39.50 36.87 71.82 42.62 43.03

Rouge-L Precision 98.60 59.51 57.89 80.12 55.65 55.88

Rouge-L Recall 98.79 60.71 58.88 83.51 58.90 59.21

Rouge-L F1-score 98.49 59.63 58.43 80.92 55.87 56.12

especially for the BLEU set of metrics. With both models,
differences between validation and test set performances
appear mitigated by switching to the augmented data: in fact,
the models score worse on the training set, suggesting that the
networks have less tendency to overfitting the training data-
sets, thus being more robust when compared to the models
trained only on DECODER use cases data.

Additionally, the BLEU and ROUGE metrics rely strictly on
n-grams appearances, not taking into account sentence meaning
or positive model behaviour such as the ability of paraphrasing,
cut or enlarge the original descriptions without affecting its
meaning and respecting English grammatical rules. Due to
this fact, after qualitative analysis and inference experiments
were carried out, we reached the conclusion that the augmented
models provide a better solution for code summarisation.

That is why these versions are finally going to be integrated into
DECODER PKM, due to their greater ability of generalising

to new source code methods, thus providing better results
in inference settings, despite sometimes producing lower
scores in terms of ROUGE or BLEU.

To illustrate this issue, some examples of the generated
description from the augmented models are reported below,
together with their input methods and original descriptions,
with the aim of showing that positive and negative behaviours
cannot always be reflected in the evaluation metrics adopted
for this task.

4.2.2. Java examples

• �Original description: redirect to an url defined by given
parameters

• �Predicted description: redirect to another page view

• �BLEU_4 smooth: 6.65

• �ROUGE-L f1 score: 30.77

Page 16 of 32

Open Research Europe 2023, 2:37 Last updated: 05 MAR 2024

Figure 10. Java snippet - SetAmount.

Figure 11. Java snippet - shutdown.

In this Java example (Figure 9), the model produces an accept-
able description and can understand that the ‘url’ token that
appears in both code and the original descriptions corre-
sponds to a web page. Despite this, having the descriptions
only two common tokens, the score cannot reflect a positive
behaviour.

• �Original description: setter for the property type

• �Predicted description: getter for the property amount

• �BLEU_4 smooth: 29.95

• �ROUGE-L f1 score: 60.00

This example (Figure 10) shows bad quality in the method
description, since there is no reference in code to property type.
Here the prediction provided by the model captures the refer-
ence to amount, although it confuses between setter and get-
ter. Given this, the scores do not really reflect this kind of
problem and when compared to other decoded sentences, it
receives much higher score than it should get.

• �Original description: shuts down the daemon

• �Predicted description: shutdown the service

• �BLEU_4 smooth: 6.10

• �ROUGE-L f1 score: 28.57

Finally, this example (Figure 11) shows a very good model
behaviour, attending on important tokens in the source code like
‘daemon’ as well as providing a grammatical improvement over
the original description by outputting ‘shuts down’. Although
the functionality is reflected in the prediction, the tokens do not
correspond between the two sentences and a low score is
obtained.

4.2.3. C/C++ examples
•	� Original description: usage double height dwg ent text

get height text

•	 Predicted description: returns height of text

•	 BLEU_4 smooth: 2.08,

•	 ROUGE-L f1 score: 36.36

Figure 9. Java snippet - XPage redirect.

Page 17 of 32

Open Research Europe 2023, 2:37 Last updated: 05 MAR 2024

In this example (Figure 12), a good prediction is provided,
reflecting the main functionality of the code snippet, although it
gets really low scores, especially the BLEU_4, since the origi-
nal description is not so well formulated. This example reflects
the capability of the model to produce acceptable descriptions
despite bad data quality.

•	� Original description: returns the list of paths to find
desktop files

•	 Predicted description: get desktop file path list

•	 BLEU_4 smooth: 2.44

•	 ROUGE-L f1 score: 14.28

Here (Figure 13), the original description is much better
formulated, and the model is able to produce a sentence that
reflects the true functionality of the method. However, since the
words do not appear with the same frequencies and positions,
the scores remain low.

•	 Original description: removes new client for streaming

•	 Predicted description: add new client for streaming

•	 BLEU_4 smooth: 66.87

•	 ROUGE-L f1 score: 80.00

This last example (Figure 14) shows an inverse situation: the
difference between the original and the predicted description
consist in the contradiction of the verb ‘add’ and ‘remove’, while
all the other tokens coincide. This situation produces a much
higher score, even though the meaning of the descriptions is
actually the opposite.

4.3. Semantic parsing
Hyperparameters
Java and C/C++ models (RecycledBERT)

•	 Dropout rate: 0.15

•	 Batch size: 32

•	 Warmup initial learning rate: 1e-07

•	 Warmup learning rate updates: 9,000

•	 Label smoothing rate: 0.1

•	 Weight decay rate: 0.0001

The models of the first category have all been trained on
Concode data adapted to context processing by a seq2seq
model, except for the “RecycleBERT without context” model,
which has been trained on the raw pairs {natural language,
code}. The analysis of the results obtained by each model is
performed below:

•	� Concode: the result provided in Table 6 is the one
obtained by the authors of the article. The instructions
given did not allow to reproduce it;

•	� Transformer: The BLEU 4 score obtained by the
transformer model developed with PyTorch and its
submodules is very low, emphasising the difficulty a
classical transformer model has on a task like code
generation. It should be noted that beam search has
not been used here, which can also explain the poor
performance;

•	� TRANX: The BLEU 4 score is rather weak, which
shows the limits of the model in term of perform-
ance, in spite of the complete treatment of the JAVA
grammar;

•	� RecycleBERT: The performance obtained by Recy-
cleBERT is much better than the results obtained
by Concode authors. This can be explained on the
one hand by the use of a recent powerful model and
the usage of the information contained in the pre-
trained embeddings of BERT. However, we notice
that the code produced in output is often not syntacti-
cally correct, which suggests that taking into account
the syntax of the language within such a model would
allow to improve its performance. Finally, there is a
marked difference between the score obtained by
taking into account the context (concatenated with
the natural language instruction) and the score with-
out context, which shows that the model is able
to capture and reuse certain information from the
context (such as method names, for example) while
distinguishing them correctly from the rest of the natural
language instruction. If the model were unable to
make this difference, performance would be impaired.
An example is provided in Figure 15. We can see that
the model did not succeed in providing the expected
result in this particular case, but that the instruction
was understood;

•	� RecycleCharacterBERT: By using a pretrained Char-
acterBERT model instead of a pretrained BERT,
RecycleBERT (logically renamed RecycleCharacter-
BERT) gives a significantly lower BLUE, which does
not follow our intuition. Indeed, the use of Character-
BERT (reasoning at characters forming each word level
to determine its embedding) should make it possible

Figure 12. C++ snippet - dwg_ent_text_get_height.

Figure 13. C++ snippet - get_desktop_file_path_list.

Page 18 of 32

Open Research Europe 2023, 2:37 Last updated: 05 MAR 2024

Table 6. Semantic parsing results.

Language Model BLEU 4

Java (Concode) Baseline: Concode (authors reported result) 22

Transformer 4

TRANX 10.1

RecycleBERT 35

RecycleBERT without context 30.65

RecycleCharacterBERT 18.12

C++ RecycleBERT pretrained (OpenCV dataset) 1.5

RecycleBERT (OpenCV dataset) 4.16

RecycleBERT (C&C dataset) 14.85

Figure 14. C++ snippet - mxr_streamer_put.

Figure 15. Code from a Concode example associated with an instruction.

Page 19 of 32

Open Research Europe 2023, 2:37 Last updated: 05 MAR 2024

to provide more adapted embeddings when working
on a very specific corpus, including many terms
(and subterms) that are rare and therefore absent
from the BERT vocabulary. We have put forward sev-
eral hypotheses, to be verified in the future, to explain
the difference between the expected performance and
the actual performance. The first one explains the
difference by a potential overestimation of the number
of rare words in the natural language instructions,
which would lead to a better performance of BERT, its
embeddings being more accurate than those of Char-
acterBERT on a text containing few words outside
the vocabulary. The second hypothesis would explain
the decrease in performance simply by an incor-
rect adaptation of the structure of RecycleBERT for
CharacterBERT. This result should be considered as
temporary.

The training of RecycleBERT on C++ corpora has globally
given poorer results than on Concode, which is probably
explained by the difference in data quality. On the first corpus
(OpenCV), the model was trained in two different ways. Indeed,
the corpus being quite small, we first tried to simply finetune
on the OpenCV corpus the model trained on Concode, hoping
that the similarities between JAVA and C++ would be enough
for the model to learn to generate C++ on a small amount
of data. The obtained BLUE score (1.5) being very low, to
the point of suggesting that the model has in fact not learned
anything, we tried to train RecycleBERT only on the OpenCV
corpus. The results obtained are a little bit better (4.16), showing
the failure of knowledge transfer between JAVA and C++,
but are still very low. The small size of the corpus is there-
fore not compatible with training a model like RecycleBERT.
However, training on the C&C corpus gives a BLEU of 14.85.
The difference in performance compared to training on the
OpenCV corpus is undoubtedly due to the much larger size of
the C&C corpus. The important difference between the BLEU
obtained on C&C and the one obtained on Concode is
explained by the difference in quality between the two datasets,
the code comments being necessarily less precise and noisier
than the code generation instructions. This lower data quality
also leads to more difficult learning of syntax rules. We have not
evaluated the part of the generated code that could be syntactically
correct but it is clear that it is quite low with the current model.
This also suggests that performance could be greatly improved
by adapting the model to generate syntactically correct code.
But the C++ syntax is a lot more complex than the Python
or even Java ones.

5. Conclusions
As more and more aspects of life depend on the reliable opera-
tion of high-quality software, the objective of this work is to
present some new tools that help to improve IT professionals’
productivity by facilitating their daily work. In particular, this
paper presents and describes three distinct tools based on NLP
techniques: variable misuse, code summarisation and semantic
parsing.

The variable misuse problem is a type of error which refers
to the wrong location of variables within source code that

affects the correct behaviour of the programme, causing fail-
ures in it. Several works have focused on this common problem,
most of them present learning-based repair solutions that learn
how to fix this class of error directly from source code exam-
ples. The method we have presented in this paper makes use of
one of them based on a novel technique called pointer networks
and extends it to other programming languages historically
more used. Therefore, with the objective of alleviating debug-
ging tasks of software developers, we take advantage from using
deep learning end-to-end models to locate and repair faulty
variables contained in source code files written in Java, C or
C++. After an evaluation over two different datasets, we have
shown how our tool is able to correctly classify about a 93% of
Java, C and C++ files, which shows the effectiveness of the
approach for this classification task. However, there are some
differences in the bug-repair ability of both models. The Java
model outperforms the model implemented for C/C++ use case,
since it is able to correctly locate and repair the bug for roughly
71% of the buggy Java programmes, whereas the C/C++ model
only manages to repair a 60% of these. This difference is prob-
ably due to the smaller amount of training data of the C/C++
use case, even when this dataset size was increased with
the incorporation of new source code files from third-party
projects.

Focusing on the code summarisation tool, the results obtained
are quite good for all the programming languages involved
in our experiments. In this conclusion, when we refer to
our best models, we are always referring to the augmented
versions of the models developed for Java and C/C++. Although
Java has been the object of various studies within code
summarisation, it is difficult to define a baseline reference due
to the different metrics (and even versions of them) that are
used in different studies that make the assessment uncertain. The
resulting metrics for our Java model highlight that we went
beyond the state of the art when focusing on metrics such as the
ROUGE-L, whereas the performances are lower than the state
of the art when evaluating with multiple versions of the
BLEU score, emphasising the ambiguity that exists when
it comes to evaluate models developed for this task. On the
contrary, to our knowledge, the C and C++ languages have not
been explored for code summarisation yet. This means that our
code summarisation model for C/C++ proposes a new applica-
tion for this task based on new languages, consequently having
no terms of comparison for the performances of our models.
Given this, we observed that our model for C/C++ outperforms
the Java models in both sets of metrics, suggesting that it consists
in a valid solution to automatically generate descriptions for C
and C++ source code methods.

However, there is room for improvement of the code summa-
risation tool, taking into consideration that it is a quite new field
of investigation and that no experiments have been conducted
for C and C++ languages so far. Solutions like trying differ-
ent pre-processing techniques and code representations (like
AST based representations) or architectures (such as graph
neural networks) could help in increasing the performances.
Moreover, the usage of a pre-trained model to calculate domain
specific embeddings could be useful to achieve better results for
this task.

Page 20 of 32

Open Research Europe 2023, 2:37 Last updated: 05 MAR 2024

Considering semantic parsing, the main goal of this work
was to go beyond the results of the state of the art in code
generation, by improving existing models with the latest
advances in NLP. The development of a model aggregating these
various improvements has been undertaken. Its architecture
seems now clearly defined. However, its implementation is still
in progress. Nevertheless, during the research process linked
to the development of this model, several machine translation
and code generation models were evaluated on the avail-
able data sets. This allowed highlighting the efficiency of the
most recent NLP models, able to obtain higher scores than the
state of the art in code generation of 2018, without any mecha-
nism ensuring the production of syntactically correct code. The
inclusion of such a mechanism in the model currently under
development allows us to expect improved performance. We
can highlight three main components in a competitive model:
the use of the most recent machine translation models using
pretrained embeddings such as those of BERT, a mechanism
such as TRANX based on ASTs and ASDL allowing to generate
syntactically correct code, and taking into account of the
context of the class within which the code must be generated. This
last aspect is not optimally handled by our current model,
which simply concatenates the context to the natural language
instruction. This leaves room for possible improvements of the
model in the future.

Ethics and consent
Ethical approval and consent were not required.

Data availability
Underlying data
The datasets corresponding to the use cases considered in this
paper are collected in public repositories:

Zenodo: DECODER OpenCV use case data. https://doi.org/10.5281/
zenodo.4333362)26.

•	� OpenCV datasets for DECODER project deliver-
able D6.2 "Use-case data from the PKM". See the
deliverable for further details (deliverable is available
on project website).

Zenodo: OW2 Decoder java use-cases data (WP6). https://doi.
org/10.5281/zenodo.4322471)27.

•	� OW2 data for use-cases Authzforce, Joram, Lutece,
Sat4j.

Zenodo: Training dataset for the Drivers use case. https://doi.
org/10.5281/zenodo.5780179)28.

•	� Training dataset for the Drivers use case (C language)
obtained from the "excavator" dataset https://zenodo.
org/record/4383876 (simplified version of the original
linux code).

https://github.com/devonfw/my-thai-star

•	� MyThaiStar is the reference application that Capgemini
uses internally to promote best programmeming
practices and the correct use of last technologies. It is

developed with Devon Framework, the standard tool
for development at the company.

Data are available under the terms of the Creative Commons
Attribution 4.0 International (CC-BY 4.0).

In addition, this section includes the databases that contain
the different datasets/source code files used for augmenting
data. For the variable misuse tool, we extracted some code files
from these GitHub repositories:

•	 https://github.com/ros-perception/vision_opencv” \t “xref
window (accessed on 27/01/2021)

•	� https://github.com/Selameab/icog_face_tracker (accessed
on 27/01/2021)

•	� https://github.com/chrissunny94/Lane_Detection (accessed
on 27/01/2021)

•	� https://github.com/tzutalin/ros_sample_image_transport
(accessed on 27/01/2021)

•	� https://github.com/qutas/kinetic_sample_packages
(accessed on 27/01/2021)

•	� https://github.com/ros/ros_tutorials (accessed on
27/01/2021)

•	� https://github.com/introlab/find-object (accessed on
27/01/2021)

•	� https://github.com/joselusl/aruco_eye (accessed on
27/01/2021)

•	� https://github.com/ros-perception/image_pipeline
(accessed on 27/01/2021)

•	� https://github.com/laurentkneip/opengv/tree/master/src/
relative_pose (accessed on 27/01/2021)

•	� https://github.com/Longpham3105/learnopencv.com
(accessed on 27/01/2021)

•	� https://github.com/PacktPublishing/-OpenCV-By-Example
(accessed on 27/01/2021)

•	� https://github.com/oreillymedia/Learning-OpenCV-3_
examples (accessed on 27/01/2021)

•	� https://github.com/nrsyed/computer-vision/tree/master/
ColorThreshUtil (accessed on 27/01/2021)

•	� https://github.com/tobybreckon/cpp-examples-ipcv
(accessed on 27/01/2021)

Regarding the code summarisation task, the Code and
Comments dataset was used to extract observations to augment
data, which can be found in this repository:

•	� Zenodo: Code and Comments Dataset. https://doi.
org/10.5281/zenodo.347205031.

•	� The code and comment data are a compilation of code
blocks and their related comments. Doxygen suc-
cessfully ran on 106,304 different GitHub projects.

Page 21 of 32

Open Research Europe 2023, 2:37 Last updated: 05 MAR 2024

https://doi.org/10.5281/zenodo.4333362
https://doi.org/10.5281/zenodo.4333362
https://www.decoder-project.eu/view/Main/Deliverables
https://doi.org/10.5281/zenodo.4322471
https://doi.org/10.5281/zenodo.4322471
https://doi.org/10.5281/zenodo.5780179
https://doi.org/10.5281/zenodo.5780179
https://zenodo.org/record/4383876
https://zenodo.org/record/4383876
https://github.com/devonfw/my-thai-star
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://github.com/ros-perception/vision_opencv
https://github.com/Selameab/icog_face_tracker
https://github.com/chrissunny94/Lane_Detection
https://github.com/tzutalin/ros_sample_image_transport
https://github.com/qutas/kinetic_sample_packages
https://github.com/ros/ros_tutorials
https://github.com/introlab/find-object
https://github.com/joselusl/aruco_eye
https://github.com/ros-perception/image_pipeline
https://github.com/laurentkneip/opengv/tree/master/src/relative_pose
https://github.com/laurentkneip/opengv/tree/master/src/relative_pose
https://github.com/Longpham3105/learnopencv.com
https://github.com/PacktPublishing/-OpenCV-By-Example
https://github.com/oreillymedia/Learning-OpenCV-3_examples
https://github.com/oreillymedia/Learning-OpenCV-3_examples
https://github.com/nrsyed/computer-vision/tree/master/ColorThreshUtil
https://github.com/nrsyed/computer-vision/tree/master/ColorThreshUtil
https://github.com/tobybreckon/cpp-examples-ipcv
https://doi.org/10.5281/zenodo.3472050
https://doi.org/10.5281/zenodo.3472050

A total of 16,115,540 code- comment pairs were
obtained by running Doxygen on C, C++, Java, and
Python projects.

•	� https://github.com/xing-hu/DeepCom (accessed on
17/05/2021)

Finally, we include the repository that contains the “Concode
Dataset” used in the experiments of the semantic parsing tool,
although the data used in this case was also augmented using
the “Code and Comments Dataset” mentioned above:

•	� https://github.com/sriniiyer/concode (accessed on
18/08/2020)

Data are available under the terms of the Creative Commons
Zero “No rights reserved” data waiver (CC0 1.0 Public domain
dedication).

Software availability
Source code available from:

•	 https://gitlab.ow2.org/decoder

Archived source code at time of publication:
•	� Zenodo: Variable misuse tool (ORE). https://doi.

org/10.5281/zenodo.6034599)23.

•	� Zenodo: Code Summarization tool (DECODER project).
https://doi.org/10.5281/zenodo.6090276)24.

•	� Zenodo: Semantic parser tool from the Decoder project.
https://doi.org/10.5281/zenodo.6280897)25.

License:
•	 GNU Affero General Public License v3 (AGPL-3.0)

References

1.	 Xia X, Bao L, Lo D, et al.: Measuring Program Comprehension: A Large-Scale
Field Study with Professionals. IEEE Transactions on Software Engineering.
2018; 44(10): 951–976.
Publisher Full Text

2.	 Allamanis M, Brockschmidt M, Khademi M: Learning to represent Programs
with graphs. Proceedings of the 6th International Conference on Learning
Representations (ICLR). 2018.
Reference Source

3.	 Vessey I: Expertise in debugging computer programs: A process analysis.
Int J Man Mach Stud. 1985; 23(5): 459–494.
Publisher Full Text

4.	 Haiduc S, Aponte J, Moreno L, et al.: On the Use of Automated Text
Summarization Techniques for Summarizing Source Code. 2010 17th
Working Conference on Reverse Engineering. 2010; 35–44.
Publisher Full Text

5.	 Ahmad WU, Chakraborty S, Ray B, et al.: A Transformer-based Approach for
Source Code Summarization. Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics (ACL). 2020; 4998–5007.
Reference Source

6.	 Yin P, Neubig G: TRANX: A Transition-based Neural Abstract Syntax
Parser for Semantic Parsing and Code Generation. Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations. 2018; 7–12.
Publisher Full Text

7.	 Devlin J, Uesato J, Singh R, et al.: Semantic code repair using Neuro-Symbolic
Transformation Networks. 2017.
Reference Source

8.	 Vasic M, Kanade A, Maniatis P, et al.: Neural programme repair by jointly
learning to localize and repair. Proceedings of the 7th International Conference
on Learning Representations (ICLR). 2019; 1–12.
Reference Source

9.	 Hu X, Li G, Xia X, et al.: Deep Code Comment Generation. Proceedings of IEEE/ACM
International Conference on programme Comprehension (ICPC). 2018; 200–210.
Publisher Full Text

10.	 Hu X, Li G, Xia X, et al.: Summarizing Source Code with Transferred API
Knowledge. Proceedings of the 27th International Joint Conference on Artificial
Intelligence (IJCAI). 2018; 2269–2275.
Publisher Full Text

11.	 Shido Y, Kobayashi Y, Yamamoto A, et al.: Automatic Source Code
Summarization with Extended Tree-LSTM. International Joint Conference on
Neural Networks (IJCNN). 2019; 1–8.
Publisher Full Text

12.	 Wan Y, Zhao Z, Yang M, et al.: Improving Automatic Source Code
Summarization via Deep Reinforcement Learning. Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering. 2018; 397–407.
Publisher Full Text

13.	 Zettlemoyer LS, Collins M: Learning to map sentences to logical form:
structured classification with probabilistic categorial grammars. Proceedings

of the 31st Conference on Uncertainty in Artificial Intelligence. 2005; 658–666.
Reference Source

14.	 Banarescu L, Bonial C, Cai S, et al.: Abstract Meaning Representation for
Sembanking. Proceedings of the 7th Linguistic Annotation Workshop and
Interoperability with Discourse. 2013; 178–186.
Reference Source

15.	 Zhong V, Xiong C, Socher R: Seq2SQL: Generating Structured Queries from
Natural Language using Reinforcement Learning. arXiv: Computation and
Language. 2017.
Reference Source

16.	 Quirk C, Mooney R, Galley M: Language to Code: Learning Semantic Parsers
for If-This-Then-That Recipes. Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing. 2015; 1: 878–888.
Publisher Full Text

17.	 Artzi Y, Zettlemoyer L: Weakly Supervised Learning of Semantic Parsers for
Mapping Instructions to Actions. Trans Assoc Comput Linguist. 2013; 1: 49–62.
Reference Source

18.	 Rabinovich M, Stern M, Klein D: Abstract Syntax Networks for Code
Generation and Semantic Parsing. Proceedings of the 55th of the Association for
Computational Linguistics. 2017; 1: 1139–1149.
Publisher Full Text

19.	 Ling W, Blunsom P, Grefenstette E, et al.: Latent Predictor Networks for Code
Generation. In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics. 2016; 1: 599–609.
Publisher Full Text

20.	 Imamura K, Sumita E: Recycling a Pre-trained BERT Encoder for Neural
Machine Translation. Proceedings of the 3rd Workshop on Neural Generation and
Translation. 2019; 23–31.
Publisher Full Text

21.	 Xiao C, Dymetman M, Gardent C: Sequence-based Structured Prediction for
Semantic Parsing. Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics. 2016; 1: 1341–1350.
Publisher Full Text

22.	 Wang DC, Appel AW, Korn JL, et al.: The zephyr abstract syntax description
language. Conference on Domain-Specific Languages. 1997.
Reference Source

23.	 Robledo C, Sallicati F, Gutiérrez J: Variable Misuse tool (ORE) (v1.0.0). Zenodo.
2022.
http://www.doi.org/10.5281/zenodo.6034599

24.	 Sallicati F, Lete CR, Meana JG: Code Summarization tool (DECODER project)
(v1.0.0). Zenodo. 2022.
http://www.doi.org/10.5281/zenodo.6090276

25.	 De Chalendar G, Bouachera Y, Laleye F, et al.: Semantic parser tool from the
Decoder project (0.1.0). Zenodo. 2022.
http://www.doi.org/10.5281/zenodo.6280897

26.	 Fernández-Carbajales V, Sallicati F, Robledo C, et al.: Decoder OpenCV use case

Page 22 of 32

Open Research Europe 2023, 2:37 Last updated: 05 MAR 2024

https://github.com/xing-hu/DeepCom
https://github.com/sriniiyer/concode
https://www.gnu.org/licenses/agpl-3.0.en.html
https://www.gnu.org/licenses/agpl-3.0.en.html
https://gitlab.ow2.org/decoder
https://doi.org/10.5281/zenodo.6034599
https://doi.org/10.5281/zenodo.6034599
https://doi.org/10.5281/zenodo.6090276
https://doi.org/10.5281/zenodo.6280897
https://www.gnu.org/licenses/agpl-3.0.en.html
http://dx.doi.org/10.1109/TSE.2017.2734091
https://arxiv.org/pdf/1711.00740
http://dx.doi.org/10.1016/S0020-7373(85)80054-7
http://dx.doi.org/10.1109/WCRE.2010.13
https://arxiv.org/pdf/2005.00653
http://dx.doi.org/10.18653/v1/D18-2002
https://arxiv.org/pdf/1710.11054
https://arxiv.org/pdf/1904.01720
http://dx.doi.org/10.1145/3196321.3196334
http://dx.doi.org/10.24963/ijcai.2018/314
http://dx.doi.org/10.1109/IJCNN.2019.8851751
http://dx.doi.org/10.1145/3238147.3238206
https://dl.acm.org/doi/10.5555/3020336.3020416
https://amr.isi.edu/a.pdf
https://arxiv.org/abs/1709.00103
http://dx.doi.org/10.3115/v1/P15-1085
https://aclanthology.org/Q13-1005.pdf
http://dx.doi.org/10.18653/v1/P17-1105
http://dx.doi.org/10.18653/v1/P16-1057
http://dx.doi.org/10.18653/v1/D19-5603
http://dx.doi.org/10.18653/v1/P16-1127
https://www.cs.princeton.edu/~appel/papers/asdl97.pdf
http://www.doi.org/10.5281/zenodo.6034599
http://www.doi.org/10.5281/zenodo.6090276
http://www.doi.org/10.5281/zenodo.6280897

data. [Data set]. Zenodo. 2020.
http://www.doi.org/10.5281/zenodo.4333362

27.	 Gibello PY: OW2 Decoder java use-cases data (WP6). [Data set]. Zenodo. 2020.
http://www.doi.org/10.5281/zenodo.4322471

28.	 Robledo C, Sallicati F, Gutiérrez J: Training dataset for the Drivers use case
(1.0). [Data set]. Zenodo. 2021.
http://www.doi.org/10.5281/zenodo.5780179

29.	 Gelman B, Obayomi B, Moore J, et al.: Source Code Analysis Dataset. Data
Brief. 2019; 27: 104712.
PubMed Abstract | Publisher Full Text | Free Full Text

30.	 Iyer S, Konstas I, Cheung A, et al.: Mapping Language to Code in
Programmatic Context. Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing (EMNLP). 2018; 1643–1652.
Publisher Full Text

31.	 Gelman B, Obayomi B, Moore J, et al.: Code and Comments Dataset.
[Data set]. Zenodo. 2019.
http://www.doi.org/10.5281/zenodo.3472050

32.	 Hochreiter S, Schmidhuber J: Long short-term memory. Neural Comput. 1997;
9(8): 1735–1780.
PubMed Abstract | Publisher Full Text

33.	 Vinyals O, Fortunato M, Jaitly N: Pointer Networks. Proceedings of the 28th
International Conference on Neural Information Processing Systems (NeuralPS).
2015; 2: 2692–2700.
Reference Source

34.	 Vaswani A, Shazeer N, Parmar N, et al.: Attention is all you need. Proceedings
of the 31st International Conference on Neural Information Processing Systems.
2017; 6000–6010.
Reference Source

35.	 Cho K, van Merrienboer B, Gulcehre C, et al.: Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine
Translation. Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP). 2014; 1724–1734.
Publisher Full Text

36.	 El Boukkouri H, Ferret O, Lavergne T, et al.: CharacterBERT: Reconciling
ELMo and BERT for Word-Level Open-Vocabulary Representations From
Characters. Proceedings of the 28th International Conference on Computational
Linguistics. 2020; 6903–6915.
Publisher Full Text

37.	 Papineni K, Roukos S, Ward T, et al.: Bleu: a method for automatic evaluation
of machine translation. Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics. 2002; 311–318.
Publisher Full Text

38.	 Lin CY: ROUGE: A Package for Automatic Evaluation of Summaries.
Proceedings of the ACL Workshop: Text Summarization Branches Out. 2004; 74–81.
Reference Source

39.	 Post M: A Call for Clarity in Reporting BLEU Scores. Proceedings of the 3rd
Conference on Machine Translation: Research Papers. 2018; 186–191.
Reference Source

Page 23 of 32

Open Research Europe 2023, 2:37 Last updated: 05 MAR 2024

http://www.doi.org/10.5281/zenodo.4333362
http://www.doi.org/10.5281/zenodo.4322471
http://www.doi.org/10.5281/zenodo.5780179
http://www.ncbi.nlm.nih.gov/pubmed/31763386
http://dx.doi.org/10.1016/j.dib.2019.104712
http://www.ncbi.nlm.nih.gov/pmc/articles/6859235
http://dx.doi.org/10.18653/v1/D18-1192
http://www.doi.org/10.5281/zenodo.3472050
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://dx.doi.org/10.3115/v1/D14-1179
http://dx.doi.org/10.18653/v1/2020.coling-main.609
http://dx.doi.org/10.3115/1073083.1073135
https://aclanthology.org/W04-1013/
https://aclanthology.org/W18-6319.pdf

Open Peer Review
Current Peer Review Status:

Version 2

Reviewer Report 03 November 2023

https://doi.org/10.21956/openreseurope.18099.r35896

© 2023 Allamanis M. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Miltos Allamanis
Google DeepMind, London, UK

The comments from my previous review have been adequately addressed.

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: machine learning

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Version 1

Reviewer Report 12 September 2022

https://doi.org/10.21956/openreseurope.15660.r29626

© 2022 Hamou-Lhadj A. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Abdelwahab Hamou-Lhadj
1 Concordia University, Montreal, Canada
2 Concordia University, Montreal, Canada

The authors present Persistent Knowledge Monitor (PKM), a framework that uses NLP to aid in
software development and maintenance tasks. The framework targets three tasks: automatic
detection and localization of variable misuse, code summarization, and semantic parsing.

Open Research Europe

Page 24 of 32

Open Research Europe 2023, 2:37 Last updated: 05 MAR 2024

https://doi.org/10.21956/openreseurope.18099.r35896
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-5819-9900
https://doi.org/10.21956/openreseurope.15660.r29626
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-3319-5006

The rationale for developing PKM is clearly stated. Using AI in software maintenance can help
reduce the amount of time and effort required to maintain large software systems. This time can
be used to create interesting features that provide value to customers.

The selection of the three tasks that developers can perform with the framework appears odd.
While variable misuse is a significant issue, it is only a minor aspect of overall code quality. Code
summarization is needed for programme comprehension, which in turn helps in the detection and
correction of bugs. Semantic parsing is not directly related to software maintenance and is not
something that many developers would require in order to understand and debug code, the
framework's main purpose.

Furthermore, the following points in the article require clarification:

The description of the datasets used for the three tasks is a little hazy. For the variable
misuse case study, for example, the authors simply state the projects' name and the
number of files they contain. It would be better if the authors included more details, such
as the number of lines of code, the number of years the systems have been in operation,
and so on, to help the reader have an idea of the complexity of these systems. I have a
similar comment about the dataset used for code summarization. The authors stated that
an existing C/C++ dataset was augmented (Section 3.1.3), but they do not explain how this
was done. The number of systems included in this dataset was not provided either.

○

Many of the presented algorithms in the model implementation section require the setting
of hyperparameters, which is not covered in the article. The authors mention various DL
algorithms and NLP pre-trained models, but do not go into detail about how these
algorithms are used to run the experiments presented in the paper, particularly when
finetuning the models.

○

For the variable misuse case study, the number of synthetic buggy files generated is
significantly greater than the number of healthy files (e.g., for Java, there are 8,058 healthy
files compred to 54,448 buggy files). Wouldn't this result in a data imbalance issue? How did
the authors handle this?

○

In the Results section on variable misuse, the authors presented four evaluation metrics,
which, in my opinion, are insufficient to understand the tool's performance. For example,
classification accuracy, which is the percentage of total programmes in the test set correctly
classified as bug free or buggy, is not useful. It would have been better to report the
percentage of bug-free programmes that are correctly classified as well as the number of
buggy programmes that are correctly classified as two separate metrics. Indeed, I believe
the authors should employ traditional evaluation metrics such as true positives, false
positives, true negatives, and false negatives, as well as accuracy, precision, recall, and f1-
score. I'd also recommend including the AUC. Furthermore, I do not believe we should
combine the results of variable misuse detection and variable misuse localization. These are
two distinct classification problems, and the results should be reported separately (using
the aforementioned metrics).

○

The code summarization examples are interesting. Perhaps, the authors should provide
examples for the two other tasks (variable misuse and semantic parsing) as well.

○

Open Research Europe

Page 25 of 32

Open Research Europe 2023, 2:37 Last updated: 05 MAR 2024

Other thoughts:
I recommend including a process that explains how the proposed framework should be
used in practice by software developers and maintainers, especially given the number of
algorithms involved.

○

Because these tools use DL algorithms, I recommend discussing the ethical dimensions (if
any) as well as the AI algorithms' explainability. AI research should always include these
aspects, in my opinion, to increase confidence in using these techniques.

○

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Partly

Are sufficient details provided to allow replication of the method development and its use
by others?
Partly

If any results are presented, are all the source data underlying the results available to
ensure full reproducibility?
Partly

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Software Engineering, Software Maintenance and Evolution, Software Tracing
and Logging, AIOps, Anomaly Detection, Model-Driven Engineering.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have
significant reservations, as outlined above.

Author Response 17 Oct 2023
Cristian Robledo

First of all, thanks a lot for your time and your review. I will try to respond you following the
same structure you used for your comments.

We have included more information about the datasets to the 2nd version of the
work, which has already been submitted. We have added information regarding the
total number of lines for each dataset. However, we do not really know what you
mean with “systems”. If you refer to the numer of years that these applications have
been working or in maintenance, we think this information is not strictly necessary

○

Open Research Europe

Page 26 of 32

Open Research Europe 2023, 2:37 Last updated: 05 MAR 2024

for the reader and the understanding of the tools/models we present in our work.
Concerning the data augmentation on the C/C++ use case in code summarization
task, we just joined the DECODER dataset with the augmented dataset (also known as
“Code and Comments Dataset”) together and ran the corresponding model. We hope
this answer your question.

The hyperparameters finally selected and used for every model have been included in
Results section in the 2nd version of the article. Regarding the Deep Learning models,
we think that the information we provide to the readers is enough to understand how
they work. One of the reasons is that they can turn to the original works of the
models if they want to go into detail. These works are properly indicated in our article
in order to facilitate their access.

○

The dataset for the VarMisuse task is not imbalanced. Following your example, you
are right: we use those 8k healthy Java files to automatically create 54 buggy files. But
in this process we also include an original copy for each buggy file created, so at the
end of the stage we have 54k (healthy) original files and 54 buggy files, which ensures
a 50/50 balance. This information is already provided in Subsection 3.2.1.

○

It is true that more traditional metrics such those that you comment could be use for
the evaluation of models, buy they are not really related to the purpose of VarMisuse
task, which is to locate and repair wrong uses of variables in programmes. However,
we provide a classification matrix of the test set for each use case (Java and C/C++) ,
so most of the metrics mentioned in your comment can be directly calculated for
anyone who wants that information. Moreover, these traditional metrics are more
related to the VarMisuse detection (in case we state this problem as the detection of a
wrong use of a variable in a source code file) rather than VarMisuse localisation and
repair. Then, VarMisuse detection can be seen as a means for achieving the
VarMisuse localisation, because it helps to refine our purposed task by pointing out
those files which will need the fixing of the code later. So both classifications work
better together, at least for our objective.

○

We have included a couple of Figures to illustrate the VarMisuse task in the Result
section in the 2nd version of the article, since an example of Semantic Parsing task
was already provided.

○

Competing Interests: No competing interests were disclosed.

Reviewer Report 16 March 2022

https://doi.org/10.21956/openreseurope.15660.r28824

© 2022 Allamanis M. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Open Research Europe

Page 27 of 32

Open Research Europe 2023, 2:37 Last updated: 05 MAR 2024

https://doi.org/10.21956/openreseurope.15660.r28824
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Miltos Allamanis
1 Google DeepMind, London, UK
2 Google DeepMind, London, UK

This work replicates deep learning research on three software development tasks (variable
misuse, code summarisation, and semantic parsing) for Java, C, and C++.

This work seems technically correct and adds value to the research community by showing how a
set of methods can be consistently applied to support software development, especially in C, C++
which have been relatively neglected in the community. However, its methodological novelty is
unclear since no new methods are developed but replications of existing machine learning models
are used for C/C++ and Java. Specifically:

VarMisuse follows the method of Vasic et al. (2019) [8]○

Code summarisation follows Ahmad et al. (2020) [5]○

Semantic Parsing is a variation of Imamura et al. (2019) [20]○

 In that sense, I believe this work should probably not be listed as a "method article". An
alternative classification is probably more appropriate here.

High-level comments

The title eludes to a "toolkit" but the paper looks like a disparate set of three tools/machine
learning models. What are the (common) aspects that make this a "toolkit"? How are these
tools applicable in a broad set of scenarios?

○

The choice to use a relatively small dataset (DECODER) where possible, is interesting and
different from most work that focus on large datasets. This should be better highlighted
and contrasted.

○

Related Work
Some related work is missing and would be useful to be discussed and contrasted. Some
comparison with the evaluation section might also be useful:

VarMisuse
Pradel, Michael, and Koushik Sen. "Deepbugs: A learning approach to name-based
bug detection." Proceedings of the ACM on Programming Languages. OOPSLA (2018).
1

○

Hellendoorn, Vincent J., et al. "Global relational models of source code." International
conference on learning representations. 2019.2

○

Allamanis, Miltiadis, Henry Jackson-Flux, and Marc Brockschmidt. "Self-Supervised
Bug Detection and Repair." Advances in Neural Information Processing Systems
(2021).3

○

○

Code Summarisation
Parvez, Md Rizwan, et al. "Retrieval Augmented Code Generation and
Summarization." Findings of the Association for Computational Linguistics: EMNLP
2021. 2021.4

○

Clement, Colin, et al. "PyMT5: multi-mode translation of natural language and Python
code with transformers." Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP). 2020.5

○

Haque, Sakib, et al. "Improved automatic summarization of subroutines via attention ○

○

Open Research Europe

Page 28 of 32

Open Research Europe 2023, 2:37 Last updated: 05 MAR 2024

http://orcid.org/0000-0002-5819-9900
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-v86.1.jar!/com/f1000research/service/export/pdf/#rep-ref-28824-1
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-v86.1.jar!/com/f1000research/service/export/pdf/#rep-ref-28824-2
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-v86.1.jar!/com/f1000research/service/export/pdf/#rep-ref-28824-3
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-v86.1.jar!/com/f1000research/service/export/pdf/#rep-ref-28824-4
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-v86.1.jar!/com/f1000research/service/export/pdf/#rep-ref-28824-5

to file context." Proceedings of the 17th International Conference on Mining Software
Repositories. 2020.6
Lu, Shuai, et al. "CodeXGLUE: A Machine Learning Benchmark Dataset for Code
Understanding and Generation." Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 1). 2021.7

○

Semantic Parsing
Chen, Mark, et al. "Evaluating large language models trained on code." arXiv preprint
arXiv:2107.03374 (2021).8

○

Lu, Shuai, et al. "CodeXGLUE: A Machine Learning Benchmark Dataset for Code
Understanding and Generation." Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 1). 2021.

○

○

 Technical Comments
Variable Misuse:

"after the search on GitHub the number of source code files…". It's unclear what was
searched on GitHub? Why "just" ~700 files were found/added to the dataset?

○

The dataset split is unclear: does each file (and its buggy versions) appear in the same
train/validation/test fold? Please, clarify.

○

The generated bugs may be "too easy" to detect or can be detected by the relevant
compiler (Sec 3.1). For example, variable misuses that lead to type checker errors or
use-before-def errors. Have the authors filtered these out?

○

The performance on the VarMisuse task seems much better than the one reported by
Vasic et al. What explains this difference? One potential theory is that the generated
bugs are "too easy" (see bullet above). Discussing any potential explanations for this
in the paper would be very useful.

○

○

Code Summarisation
Some additional information on the inputs to the transformer model would be useful.
Specifically, the vocabulary creation (is BPE used, for example?), tokenization, etc.

○

○

Semantic Parsing
It's unclear if the "classical transformer model" includes positional encodings (the
PyTorch nn.Transformer doesn't incorporate them automatically).

○

Although using BLEU4 is a plausible metric, alternatives have been shown to
correlated better with the task, e.g. Ren, Shuo, et al. "Codebleu: a method for
automatic evaluation of code synthesis." arXiv preprint arXiv:2009.10297 (2020).9
Please consider reporting them too.

○

○

Minor Comments
A citation to Vaswani et al. (2017)10 for Figure 2 would probably be appropriate.○

Fig 5 and Fig 6 could be smaller or the text (numbers) larger.○

References
1. Pradel M, Sen K: DeepBugs: a learning approach to name-based bug detection. Proceedings of
the ACM on Programming Languages. 2018; 2 (OOPSLA): 1-25 Publisher Full Text
2. Hellendoorn V. J, Sutton C, Singh R, Maniatis P, et al.: Global relational models of source code.
International conference on learning representations. 2019. Reference Source

Open Research Europe

Page 29 of 32

Open Research Europe 2023, 2:37 Last updated: 05 MAR 2024

jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-v86.1.jar!/com/f1000research/service/export/pdf/#rep-ref-28824-6
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-v86.1.jar!/com/f1000research/service/export/pdf/#rep-ref-28824-7
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-v86.1.jar!/com/f1000research/service/export/pdf/#rep-ref-28824-8
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-v86.1.jar!/com/f1000research/service/export/pdf/#rep-ref-28824-9
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-v86.1.jar!/com/f1000research/service/export/pdf/#rep-ref-28824-10
https://doi.org/10.1145/3276517
https://openreview.net/forum?id

3. Allamanis M, Jackson-Flux H, Brockschmidt M: Self-Supervised Bug Detection and Repair.
Advances in Neural Information Processing Systems. 2021. Reference Source
4. Parvez Md R, Ahmad W, Chakraborty S, Ray B, et al.: Retrieval Augmented Code Generation and
Summarization. Findings of the Association for Computational Linguistics: EMNLP 2021. 2021.
Publisher Full Text
5. Clement C, Drain D, Timcheck J, Syvatkovskiy a, et al.: PyMT5: multi-mode translation of natural
language and Python code with transformers. Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP). 2020. Publisher Full Text
6. Haque Sakib, LeClair A, Wu L, McMillan C: Improved automatic summarization of subroutines via
attention to file context. Proceedings of the 17th International Conference on Mining Software
Repositories. 2020. Publisher Full Text
7. Lu S, Guo D, Ren S, Huang J: CodeXGLUE: A Machine Learning Benchmark Dataset for Code
Understanding and Generation. Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 1). 2021. Publisher Full Text
8. Chen M, Tworek J, Jun H, Yuan Q, et al.: Evaluating large language models trained on code. 2021.
Publisher Full Text
9. Shuo R, Guo D, Zhou L, Liu S, et al.: Codebleu: a method for automatic evaluation of code
synthesis. 2020. Publisher Full Text
10. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, et al.: Attention Is All You Need. Proceedings of the
31st International Conference on Neural Information Processing Systems. 2017. Publisher Full Text

Is the rationale for developing the new method (or application) clearly explained?
Partly

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use
by others?
Yes

If any results are presented, are all the source data underlying the results available to
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: machine learning

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have
significant reservations, as outlined above.

Open Research Europe

Page 30 of 32

Open Research Europe 2023, 2:37 Last updated: 05 MAR 2024

https://openreview.net/forum?id
https://doi.org/10.18653/v1/2021.findings-emnlp.232
https://doi.org/10.48550/arXiv.2010.03150
https://doi.org/10.1145/3379597.3387449
https://doi.org/10.48550/arXiv.2102.04664
https://doi.org/10.48550/arXiv.2107.03374
https://doi.org/10.48550/arXiv.2009.10297
https://doi.org/10.48550/arXiv.1706.03762

Author Response 17 Oct 2023
Cristian Robledo

First of all, thanks a lot for your time and your review. I will try to response you following the
same structure you used for your comments. Regarding the classification, we agree with
you about perhaps "Method Article" is not the most appropriate tag for the article.
However, given the alternatives available in the "Engineering and technology" subject area,
we selected this tag because we thought that it is more suitable than the others at least. We
also thought about classifying the paper as "Software Tool Article", but the problem is that
we (the authors) did not work on the integration and deployment side of the whole tool
(known as Persistent Knowledge Monitor, or PKM), so we lack most of the information to
develop and implement the toolkit from scratch, as it should be stated in a "Software Tool
Article".
High-level comments

We use the term "toolkit" because they belong to a set of tools integrated in the PKM
that aim to facilitate the daily work of software developers and mantainers. In the
article, we try to emphasise the development of these three Natural Lanugage
Processing tools rather than the synergies existing between them. However, they
exist: Imagine using this set of tools at a single project level. In case a new person
joins the project with no idea about how it is its architecture/structure or how its
code works, he/she could use some of this tool in order to understand, fix and
maintain any programme file of the project. Code summarization could help him by
giving short explanations for those undocumented functions/methods, while
Varmisuse could alleviate his workload by fixing most minor errors related to wrong
variables localisation or use. Perhaps the most disparate tool is the Semantic Parsing
one, but it could also be used as an introduction tool to the project, because it could
help to code easily in a fast way with no need of having a complete knowledge of the
project.

○

The response of this comment has been included in the 2nd version of the work,
which has already been submitted.

○

Related Work We have already had most of the works you mention in mind in previous
stages of the study. However, these have not been included in the article since we did not
want it to be too long. We have opted for including just the most related works in our paper.
Technical Comments

Variable Misuse:
All the replies to these comments have been already included in the 2nd
version of our work in their corresponding sections. Please, check them.

○

○

Code Summarisation
We have an specific section explaining this that we have extended in this 2nd
version of the work. Please, check 3.2.2.

○

○

Semantic Parsing
Yes, positionnal encoding was used
(https://github.com/kleag/transformer_NMT/blob/944f45ffe911a706cf7de40b2ec0c3e9bb0f1db1/transformer_model/translation_script_concode.py#L149),
so the sentence can be rewritten as "classical transformer model with
positionnal encoding". However, we miss do this in the 2nd version. Hopefully
this comment serves as additional information for readers.

○

○

Open Research Europe

Page 31 of 32

Open Research Europe 2023, 2:37 Last updated: 05 MAR 2024

Yes, BLEU4 is not able to judge the quality of produced code, just its similarity
at tokens level with the reference. Our future work will be evaluated with more
recent metrics dedicated to code, like "Codebleu" and test-oriented
benchmarks like HumanEval-X, but we think it is not necessary for the purpose
of this paper, which is more generalist.

○

Competing Interests: No competing interests were disclosed.

Open Research Europe

Page 32 of 32

Open Research Europe 2023, 2:37 Last updated: 05 MAR 2024

