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Abstract 
This paper aims to introduce the innovative work carried out in the 
Horizon 2020 DECODER project – acronym for “DEveloper COmpanion 
for Documented and annotatEd code Reference” – (Grant Agreement 
no. 824231) by linking the fields of natural language processing (NLP) 
and software engineering.

The project as a whole addresses the development of a framework, 
namely the Persistent Knowledge Monitor (PKM), that acts as a central 
infrastructure to store, access, and trace all the data, information and 
knowledge related to a given software or ecosystem. This meta-model 
defines the knowledge base that can be queried and analysed by all 
the tools integrated and developed in DECODER. Besides, the 
DECODER project offers a friendly user interface where each of the 
predefined three roles (i.e., developers, maintainers and reviewers) 
can access and query the PKM with their personal accounts.

The paper focuses on the NLP tools developed and integrated in the 
PKM, namely the deep learning models developed to perform variable 
misuse, code summarisation and semantic parsing. These were 
developed under a common work package – “Activities for the 
developer” – intended to precisely target developers, who can perform 
tasks such as detection of bugs, automatic generation of 
documentation for source code and generation of code snippets from 
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natural languages instructions, among the multiple functionalities 
that DECODER offers. These tools assist and help the developers in the 
daily work, by increasing their productivity and avoiding loss of time in 
tedious tasks such as manual bug detection.

Training and validation were conducted for four use cases in Java, C 
and C++ programming languages in order to evaluate the 
performance, suitability, usability, etc. of the developed tools.

Plain language summary  
Software engineers usually spends a lot of time in tedious activities 
like debugging and documenting code or finding examples of code 
snippets to use as a basis for their new programmes. Given the large 
and complex software systems that exist nowadays, being forced to 
perform these tasks manually causes a considerable drop in the 
overall productivity of programmers. The models developed in this 
work target Java, C and C++ programming languages and aim to 
alleviate software developers’, maintainers’ and reviewers’ efforts, by 
proposing automatic NLP solutions to carry out tasks such as bug 
detection, documentation generation and code search.

Keywords 
Natural Language Processing, Variable Misuse, Code Summarisation, 
Semantic Parsing, Deep Learning, Software Engineering
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1. Introduction
We live in a world where many important aspects of our daily 
lives rely on software. As a consequence, it is crucial for soft-
ware to be of good quality to be maintainable or updated. How-
ever, it has been estimated that developers lose about 60% of 
their productivity1 in struggling to understand badly written 
code or in tasks like detecting bugs or searching the Internet for  
documentation or snippets of code.

Recently, research groups started to advance in the application  
of machine learning in the field of software engineering,  
by adapting deep learning architectures to suit the needs of soft-
ware engineering tasks, finding solutions to assist software 
engineers in tasks like automatic repair, code completion, code  
search and code summarisation among others.

This paper focuses on the work carried out in the DECODER 
project, which aims to improve the productivity of IT profes-
sionals. This project developed a set of NLP-based tools to  
automatically generate code, detect bugs and perform code  
summarisation and code search, with the objective of supporting 
developers in their day-to-day work for the selected languages  
(Java, C and C++).

Finding bugs in source code is a core problem in software engi-
neering and programming language research. The challenge 
in this domain lies not only in correctly characterising source 
code that contains a bug with high precision, but also being 
able to correct it. Among all the possible errors that can be  
found, those that affect the correct behaviour of the software 
are of especial interest. An example of this kind of bug is vari-
able misuse (VarMisuse)2, which refers to the wrong use of  
variables and is perhaps one of the most common errors that 
cause programme breaks: given a programme, a VarMisuse 
bug exists when a correct variable differs from the current one 
at a certain location. These types of errors may occur when, for 
example, a programmer copies some code into a new context 

but forgets to rename a variable from the old context, or when  
two variable names within the same scope are easily confused.

Many people may think that repairing variable misuses is a 
trivial task that can be done manually. However, identifying the 
locations of faults in source code has been recognised to be  
tedious3, given not only the necessity of a rich background 
knowledge and complex logical reasoning about the original  
programmer’s intent, but also the size of large-scale software 
systems today. Thus, in order to alleviate the workload concen-
trated on debugging variable misuse bugs, we present an approach 
that takes advantage of deep learning sequence-to-sequence 
models to locate and repair a wrong use of variables in source  
code files, as well as classify programmes as correct or  
faulty.

Another crucial activity within the software development life-
cycle is documenting source code. Often times, large software 
repositories lack a proper documentation, which can be impre-
cise, vague, outdated or even missing. It is well-know that 
good code summaries can help in avoiding time loss and that 
they are essential to improve code comprehension and code 
search, especially during maintenance or evolution of a software  
project4. Thus, generating natural language description for 
source code can positively impact on developers’ daily work,  
facilitating a tool that works in synchrony with them in the  
monotonous task of documenting snippets of code.

In the last few years, a consistent number of solutions to 
achieve the task of code summarisation were already proposed,  
especially working with Java. The common basis for these 
approaches typically consists of using encoder-decoder neural  
networks, being usually sequence-to-sequence or transformer 
models. Based on 5, our approach introduces widely used pro-
gramming languages such as C and C++ in the context of code 
summarisation, achieving good performances with the usage  
of transformers models. 

As we mentioned previously, these tools aim to make easier  
the workflow of IT professionals, independent of whatever their 
role in a software development project. They lie on the idea 
of getting developers familiar not only with the code but also 
with a whole project in a simple and fast way. However, recent 
works go beyond this concept nowadays, such as semantic  
parsing.

Semantic parsing consists of transforming natural language into 
more formal ones like programming languages. Therefore, it 
can be seen as the reverse task of code summarisation. Recent 
works inspired by sequence-to-sequence processing propose 
architectures based on encoder-decoder neural networks whose 
decoder is constrained to conform to the grammar of the target  
language. Such techniques have already been experimented to 
generate code from a description in natural language6. In this 
work, we improve existing models with the latest developments 
in NLP and also apply them on a new language pair, namely  
the pair {natural language, C++}.

          Amendments from Version 1
The second version of the article contains minor changes that 
respond some of the comments received from reviewers. In 
particular, we have added more information about the datasets 
used in this work, such as the total number of code lines 
contained on each use case dataset and the datasets used for 
the data augmentation. In addition, we have also included a 
clarification about how this data augmentation was carried out in 
the case of the VarMisuse task.

Regarding the three specific tools presented in the article, 
this new version also includes the hyperparameter values of 
each model used for each use case, as well as a more detailed 
comparision with the original work for the VarMisuse task. We 
have also added a couple of figures that illustrate how well the 
VarMisuse tool works for each different use case addressed in 
the article.

Any further responses from the reviewers can be found at 
the end of the article

REVISED
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The paper is structured across five main sections: Section II 
presents the most recent works and state-of-the-art models 
related to the three NLP tools, emphasising those techniques  
that are based on deep learning architectures. Section III details 
all the methods adopted for building each model in terms of data,  
pre-processing techniques and architectures selected for the 
final deployment in the DECODER framework. Section IV  
covers the results obtained, providing commonly used met-
rics to assess performances for each tool, as well as displaying 
some concrete application examples. Finally, Section V sums  
up the achievements reached with these tools and gathers  
possible approaches for future research in this field.

2. Related work
2.1 Variable misuse
Within the automated program repair (APR) field, several works 
have focused on the variable misuse problem. Most of them 
present learning-based repair solutions that learn how to fix  
this type of error directly from source code examples.

The work already mentioned in 2 introduces the VarMisuse 
problem. This is addressed by using a graph neural network on 
syntactic and semantic information to make individual predic-
tions for each variable use in a program and reporting back all  
variable discrepancies above a threshold.

In 7, a neural model for semantic code repair – where one of 
the classes of bugs is variable replace (VarReplace) – is pre-
sented. This is similar to the VarMisuse problem. In particu-
lar, VarReplace refers to an incorrect local variable that is used 
at a particular location and should be replaced with another 
variable from the snippet. This framework adopts a two-stage  
approach where first a large set of repair candidates are  
generated by rule-based processors, and then these candidates  
are scored by a statistical model using a novel neural  
network architecture to select the best one.

Finally, 8 presents an approach that, unlike previous studies, 
jointly and directly localises and repairs variable misuse bugs, 
and classifies the programme as faulty or correct. To achieve 
this, the authors use a novel multi-headed pointer network  
where two pointers are trained: the first pointer corresponds 
to the location of the bug, and the second pointer corresponds  
to the location of the repair variable.

Our approach is also based on this last work and makes use 
of pointer networks to detect and fix wrong uses of variables. 
In essence, it could be seen as an extension of the original 
method, which just targets programming languages like Python 
(RRID:SCR_008394) and C#. We have been able to extend the  
approach to other programming languages historically more 
used – according to the TIOBE programming Community  
Index – as Java, C and C++ with good results.

2.2 Code summarisation
Although in the last few years, research in code summarisation 
tasks offered many innovative solutions, often based on deep 
learning models, this kind of applications still remains quite 

unexplored and usually involves few programming languages. 
For instance, a huge proportion of papers published on the  
topic use Java (few use Python) as the object of study.

One example is the model proposed by 5, consisting of a 
transformer-based architecture that is fed with source code  
token-level information, rather than working with complex 
representations like path sequences from the programmes’ 
abstract syntax trees (ASTs). The results reported in this study  
represent a significant improvement over previous studies, 
especially for the summarisation of methods written using  
Python.

Other experiments in Java come from 9 and 10. Both stud-
ies are focused on code summarisation tasks but propose a  
different approach. In the first paper, they propose DeepCom, 
a sequence language model, where information is fed from  
ASTs, with the introduction of a new structured-based traver-
sal method to help keep sequences unambiguous and revers-
ible to its original form. In the second study, TLCodeSum is 
presented, consisting in an attention sequence-to-sequence 
model that incorporates previously learned information from 
API sequences as an additional encoder. The aim is to produce  
natural language description for snippets of code.

In 11, ASTs are also employed as the input layer for a new pro-
posed type of Tree-LSTM (long short-term memory) model 
attention model. Since standard Tree-LSTMs cannot han-
dle a node that has an arbitrary number of children and their 
order in ASTs simultaneously, the authors developed an exten-
sion of Tree-LSTM, which they called Multi-way Tree-LSTM, 
to be set as the encoding layer for their network, handling such  
representations.

Another approach involving Python is proposed by 12. This 
model uses both AST extracted sequences and token-level  
information to feed a deep reinforcement learning model, which 
instead of using a simple decoder to greedily predict the next 
most probable correct word, introduces at each time step an actor  
and a critic network that jointly select the best candidate word.

By further investigating the state of the art, few studies involving  
other programming languages can be found, apart from a  
couple of papers that focus of SQL and C#. Developed under 
the framework of the DECODER project, our approach on 
code summarisation involves a transformer-based architecture 
inspired by 5, where the main novelty consists in the implemen-
tation of these techniques not only for the Java language but  
also for C and C++ programming languages, which are widely 
used languages, even though they have not been used in the  
context of automatic documentation generation for source code.

2.3 Semantic parsing
Translating natural languages into formal languages is called 
Semantic Parsing. It has been applied to the generation of  
formal languages like λ-calculus13 or the abstract meaning  
representation (AMR)14. It has also been largely used to help 
user query databases by converting their requests into SQL15  

Page 5 of 32

Open Research Europe 2023, 2:37 Last updated: 05 MAR 2024

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/


or other kinds of instructions16,17. Moreover, semantic parsing 
is also used to generate programming languages like Python18  
and Java19. Recently, BERT-based models have been designed, 
like RecycleBERT20, a transformer model whose encoder  
has been replaced by pre-trained BERT (RRID:SCR_018008).

In semantic parsing, target languages are formal ones respecting 
a strict grammar. Several works have tried to take into account 
this fact. For example, 15 filters out invalid generated SQL  
queries. 21 generates a sequence of grammar derivation steps 
and grammatical constraints. Rabinovich18 uses a more abstract 
representation, the abstract syntax network (ASN), which 
encodes ASTs represented with the generic abstract syntax 
description language (ASDL) framework22. The already men-
tioned TRANX6 uses this approach to generate programming 
languages, SQL and Python.

Our goal in this work is to use jointly RecycleBERT and 
TRANX to generate accurate and valid Java and C++ code  
in the framework of the DECODER environment.

3. Methods
The tools presented in this work are available from GitHub  
and archived with Zenodo23–25.

3.1 Data
3.1.1. Use cases datasets
DECODER datasets include four uses cases, whose main fea-
tures are presented in Table 1 and can be found as Underlying  
data26–28. Note that these datasets represent a common basis 
for the development of the models involved in this work. For 
the variable misuse model, bugs were automatically gen-
erated for the source code methods according to the rules 
described in the following section, whereas the natural language 
descriptions for the code summarisation model were already 
provided by the consortium partners together with the code.

Drivers and OpenCV use cases collect source code files  
written in C and C++ respectively. The former use case,  
led by SYSGO, consists in a collection of Linux drivers source 
code, while TREE OpenCV use case gathers programmes  
belonging to a human-robot interaction application.

Java source code files come from MyThaiStar and Java use 
cases. The first use case, led by CAPGEMINI, is an application 

that manages orders and reservations for an Asian restaurant, 
while the OW2 Java use case brings together four independent  
projects (Joram, Lutece, Sat4J and Authzforce projects).

It is worth noting that C and C++ files were merged to develop 
both Variable Misuse and Code Summarisation models, due 
to the scarcity of available training data. Therefore, from here  
on we will refer to C/C++ and Java models/use cases.

3.1.2. Datasets for variable misuse
Focusing on the VarMisuse task, the need to augment the train-
ing set with publicly available code from GitHub was needed 
for the C/C++ model, due to the scarcity and quality of the 
data covering these two programming languages. As Table 1 
displays, there are only 911 (319+592) source code files pro-
vided by the Drivers and OpenCV use cases, respectively, 
which would be an important limitation.

The new programme files extracted from GitHub public 
projects were selected based on two requirements: firstly, 
they must have belonged to projects that use the OpenCV 
library, because it corresponds to one of the use case 
datasets provided, so their code could be similar. On the 
other hand, the programmes contained on the projects 
should have been simple, in order to verify that they did not 
contain any bug easily. Then, after the search on Github, the 
number of source code files for the C/C++ use case increased 
in 1,618 files and 50,646 lines of code. The corresponding 
links to these public projects are also attached in 
the Underlaying Data section.

3.1.3 Datasets for code summarisation
Concerning the code summarisation implementation of the  
augmented model versions, two datasets are involved:

•   �Java DeepComm9 dataset that gathers about 600k pairs 
of Java methods (7,606,605 lines of code) and asso-
ciated NL description, which were already selected 
and processed by the authors of the paper.

•   �The augmented C/C++ dataset, built by extracting 
250k observations in C and 250k observations in C++  
from a SQL database provided by 29. They collected 
source code files from GitHub repositories written in 
C, C++, Java and Python; extracted comments using  
Doxygen and condensed such pairs into the database. 
Since the data were not previously filtered or crafted 
for direct training, the augmented dataset has been 
selected with a minimum length for the natural language  
description to avoid considering empty descriptions.

3.1.4. Datasets for semantic parsing
For the generation of JAVA, we based our experiments on the 
Concode corpus30. For C++, we used the DECODER OpenCV 
use case corpus presented above and a larger but less clean  
corpus, from the “Code and comments dataset”29, of substan-
tial size, named “C&C” below. This dataset contains a total of 
16,115,540 pairs of comment and code, mined from 106,304  
GitHub projects coded in Python, Java, C and C++31.

Table 1. DECODER use cases datasets overview.

Use Case Leader Programming 
Language

Files Lines 
of code

Drivers SYSGO C 317 38,078

OpenCV TREE C++ 593 18,435

MyThaiStar CAPGEMINI Java 471 906

Java OW2 Java 7,553 116,867
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3.2 Data preparation, preprocessing and feature 
extraction
3.2.1 Variable misuse
Dataset preparation
An important aspect of the models to be developed for train-
ing and evaluating this variable misuse tool is that they 
have to be presented with both buggy and non-buggy files 
so as to be able to tell them apart. Assuming that all the 
code provided has no mistakes regarding the use of the vari-
ables, we should generate synthetic datasets in which the bugs 
are created programmatically as follows:

•   �The first step is to tokenise all the different source code  
files and identify all the variables for every snippet. 

•   �After this initial phase to identify all the variables, the 
next step is to flag those variables that appear more than 
once for a given snippet as candidates for introducing  
a bug. This presents the second assumption made by 
the tool, by which we are assuming that the variables for  
fixing a bug in a certain snippet should be contained  
within the same snippet – meaning that the snippet  
contains at least two different variables. Therefore, we 
are only introducing bugs in the position of a variable 
repeated within the same source code file. The candi-
dates for replacing the original variable are all the rest of 
the variables existing in the same file, and one of them  
is picked at random for every snippet.

•   �We iterate over all variable slots within a snippet in 
order to obtain as many buggy files as repeated variables 
locations exist. In addition, we include a copy of the 
original file for each buggy file created with the objec-
tive of ensuring a 50/50 balance between buggy and  
non-buggy files.

•   �Finally, it is important to highlight that we are only  
considering that each of the synthetic files created only  
contains a single bug per file.

Since the new application proposed can be stated as a clas-
sification problem, the models to be implemented in this tool 
need to receive the corresponding labels. Here, two different 
labels are used and included to the tokenised files as vectors,  
one of them is called “location”, whose purpose is to mark 
the position of a token in a source code considered as buggy.  
This vector, which has the same length than the programme, 
is 1 at the location containing bug and 0 otherwise. In case 
the programme does not contain any variable misuse bugs, the  
location vector will point to the first position or token of it. 
The other label is called “repair” and marks all the occur-
rences of the variable that fixes a bug within the same file. As 
a result, this second vector contains all 0 except for the posi-
tions of the correct variable for the location of the bug, which 
should be 1. Again, if there is no error in the file, the repair  
vector will not point to any position of the programme.

By following this process, we have created two different data-
sets: one for those programmes written in Java, and one for  
C and C++ files. For this latter case, a first tokenisation of the 

available source code files showed that most of them were too 
long, so it was decided to extract just the methods contained  
on each file with the aim of continuing to increase the  
number of data available for the model. Table 2 shows the 
number of available source code files for each model, as well 
as the number of created buggy files associated with them. It is 
important to note that the number of files used by the model 
doubles the number of these buggy files due to the goal of a  
50/50 balance with non-buggy files.

Preprocessing and feature extraction
Besides, before feeding them to the models built, programmes 
need to be pre-processed so that models can consume them. 
In this case, the source code files are processed according to  
the following steps:

•   �First of all, programmes must be tokenised in order to 
represent them as a token sequence. This tokenisation  
step is done using Pygments, a tool which offers a 
variety of lexers for the most popular programming  
languages to split the source into tokens. These 
tokens are accompanied by their corresponding type,  
that determines what the text represents semantically  
(e.g., keyword, string, or comment).

•   �After having parsed the source code files, token-
ised programmes are filtered by the number of tokens 
they contain. In this case, we filtered files that contain  
less than 200 tokens.

•   �In the next step tokens are mapped to a numerical  
representation, allowing for constructing a vocabulary for  
each use case before training phase.

•   �While building the vocabulary, a <UNK> (‘Unknown’) 
token is added for those words not present in the  
training set, which, otherwise, would not have a repre-
sentation in the validation/test sets or in a new predicting  
setting.

•   �As a last step, those sequences that are shorter than the 
number of tokens established in the previous filtering 
must be padded. Additionally, sequences that exceed  
that value must be truncated at the end.

3.2.2. Code summarisation
As already mentioned, the data coming from either  
DECODER use case leaders or augmented open-source  
datasets already came with natural language description  
associated with source code methods. Therefore, no further data 

Table 2. Generated datasets for variable misuse.

Use Cases Number of files

Original files Created buggy files

Java 8,058 54,448

C/C++ 2,539 29,166
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preparation is needed as a preliminary step to perform source code 
summarisation.

Preprocessing and feature extraction
The essential steps to follow to preprocess the data resembles 
the previous points used for VarMisuse, with some modifications  
that are applied to adapt to this task. The main points in this  
setting are listed below:

•	 Tokenisation into units of interest and creation of 
the training vocabularies. In this work the methods’ 
tokenisation was done with Pygments, before fur-
ther tokenisation of variables is applied to split 
identifiers according to naming conventions adopted 
by developers, such as snake_case and CamelCase. 
On the other hand, the natural language descriptions 
were tokenized with a traditional tokeniser.

•	 Discarding of tabs, new lines, punctuation and low 
frequency tokens, that is, tokens that appear less 
than 3 times.

•	 Lowercasing final tokens.

•	 Addition of <START> and <END> tokens to the target  
sequences to facilitate the decoder block to process  
them.

•	 Conversion of tokens to numerical labels using 
dictionaries,where an <UNK> label is assigned to 
words that are not represented in the training set. This 
is particularlyimportant in inference settings, since  
words that were not previously known by the models  
can beassigned to this predefined label.

•	 Extraction of sequences of equal maximum length, 
by either padding shorter sequences with 0s or 
truncating longer sequences to such maximum 
value. The maxim length has been fixed for code  
summarisation models at a length of 200 tokens for 
the input source code and to 15 tokens for the natural  
language descriptions.

Therefore, the type of information flowing into the networks 
are token-level sequences derived from both the source code 
methods and the corresponding natural language descrip-
tions of their functionality, extracted with the above-mentioned  
tokenisers. This implies that two vocabularies are also involved, 
representing respectively the set of training tokens for meth-
ods and descriptions, which result from the preprocessing 
techniques and feature extraction methods mentioned in the  
list above.

3.2.3. Semantic parsing
The Java corpus, the Concode one, was already prepared and 
did not necessitate other changes. Particularly, the corpus is  
already split into train, development and test sets.

For C++, the related data were retrieved from the C&C corpus.  
After preprocessing to eliminate duplicates and missing  
values, the final size of the corpus is then 150,000 comment 

and code pairs. However, the natural language part of the cor-
pus consists of comments and not of real instructions or exact  
descriptions, which makes the corpus less suitable for a task 
such as code generation, as not all information about the devel-
oped function is given. Moreover, the corpus is very noisy 
at the comments level: some of them do not bring any infor-
mation about the code and simply indicate a potential bug  
or the necessity to modify the code.

3.3. Model implementation
3.3.1 Variable misuse
Our architecture is based on the work in 8. As briefly explained 
in Section 2, this approach allows performing joint predic-
tion of both the location and the repair for VarMisuse bugs. 
In essence, this model is similar to an encoder-decoder model 
that combines a long short-term memory (LSTM)32 recurrent  
neural network with pointer networks.

Given a programme token sequence, first the proposed model 
embeds the tokens using a trainable embedding matrix. Then, 
as an encode step, it runs a LSTM over the token sequence 
to obtain hidden states for each embedded programme token.  
It is at this point where our model differs from the original 
one, as it does not use a masking vector to only consider those  
hidden states that correspond to states of the variable tokens. 
Therefore, these encoder states are directly used to train two  
pointers corresponding to the location of the bug and the 
location of the repair variable. This pointer mechanism is  
proposed in 33, and is a very simple modification of the atten-
tion model that allows applying the method to problems where 
the output dictionary size depends on the number of elements  
in the input sequence and whose outputs are discrete and  
correspond to positions in the input. Since the output of this 
approach is a softmax distribution, these pointers can essentially  
be described as distributions over the programme tokens.

Figure 1 illustrates and summarises the architecture of the  
model and how it works.

3.3.2 Code summarisation
The transformer language model architecture illustrated in  
Figure 2 was introduced in 2017 in the paper ‘Attention is  
all You Need’34 and rapidly became a state-of-the-art model to 
solve a variety of NLP tasks, such as neural machine translation 
and text generation among others. This architecture substituted  
traditional recurrent neural networks (RNNs) architectures, 
such as LSTMs and gated recurrent units (GRUs)35, which were 
widely used in NLP tasks, due to numerous advantages such as 
its ability to learn long-range dependencies without assuming  
temporal/spatial relationship across input data. Moreover, trans-
formers proportion a huge benefit in terms of scalability, due  
to parallel computing capabilities.

Our model consists in an implementation of a transformer model, 
based on 5. The model is composed of two main parts: the 
encoder and the decoder, which are blocks of encoder/decoder  
layers stacked on the top of each other. The internal configuration  
for the encoder and decoder is a combination of multi-head  
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Figure 2. Transformer architecture (From , Vaswani et al. (2017)34 under CC-BY).

Figure 1. Variable misuse bug detection and repair architecture.
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attention and feedforward layers. The main features involved  
in this architecture are:

•   �Positional encoding: Information added to the embed-
ding vector regarding the tokens position in the sentence. 
This way, words will be closer to each other in the space 
based on both words meaning similarity, thanks to the 
embedding vectors, and their position in the sentence  
due to the positional encoding of tokens.

•   �Masking: This mechanism consists in a binary vec-
tor which is used as an indicator of which tokens should  
or should not be processed.

•   �Multi-head attention: Each multi-head attention block 
receives three inputs; Query, Key and Value, which 
are put through dense layers and split up into multiple  
heads. This allows the model to jointly pay attention 
to the information at different positions from different  
representational spaces.

3.3.3 Semantic parsing
Several models were trained and evaluated on the Concode  
and C++ corpora:

•   �A classical transformer model, coded using the 
nn.Transformer module of PyTorch (RRID:SCR_
018536), and trained with the classical PyTorch training  
procedure;

•   �CONCODE’s encoder-decoder model. However, we 
were not able to reproduce its results. The model has not 
been updated for several years and the instructions on 
the project’s repository were unclear about the versions  
of the modules required to work correctly;

•   �TRANX, in order to evaluate the performance of a model 
generating syntactically correct code. An adaptation of 
the TRANX code to JAVA generation was necessary  
at the level of the ASDL grammar and the parser;

•   �RecycleBERT to evaluate the performance of a transla-
tion model using BERT embeddings, and thus compare  
its performance with that of a classical transformer;

•   �A modified version of RecycleBERT in which the 
encoder is not a pretrained BERT model but a pretrained  
CharacterBERT36 model, still for comparison purposes. 
CharacterBERT replaces the BERT wordpiece tokenisa-
tion by character-based embeddings based on ELMO 
model. It should allow to better handle out of BERT  
vocabulary tokens which are numerous in comments  
and even more in code.

RecycleBERT is a transformer model whose encoder has been 
replaced by pretrained BERT. Unlike the usual monolingual 
tasks in which BERT excels (named entity extraction, classifica-
tion...), translation still requires an encoder-decoder structure. 
Finetuning BERT on a translation task would be like applying  
this finetuning operation to a transformer model whose encoder 
is in fact a pretrained BERT. However, unlike the classical case 

where a single layer with relatively few parameters is placed  
at the output of BERT, the decoder of a transformer has almost 
as many parameters as BERT. The number of parameters to be 
learned from scratch is then as large as the number of pretrained  
parameters, which makes finetuning the model difficult and 
often too unbalanced to provide good results. Nevertheless, 
it is possible to reuse BERT for machine translation in a more 
suitable way, by training in two steps. This is what is proposed  
in RecycleBERT20 (Figure 3):

1.   �Training the decoder alone, with all BERT parameters 
frozen. This allows training the decoder parameters that 
have never been trained before and for which a simple 
finetuning with a low learning rate would not be enough.  
At the same time, computing resources are saved;

2.   �Finetuning of the whole model, which can now be done 
in order to optimise all the parameters of the model,  
including those of BERT.

In order to generate code from a natural language instruction, 
a model must be able to capture the meaning of this instruction 
and to provide a machine-readable representation of it. Code 
is a formal language, this is why it is preferable to generate  
inherently valid code by generating grammar production rules, 
forming an AST. The ASDL formalism allows simply describ-
ing ASTs (and how to form them) in a way that is common  
to all languages.

TRANX is based on a transition system to link an instruction 
in natural language to an AST, thanks to a series of actions 
building a part of the tree at each step and using the ASDL  
grammar (Figure 4). Once the ASDL AST is fully generated, 
it is converted into an AST adapted to the target language, 
and then into source code. These two conversions are easy to  
perform and can be done with hardcoded functions, simply from  
the grammar of the target language.

The different actions allowing the generation of the tree are 
determined in a sequential way by a neural network of type 
encoder-decoder with attention, the encoder and the decoder 
being constituted of LSTM cells. The decoder also has a “par-
ent feeding” option, which aims to reflect the topology of the 
ASTs and thus improves performance when generating code 
for an object-oriented language. The parent feeding consists  
in concatenating to the last hidden state a vector pt, which  
encodes the information of the position in the tree.

If models like TRANX already allow obtaining good results for 
simple code generation problems, it is often difficult to gen-
erate correctly a class method when it must call methods or  
variables already defined within the class. The Concode model 
should better allow taking into account this “programming 
context”, through a particular encoder-decoder structure and  
an innovative training procedure, The corpus used for  
Concode training is constituted by the authors from more than  
33,000 Java projects on GitHub. The datasets are not com-
posed of only {natural language, code} pairs. The specificity 
of this corpus lies in the fact that the training takes into account 
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Figure 4. AST of ASDL type of a line of Python code and list of actions generating the tree (From [tranx], under CC-BY).

Figure 3. RecycleBERT architecture (From [recyclebert], under CC-BY). [CLS] and [SEP] are two special tokens added before and after 
the source tokens si. hj are tensors for each token at the output of the encoder. <bos> is a special token added at the beginning of the tk 
target output tokens and . Likewise, <eos> is a special token generated at the end of the sequence of generated output tokens.

all member variables and methods of the class from which  
each example is extracted.

4. Results
4.1 Variable misuse
This section shows the results obtained for each use case by 
the implemented model. We use four different metrics for  
evaluating its performance:

1.   �True negative: Percentage of the bug-free programmes  
in the ground truth classified as bug free.

2.   �Classification accuracy: Percentage of total programmes 
in the test set classified correctly as either bug free  
or buggy.

3.   �Localisation accuracy: Percentage of buggy programmes 
for which the bug location is correctly predicted by  
the model.

4.   �Localisation + repair accuracy: Percentage of buggy 
programmes for which both the location and repair  
are correctly predicted by the model.
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Figure 5. Java model confusion matrix.

The evaluation of the approach is done over two large test sets 
composed by 16,334 programmes written in Java, and 2,917 C  
and C++ source code files.

4. 1. 1. Java model
Hyperparameters

•	 Sequence length: 200 

•	 Embedding size: 200 

•	 LSTM number of units: 350 

•	 Dropout rate: 0.0 

•	 LSTM dropout rate: 0.0 

•	 Batch size: 32 

•	 Learning rate: 0.0015

When focusing on the classification task, the confusion matrix 
represented in Figure 5 shows how well the model imple-
mented for this Java use case classifies programmes, since most 
of the non-buggy and buggy programmes are classified cor-
rectly. This conclusion is supported by two of the calculated 
performance metrics presented in Table 3: true negative rate  
and classification accuracy, which are around 1 and 0.94 for  
the test set, respectively.

With respect to the localisation and the repair accuracy, this 
model is able to point the exact bug location for most of the Java 
source code files used in this task, achieving a high localisation 
accuracy around 0.87. Moreover, the the localisation + repair 
accuracy reaches 0.71, which shows the good repair capability 

of the model when it comes to fix the located bugs in the faulty  
programmes analysed.

4.1.2. C/C++ model
Hyperparameters

•	 Sequence length: 200 

•	 Embedding size: 200 

•	 LSTM number of units: 50 

•	 Dropout rate: 0.0 

•	 LSTM dropout rate: 0.0 

•	 Batch size: 36 

•	 Learning rate: 0.0075

Following the same structure as in the previous sub-section, 
the classification ability of this model can be seen in Figure 6, 
which shows its good classification performance. Moreover, true 
negative rate and classification accuracy are high and similar  
to those obtained by the Java model, since they are around 1  
and 0.93 for this C/C++ test set, as shown in Table 3.

The real difference between the two models evaluated in this 
section lies in their predictions for both the localisation and 
the repair of the buggy variable. When comparing with the 
Java use case, the model for C/C++ also reaches a very good  
localisation accuracy, showing that it is able to predict correctly 
the localisation of the bug for 85% of the buggy programmes 
in the test set. However, after locating the error, it repairs a 
lower percentage of wrong source code files than the Java 
model, fixing 60% of them, which means approximately 11% 
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Table 3. Variable misuse results.

Use 
Cases

Performance metrics

True 
Positive

Classification 
Accuracy

Localisation 
Accuracy

Localisation + 
Repair Accuracy

Java 99.7% 93.7% 88.6% 71.1%

C/C++ 99.6% 92.9% 85.4% 60.6%

Figure 6. C/C++ model confusion matrix.

less. This may be due to the smaller size of the dataset, being a  
limitation when training the model.

Although the programming languages covered in this paper 
are out of the scope of the original work 8, considering the 
results presented in this section and comparing them with 
those presented for Python and C#, one could affirm that 
the performance obtained on the VarMisuse task has  
been improved. But we should be careful and underline a  
couple of important aspects of our modelling that distingish 
it from the original model and can clarify the differences  
in results:

•	 Dataset size. The DECODER datasets are really  
small, even with the data augmentation carried out.  
The different use cases are composed of just a few 
projects, so the source code files used in the analysis and  
modelling form a very small context that can facilitate  
thetask of our model.

•	 Dataset split. As it was explained in Section III, for 
each buggy file generated artificially we include a 
copy of the non-buggy original file to ensure a 50/50  

balance in the dataset. This balanced dataset is splitted 
into train, validation and test sets, so the set of pro-
grammes used for the evaluation come from the same 
projects that appear in the train and validation data-
sets, which can mean an increase in the results obtained 
in test predictions.

•	 Type of bugs. When the bugs are generated automati-
cally, we don’t filter any kind of error that could be 
potencially detected by the compiler easily, such as type 
check errors. Thus, this type of bugs is also easy to be 
noticed by our model.

4.1.3. Examples
Figure 7 below is an example of how the models work. The 
example displayed corresponds to a source code file written 
in Java extracted from the use case MyThaiStar and reserved 
for this purpose. The first image contains a method that 
has been modified to introduce a VarMisuse bug on it 
intentionally. This bug is marked with a red circle. On the sec-
ond image, we can see how our Java model has corrected this 
programme by changing the variable entry for application, 
which is the correct variable to use in that position.
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Figure 7. Java example - XPage application.

For the next example (Figure 8), we have inserted a bug manu-
ally in a C programme extracted from Drivers dataset. Again, 
the misused variable is highlighted with a red circle. In 
this case, and different from the Java example, the model 
is not able to fix the error properly, since the change it 
proposes (read, marked with a yellow circle) does not corre-
spond to the correct variable (ret_val). This exposes the dif-
ference between the two models regarding the localisation 
and repair accuracy, which is higher for the Java case. 
However, the C/C++ model makes a good assumption, 
because it suggests a boolean variable that could fit perfectly 
in an if statement.

4.2 Code summarisation
This section reports the evaluation of the Java and C/C++  
transformers models that have been trained both on DECODER 
datasets and the augmented datasets versions presented in  
Section II.

The generated natural language descriptions have been evalu-
ated with two different families of metrics: the BLEU37  
score – which is mainly used in machine translation settings 
– and the ROUGE sets of metrics38 – which are often used to  
evaluate performances in summarisation tasks:

•   �Sentence level BLEU_4 score (+ smoothing function)

•   �Corpus level BLEU_4 score

•   �SacreBLEU

•   �ROUGE – L

The BLEU score compares sentences by matching n-grams 
between the original references and the decoded sentences. 
Among the BLEU metrics the most adopted version is the  
BLEU_4, which counts up to 4 n-grams overlap between the 
generated sentences and the ground truth, although it tends  
to penalise short sequences assigning a zero value when-
ever any order n-gram is not encountered. This behaviour has 
been studied and mitigated with a variety of solutions, some of 
them involving the adoption of a smoothing function. In this 
work, the smoothing function (NLTK ‘method4’) is adopted  
to score the models’ decoded sentences.

On the other hand, the corpus-level BLEU score accounts 
for the micro-average precision for each hypothesis-refer-
ence pair. Being already pondered, no smoothing function is 
needed when computing this metric. Finally, the sacreBLEU 
is proposed in 39 and is introduced to overcome the 
problem of different pre-processing schemes impacting on 
scores and comparability across models’ implementations, 
by utilising an internal pre-processing.

Besides BLEU scores, belonging to the ROUGE sets of met-
rics, the ROUGE-L score is also used to assess the quality of 
the generated descriptions. The L stands for Longest Common  
Subsequence since the metric computes f1-score, precision  
and recall by taking into account sentence level structure simi-
larity and identifying the longest co-occurring sequences  
n-grams.

Hyperparameters
Java model

•	 Sequence length: 200 (source code), 15 (descriptions)
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Figure 8. C/C++ example – Access debug.

•	 Embbeding size:
o	 Decoder: 512
o	 Augmented: 512

•	 Number of layers:
o	 Decoder: 1
o	 Augmented: 3

•	 Feed fordward layes dimensionality:
o	 Decoder: 128
o	 Augmented: 512

•	 Number of attention heads:
o	 Decoder: 8
o	 Augmented: 4

•	 Dropout rate:
o	 Decoder: 0.2
o	 Augmented: 0.1

•	 Batch size:
o	 Decoder: 8
o	 Augmented: 128

•	 Learning rate warmup steps:
o	 Decoder: 12,000
o	 Augmented: 16,000

C/C++ model
•	 Sequence length: 200 (source code), 15 (descriptions)

•	 Embbeding size:
o	 Decoder: 256
o	 Augmented: 512

•	 Number of layers:
o	 Decoder: 1
o	 Augmented: 1

•	 Feed fordward layes dimensionality:
o	 Decoder: 32
o	 Augmented: 512

•	 Number of attention heads:
o	 Decoder: 4
o	 Augmented: 4

•	 Dropout rate:
o	 Decoder: 0.2
o	 Augmented: 0.1

•	 Batch size:
o	 Decoder: 16
o	 Augmented: 512

•	 Learning rate warmup steps:
o	 Decoder: 8,000
o	 Augmented: 8,000

Below, and show the results obtained for all the indicated 
metrics across training, validation and test sets for the mod-
els developed upon the use case datasets as well as those 
obtained with data augmentation. For the Java augmented 
model, the choice of working with a sample of the original  
dataset has been taken, keeping approximately 300k  
observations, motivated by the fact that the model covers a 
single language. Sets were obtained by splitting the datasets  
according to proportions of (80%-10%-10%) for training,  
validating and testing, respectively.

4.2.1. Models’ performances
Focusing on models built on DECODER datasets, the Java 
use case model (Table 4) outperforms the version of the  
C/C++ (Table 5). In contrast to what happens with the Java 
DECODER model, the performances of the C/C++ drop a  
little bit by switching from the validation set to the unknown  
data in the test set.

On the other hand, the augmented models present slightly  
better performances for C and C++ programming languages, 
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Table 4. Code summarisation results for the Java models.

Java DECODER UseCases 
Model

Java Augmented Model

Metric Training Validation Test Training Validation Test

BLEU_4 83.36 31.70 37.06 51.04 27.82 27.48

BLEU_4 smooth 88.61 42.78 47.01 55.50 31.99 31.85

Corpus BLEU 93.38 43.85 48.35 58.90 36.04 35.73

Sacre BLEU 93.89 44.07 48.53 59.30 36.39 36.18

Rouge-L Precision 95.53 58.05 60.80 72.10 51.27 51.20

Rouge-L Recall 96.1 60.58 62.77 76.68 55.24 55.31

Rouge-L F1-score 95.40 58.61 61.23 73.15 51.64 51.59

Table 5. Code summarisation results for the C/C++ models.

C/C++ DECODER UseCases 
Model

C/C++ Augmented Model

Metric Training Validation Test Training Validation Test

BLEU_4 95.98 30.21 26.06 59.27 31.67 32.00

BLEU_4 smooth 97.1 41.51 38.64 66.47 41.54 41.75

Corpus BLEU 97.9 39.45 36.85 71.14 42.20 42.96

sacreBLEU 97.94 39.50 36.87 71.82 42.62 43.03

Rouge-L Precision 98.60 59.51 57.89 80.12 55.65 55.88

Rouge-L Recall 98.79 60.71 58.88 83.51 58.90 59.21

Rouge-L F1-score 98.49 59.63 58.43 80.92 55.87 56.12

especially for the BLEU set of metrics. With both models,  
differences between validation and test set performances 
appear mitigated by switching to the augmented data: in fact, 
the models score worse on the training set, suggesting that the 
networks have less tendency to overfitting the training data-
sets, thus being more robust when compared to the models  
trained only on DECODER use cases data.

Additionally, the BLEU and ROUGE metrics rely strictly on  
n-grams appearances, not taking into account sentence meaning  
or positive model behaviour such as the ability of paraphrasing,  
cut or enlarge the original descriptions without affecting its 
meaning and respecting English grammatical rules. Due to 
this fact, after qualitative analysis and inference experiments 
were carried out, we reached the conclusion that the augmented  
models provide a better solution for code summarisation.

That is why these versions are finally going to be integrated into 
DECODER PKM, due to their greater ability of generalising 

to new source code methods, thus providing better results 
in inference settings, despite sometimes producing lower  
scores in terms of ROUGE or BLEU.

To illustrate this issue, some examples of the generated  
description from the augmented models are reported below,  
together with their input methods and original descriptions, 
with the aim of showing that positive and negative behaviours  
cannot always be reflected in the evaluation metrics adopted  
for this task.

4.2.2. Java examples

•   �Original description: redirect to an url defined by given 
parameters

•   �Predicted description: redirect to another page view

•   �BLEU_4 smooth: 6.65

•   �ROUGE-L f1 score: 30.77
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Figure 10. Java snippet - SetAmount.

Figure 11. Java snippet - shutdown.

In this Java example (Figure 9), the model produces an accept-
able description and can understand that the ‘url’ token that 
appears in both code and the original descriptions corre-
sponds to a web page. Despite this, having the descriptions 
only two common tokens, the score cannot reflect a positive  
behaviour.

•   �Original description: setter for the property type

•   �Predicted description: getter for the property amount

•   �BLEU_4 smooth: 29.95

•   �ROUGE-L f1 score: 60.00

This example (Figure 10) shows bad quality in the method 
description, since there is no reference in code to property type. 
Here the prediction provided by the model captures the refer-
ence to amount, although it confuses between setter and get-
ter. Given this, the scores do not really reflect this kind of  
problem and when compared to other decoded sentences, it  
receives much higher score than it should get.

•   �Original description: shuts down the daemon

•   �Predicted description: shutdown the service

•   �BLEU_4 smooth: 6.10

•   �ROUGE-L f1 score: 28.57

Finally, this example (Figure 11) shows a very good model  
behaviour, attending on important tokens in the source code like  
‘daemon’ as well as providing a grammatical improvement over 
the original description by outputting ‘shuts down’. Although 
the functionality is reflected in the prediction, the tokens do not  
correspond between the two sentences and a low score is  
obtained.

4.2.3. C/C++ examples
•	� Original description: usage double height dwg ent text 

get height text

•	 Predicted description: returns height of text

•	 BLEU_4 smooth: 2.08,

•	 ROUGE-L f1 score: 36.36

Figure 9. Java snippet - XPage redirect.
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In this example (Figure 12), a good prediction is provided, 
reflecting the main functionality of the code snippet, although it 
gets really low scores, especially the BLEU_4, since the origi-
nal description is not so well formulated. This example reflects 
the capability of the model to produce acceptable descriptions  
despite bad data quality.

•	� Original description: returns the list of paths to find  
desktop files

•	 Predicted description: get desktop file path list

•	 BLEU_4 smooth: 2.44

•	 ROUGE-L f1 score: 14.28

Here (Figure 13), the original description is much better  
formulated, and the model is able to produce a sentence that 
reflects the true functionality of the method. However, since the 
words do not appear with the same frequencies and positions,  
the scores remain low.

•	 Original description: removes new client for streaming

•	 Predicted description: add new client for streaming

•	 BLEU_4 smooth: 66.87

•	 ROUGE-L f1 score: 80.00

This last example (Figure 14) shows an inverse situation: the 
difference between the original and the predicted description  
consist in the contradiction of the verb ‘add’ and ‘remove’, while 
all the other tokens coincide. This situation produces a much 
higher score, even though the meaning of the descriptions is  
actually the opposite. 

4.3. Semantic parsing
Hyperparameters
Java and C/C++ models (RecycledBERT)

•	 Dropout rate: 0.15

•	 Batch size: 32

•	 Warmup initial learning rate: 1e-07

•	 Warmup learning rate updates: 9,000

•	 Label smoothing rate: 0.1

•	 Weight decay rate: 0.0001

The models of the first category have all been trained on  
Concode data adapted to context processing by a seq2seq 
model, except for the “RecycleBERT without context” model, 
which has been trained on the raw pairs {natural language, 
code}. The analysis of the results obtained by each model is 
performed below:

•	� Concode: the result provided in Table 6 is the one 
obtained by the authors of the article. The instructions  
given did not allow to reproduce it;

•	� Transformer: The BLEU 4 score obtained by the  
transformer model developed with PyTorch and its 
submodules is very low, emphasising the difficulty a 
classical transformer model has on a task like code 
generation. It should be noted that beam search has 
not been used here, which can also explain the poor  
performance;

•	� TRANX: The BLEU 4 score is rather weak, which 
shows the limits of the model in term of perform-
ance, in spite of the complete treatment of the JAVA  
grammar;

•	� RecycleBERT: The performance obtained by Recy-
cleBERT is much better than the results obtained 
by Concode authors. This can be explained on the  
one hand by the use of a recent powerful model and 
the usage of the information contained in the pre-
trained embeddings of BERT. However, we notice 
that the code produced in output is often not syntacti-
cally correct, which suggests that taking into account 
the syntax of the language within such a model would 
allow to improve its performance. Finally, there is a  
marked difference between the score obtained by  
taking into account the context (concatenated with 
the natural language instruction) and the score with-
out context, which shows that the model is able 
to capture and reuse certain information from the  
context (such as method names, for example) while  
distinguishing them correctly from the rest of the natural  
language instruction. If the model were unable to 
make this difference, performance would be impaired. 
An example is provided in Figure 15. We can see that 
the model did not succeed in providing the expected 
result in this particular case, but that the instruction  
was understood;

•	� RecycleCharacterBERT: By using a pretrained Char-
acterBERT model instead of a pretrained BERT,  
RecycleBERT (logically renamed RecycleCharacter-
BERT) gives a significantly lower BLUE, which does 
not follow our intuition. Indeed, the use of Character-
BERT (reasoning at characters forming each word level 
to determine its embedding) should make it possible 

Figure 12. C++ snippet - dwg_ent_text_get_height.

Figure 13. C++ snippet - get_desktop_file_path_list.
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Table 6. Semantic parsing results.

Language Model BLEU 4

Java (Concode) Baseline: Concode (authors reported result) 22

Transformer 4

TRANX 10.1

RecycleBERT 35

RecycleBERT without context 30.65

RecycleCharacterBERT 18.12

C++ RecycleBERT pretrained (OpenCV dataset) 1.5

RecycleBERT (OpenCV dataset) 4.16

RecycleBERT (C&C dataset) 14.85

Figure 14. C++ snippet - mxr_streamer_put.

Figure 15. Code from a Concode example associated with an instruction.
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to provide more adapted embeddings when working  
on a very specific corpus, including many terms  
(and subterms) that are rare and therefore absent 
from the BERT vocabulary. We have put forward sev-
eral hypotheses, to be verified in the future, to explain 
the difference between the expected performance and 
the actual performance. The first one explains the  
difference by a potential overestimation of the number 
of rare words in the natural language instructions,  
which would lead to a better performance of BERT, its 
embeddings being more accurate than those of Char-
acterBERT on a text containing few words outside 
the vocabulary. The second hypothesis would explain 
the decrease in performance simply by an incor-
rect adaptation of the structure of RecycleBERT for 
CharacterBERT. This result should be considered as  
temporary.

The training of RecycleBERT on C++ corpora has globally 
given poorer results than on Concode, which is probably 
explained by the difference in data quality. On the first corpus  
(OpenCV), the model was trained in two different ways. Indeed, 
the corpus being quite small, we first tried to simply finetune 
on the OpenCV corpus the model trained on Concode, hoping 
that the similarities between JAVA and C++ would be enough 
for the model to learn to generate C++ on a small amount  
of data. The obtained BLUE score (1.5) being very low, to 
the point of suggesting that the model has in fact not learned  
anything, we tried to train RecycleBERT only on the OpenCV 
corpus. The results obtained are a little bit better (4.16), showing  
the failure of knowledge transfer between JAVA and C++, 
but are still very low. The small size of the corpus is there-
fore not compatible with training a model like RecycleBERT.  
However, training on the C&C corpus gives a BLEU of 14.85. 
The difference in performance compared to training on the 
OpenCV corpus is undoubtedly due to the much larger size of 
the C&C corpus. The important difference between the BLEU  
obtained on C&C and the one obtained on Concode is 
explained by the difference in quality between the two datasets,  
the code comments being necessarily less precise and noisier 
than the code generation instructions. This lower data quality 
also leads to more difficult learning of syntax rules. We have not 
evaluated the part of the generated code that could be syntactically  
correct but it is clear that it is quite low with the current model. 
This also suggests that performance could be greatly improved 
by adapting the model to generate syntactically correct code. 
But the C++ syntax is a lot more complex than the Python  
or even Java ones.

5. Conclusions
As more and more aspects of life depend on the reliable opera-
tion of high-quality software, the objective of this work is to 
present some new tools that help to improve IT professionals’ 
productivity by facilitating their daily work. In particular, this 
paper presents and describes three distinct tools based on NLP 
techniques: variable misuse, code summarisation and semantic  
parsing.

The variable misuse problem is a type of error which refers 
to the wrong location of variables within source code that 

affects the correct behaviour of the programme, causing fail-
ures in it. Several works have focused on this common problem,  
most of them present learning-based repair solutions that learn 
how to fix this class of error directly from source code exam-
ples. The method we have presented in this paper makes use of 
one of them based on a novel technique called pointer networks 
and extends it to other programming languages historically 
more used. Therefore, with the objective of alleviating debug-
ging tasks of software developers, we take advantage from using 
deep learning end-to-end models to locate and repair faulty  
variables contained in source code files written in Java, C or 
C++. After an evaluation over two different datasets, we have 
shown how our tool is able to correctly classify about a 93% of 
Java, C and C++ files, which shows the effectiveness of the 
approach for this classification task. However, there are some 
differences in the bug-repair ability of both models. The Java 
model outperforms the model implemented for C/C++ use case, 
since it is able to correctly locate and repair the bug for roughly  
71% of the buggy Java programmes, whereas the C/C++ model 
only manages to repair a 60% of these. This difference is prob-
ably due to the smaller amount of training data of the C/C++ 
use case, even when this dataset size was increased with 
the incorporation of new source code files from third-party  
projects.

Focusing on the code summarisation tool, the results obtained 
are quite good for all the programming languages involved 
in our experiments. In this conclusion, when we refer to 
our best models, we are always referring to the augmented  
versions of the models developed for Java and C/C++. Although 
Java has been the object of various studies within code  
summarisation, it is difficult to define a baseline reference due 
to the different metrics (and even versions of them) that are  
used in different studies that make the assessment uncertain. The  
resulting metrics for our Java model highlight that we went 
beyond the state of the art when focusing on metrics such as the 
ROUGE-L, whereas the performances are lower than the state  
of the art when evaluating with multiple versions of the 
BLEU score, emphasising the ambiguity that exists when 
it comes to evaluate models developed for this task. On the  
contrary, to our knowledge, the C and C++ languages have not  
been explored for code summarisation yet. This means that our 
code summarisation model for C/C++ proposes a new applica-
tion for this task based on new languages, consequently having  
no terms of comparison for the performances of our models. 
Given this, we observed that our model for C/C++ outperforms 
the Java models in both sets of metrics, suggesting that it consists 
in a valid solution to automatically generate descriptions for C  
and C++ source code methods.

However, there is room for improvement of the code summa-
risation tool, taking into consideration that it is a quite new field 
of investigation and that no experiments have been conducted  
for C and C++ languages so far. Solutions like trying differ-
ent pre-processing techniques and code representations (like 
AST based representations) or architectures (such as graph  
neural networks) could help in increasing the performances. 
Moreover, the usage of a pre-trained model to calculate domain 
specific embeddings could be useful to achieve better results for  
this task.
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Considering semantic parsing, the main goal of this work 
was to go beyond the results of the state of the art in code  
generation, by improving existing models with the latest 
advances in NLP. The development of a model aggregating these  
various improvements has been undertaken. Its architecture 
seems now clearly defined. However, its implementation is still 
in progress. Nevertheless, during the research process linked 
to the development of this model, several machine translation  
and code generation models were evaluated on the avail-
able data sets. This allowed highlighting the efficiency of the 
most recent NLP models, able to obtain higher scores than the 
state of the art in code generation of 2018, without any mecha-
nism ensuring the production of syntactically correct code. The 
inclusion of such a mechanism in the model currently under  
development allows us to expect improved performance. We 
can highlight three main components in a competitive model: 
the use of the most recent machine translation models using  
pretrained embeddings such as those of BERT, a mechanism 
such as TRANX based on ASTs and ASDL allowing to generate  
syntactically correct code, and taking into account of the  
context of the class within which the code must be generated. This  
last aspect is not optimally handled by our current model, 
which simply concatenates the context to the natural language 
instruction. This leaves room for possible improvements of the  
model in the future.

Ethics and consent
Ethical approval and consent were not required.

Data availability
Underlying data
The datasets corresponding to the use cases considered in this  
paper are collected in public repositories:

Zenodo: DECODER OpenCV use case data. https://doi.org/10.5281/
zenodo.4333362)26.

•	� OpenCV datasets for DECODER project deliver-
able D6.2 "Use-case data from the PKM". See the 
deliverable for further details (deliverable is available  
on project website).

Zenodo: OW2 Decoder java use-cases data (WP6). https://doi.
org/10.5281/zenodo.4322471)27.

•	� OW2 data for use-cases Authzforce, Joram, Lutece, 
Sat4j.

Zenodo: Training dataset for the Drivers use case. https://doi.
org/10.5281/zenodo.5780179)28.

•	� Training dataset for the Drivers use case (C language) 
obtained from the "excavator" dataset https://zenodo.
org/record/4383876 (simplified version of the original  
linux code).

https://github.com/devonfw/my-thai-star

•	� MyThaiStar is the reference application that Capgemini 
uses internally to promote best programmeming  
practices and the correct use of last technologies. It is 

developed with Devon Framework, the standard tool  
for development at the company.

Data are available under the terms of the Creative Commons  
Attribution 4.0 International (CC-BY 4.0).

In addition, this section includes the databases that contain 
the different datasets/source code files used for augmenting 
data. For the variable misuse tool, we extracted some code files  
from these GitHub repositories:

•	 https://github.com/ros-perception/vision_opencv” \t “xref 
window (accessed on 27/01/2021)

•	� https://github.com/Selameab/icog_face_tracker (accessed 
on 27/01/2021)

•	� https://github.com/chrissunny94/Lane_Detection (accessed 
on 27/01/2021)

•	� https://github.com/tzutalin/ros_sample_image_transport 
(accessed on 27/01/2021)

•	� https://github.com/qutas/kinetic_sample_packages 
(accessed on 27/01/2021)

•	� https://github.com/ros/ros_tutorials (accessed on 
27/01/2021)

•	� https://github.com/introlab/find-object (accessed on 
27/01/2021)

•	� https://github.com/joselusl/aruco_eye (accessed on 
27/01/2021)

•	� https://github.com/ros-perception/image_pipeline 
(accessed on 27/01/2021)

•	� https://github.com/laurentkneip/opengv/tree/master/src/
relative_pose (accessed on 27/01/2021)

•	� https://github.com/Longpham3105/learnopencv.com 
(accessed on 27/01/2021)

•	� https://github.com/PacktPublishing/-OpenCV-By-Example 
(accessed on 27/01/2021)

•	� https://github.com/oreillymedia/Learning-OpenCV-3_
examples (accessed on 27/01/2021)

•	� https://github.com/nrsyed/computer-vision/tree/master/
ColorThreshUtil (accessed on 27/01/2021)

•	� https://github.com/tobybreckon/cpp-examples-ipcv 
(accessed on 27/01/2021)

Regarding the code summarisation task, the Code and  
Comments dataset was used to extract observations to augment 
data, which can be found in this repository:

•	� Zenodo: Code and Comments Dataset. https://doi.
org/10.5281/zenodo.347205031.

•	� The code and comment data are a compilation of code 
blocks and their related comments. Doxygen suc-
cessfully ran on 106,304 different GitHub projects. 
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A total of 16,115,540 code- comment pairs were 
obtained by running Doxygen on C, C++, Java, and  
Python projects.

•	� https://github.com/xing-hu/DeepCom (accessed on 
17/05/2021)

Finally, we include the repository that contains the “Concode 
Dataset” used in the experiments of the semantic parsing tool, 
although the data used in this case was also augmented using  
the “Code and Comments Dataset” mentioned above:

•	� https://github.com/sriniiyer/concode (accessed on 
18/08/2020)

Data are available under the terms of the Creative Commons 
Zero “No rights reserved” data waiver (CC0 1.0 Public domain  
dedication).

Software availability
Source code available from:

•	 https://gitlab.ow2.org/decoder

Archived source code at time of publication:
•	� Zenodo: Variable misuse tool (ORE). https://doi.

org/10.5281/zenodo.6034599)23.

•	� Zenodo: Code Summarization tool (DECODER project). 
https://doi.org/10.5281/zenodo.6090276)24.

•	� Zenodo: Semantic parser tool from the Decoder project. 
https://doi.org/10.5281/zenodo.6280897)25.

License:
•	 GNU Affero General Public License v3 (AGPL-3.0)
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The rationale for developing PKM is clearly stated. Using AI in software maintenance  can help 
reduce the amount of time and effort required to maintain large software systems. This time can 
be used to create interesting features that provide value to customers. 
 
The selection of the three tasks that developers can perform with the framework appears odd. 
While variable misuse is a significant issue, it is only a minor aspect of overall code quality. Code 
summarization is needed for programme comprehension, which in turn helps in the detection and 
correction of bugs. Semantic parsing is not directly related to software maintenance and is not 
something that many developers would require in order to understand and debug code, the 
framework's main purpose. 
 
Furthermore, the following points in the article require clarification:

The description of the datasets used for the three tasks is a little hazy. For the variable 
misuse case study, for example, the authors simply state the projects' name and the 
number of files they contain.  It would be better if the authors included more details, such 
as the number of lines of code, the number of years the systems have been in operation, 
and so on, to help the reader have an idea of the complexity of these systems. I have a 
similar comment about the dataset used for code summarization. The authors stated that 
an existing C/C++ dataset was augmented (Section 3.1.3), but they do not explain how this 
was done. The number of systems included in this dataset was not provided either. 
 

○

Many of the presented algorithms in the model implementation section require the setting 
of hyperparameters, which is not covered in the article. The authors mention various DL 
algorithms and NLP pre-trained models, but do not go into detail about how these 
algorithms are used to run the experiments presented in the paper, particularly when 
finetuning the models. 
 

○

For the variable misuse case study, the number of synthetic buggy files generated is 
significantly greater than the number of healthy files (e.g., for Java, there are 8,058 healthy 
files compred to 54,448 buggy files). Wouldn't this result in a data imbalance issue? How did 
the authors handle this? 
 

○

In the Results section on variable misuse, the authors presented four evaluation metrics, 
which, in my opinion, are insufficient to understand the tool's performance. For example, 
classification accuracy, which is the percentage of total programmes in the test set correctly 
classified as bug free or buggy, is not useful. It would have been better to report the 
percentage of bug-free programmes that are correctly classified as well as the number of 
buggy programmes that are correctly classified as two separate metrics. Indeed, I believe 
the authors should employ traditional evaluation metrics such as true positives, false 
positives, true negatives, and false negatives, as well as accuracy, precision, recall, and f1-
score. I'd also recommend including the AUC. Furthermore, I do not believe we should 
combine the results of variable misuse detection and variable misuse localization. These are 
two distinct classification problems, and the results should be reported separately (using 
the aforementioned metrics). 
 

○

The code summarization examples are interesting. Perhaps, the authors should provide 
examples for the two other tasks (variable misuse and semantic parsing) as well.

○
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Other thoughts:
I recommend including a process that explains how the proposed framework should be 
used in practice by software developers and maintainers, especially given the number of 
algorithms involved. 
 

○

Because these tools use DL algorithms, I recommend discussing the ethical dimensions (if 
any) as well as the AI algorithms' explainability. AI research should always include these 
aspects, in my opinion, to increase confidence in using these techniques.

○

 
Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Partly

Are sufficient details provided to allow replication of the method development and its use 
by others?
Partly

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Partly

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Software Engineering, Software Maintenance and Evolution, Software Tracing 
and Logging, AIOps, Anomaly Detection, Model-Driven Engineering.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 17 Oct 2023
Cristian Robledo 

First of all, thanks a lot for your time and your review. I will try to respond you following the 
same structure you used for your comments.

We have included more information about the datasets to the 2nd version of the 
work, which has already been submitted. We have added information regarding the 
total number of lines for each dataset. However, we do not really know what you 
mean with “systems”. If you refer to the numer of years that these applications have 
been working or in maintenance, we think this information is not strictly necessary 

○
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for the reader and the understanding of the tools/models we present in our work. 
Concerning the data augmentation on the C/C++ use case in code summarization 
task, we just joined the DECODER dataset with the augmented dataset (also known as 
“Code and Comments Dataset”) together and ran the corresponding model. We hope 
this answer your question. 
 
The hyperparameters finally selected and used for every model have been included in 
Results section in the 2nd version of the article. Regarding the Deep Learning models, 
we think that the information we provide to the readers is enough to understand how 
they work. One of the reasons is that they can turn to the original works of the 
models if they want to go into detail. These works are properly indicated in our article 
in order to facilitate their access. 
 

○

The dataset for the VarMisuse task is not imbalanced. Following your example, you 
are right: we use those 8k healthy Java files to automatically create 54 buggy files. But 
in this process we also include an original copy for each buggy file created, so at the 
end of the stage we have 54k (healthy) original files and 54 buggy files, which ensures 
a 50/50 balance. This information is already provided in Subsection 3.2.1. 
 

○

It is true that more traditional metrics such those that you comment could be use for 
the evaluation of models, buy they are not really related to the purpose of VarMisuse 
task, which is to locate and repair wrong uses of variables in programmes. However, 
we provide a classification matrix of the test set for each use case (Java and C/C++) , 
so most of the metrics mentioned in your comment can be directly calculated for 
anyone who wants that information. Moreover, these traditional metrics are more 
related to the VarMisuse detection (in case we state this problem as the detection of a 
wrong use of a variable in a source code file) rather than VarMisuse localisation and 
repair. Then, VarMisuse detection can be seen as a means for achieving the 
VarMisuse localisation, because it helps to refine our purposed task by pointing out 
those files which will need the fixing of the code later. So both classifications work 
better together, at least for our objective. 
 

○

We have included a couple of Figures to illustrate the VarMisuse task in the Result 
section in the 2nd version of the article, since an example of Semantic Parsing task 
was already provided.

○
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This work replicates deep learning research on three software development tasks (variable 
misuse, code summarisation, and semantic parsing) for Java, C, and C++. 
  
This work seems technically correct and adds value to the research community by showing how a 
set of methods can be consistently applied to support software development, especially in C, C++ 
which have been relatively neglected in the community. However, its methodological novelty is 
unclear since no new methods are developed but replications of existing machine learning models 
are used for C/C++ and Java. Specifically:

VarMisuse follows the method of Vasic et al. (2019) [8]○

Code summarisation follows Ahmad et al. (2020) [5]○

Semantic Parsing is a variation of Imamura et al. (2019) [20]○

 In that sense, I believe this work should probably not be listed as a "method article". An 
alternative classification is probably more appropriate here. 
  
High-level comments

The title eludes to a "toolkit" but the paper looks like a disparate set of three tools/machine 
learning models. What are the (common) aspects that make this a "toolkit"? How are these 
tools applicable in a broad set of scenarios? 
 

○

The choice to use a relatively small dataset (DECODER) where possible, is interesting and 
different from most work that focus on large datasets. This should be better highlighted 
and contrasted.

○

Related Work 
Some related work is missing and would be useful to be discussed and contrasted. Some 
comparison with the evaluation section might also be useful:

VarMisuse
Pradel, Michael, and Koushik Sen. "Deepbugs: A learning approach to name-based 
bug detection." Proceedings of the ACM on Programming Languages. OOPSLA (2018).
1

○

Hellendoorn, Vincent J., et al. "Global relational models of source code." International 
conference on learning representations. 2019.2

○

Allamanis, Miltiadis, Henry Jackson-Flux, and Marc Brockschmidt. "Self-Supervised 
Bug Detection and Repair." Advances in Neural Information Processing Systems 
(2021).3 
 

○

○

Code Summarisation
Parvez, Md Rizwan, et al. "Retrieval Augmented Code Generation and 
Summarization." Findings of the Association for Computational Linguistics: EMNLP 
2021. 2021.4

○

Clement, Colin, et al. "PyMT5: multi-mode translation of natural language and Python 
code with transformers." Proceedings of the 2020 Conference on Empirical Methods 
in Natural Language Processing (EMNLP). 2020.5

○

Haque, Sakib, et al. "Improved automatic summarization of subroutines via attention ○

○
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to file context." Proceedings of the 17th International Conference on Mining Software 
Repositories. 2020.6
Lu, Shuai, et al. "CodeXGLUE: A Machine Learning Benchmark Dataset for Code 
Understanding and Generation." Thirty-fifth Conference on Neural Information 
Processing Systems Datasets and Benchmarks Track (Round 1). 2021.7 
 

○

Semantic Parsing
Chen, Mark, et al. "Evaluating large language models trained on code." arXiv preprint 
arXiv:2107.03374 (2021).8

○

Lu, Shuai, et al. "CodeXGLUE: A Machine Learning Benchmark Dataset for Code 
Understanding and Generation." Thirty-fifth Conference on Neural Information 
Processing Systems Datasets and Benchmarks Track (Round 1). 2021.

○

○

 Technical Comments
Variable Misuse:

"after the search on GitHub the number of source code files…". It's unclear what was 
searched on GitHub? Why "just" ~700 files were found/added to the dataset?

○

The dataset split is unclear: does each file (and its buggy versions) appear in the same 
train/validation/test fold? Please, clarify.

○

The generated bugs may be "too easy" to detect or can be detected by the relevant 
compiler (Sec 3.1). For example, variable misuses that lead to type checker errors or 
use-before-def errors. Have the authors filtered these out?

○

The performance on the VarMisuse task seems much better than the one reported by 
Vasic et al. What explains this difference? One potential theory is that the generated 
bugs are "too easy" (see bullet above). Discussing any potential explanations for this 
in the paper would be very useful. 
 

○

○

Code Summarisation
Some additional information on the inputs to the transformer model would be useful. 
Specifically, the vocabulary creation (is BPE used, for example?), tokenization, etc. 
 

○

○

Semantic Parsing
It's unclear if the "classical transformer model"  includes positional encodings (the 
PyTorch nn.Transformer doesn't incorporate them automatically).

○

Although using BLEU4 is a plausible metric, alternatives have been shown to 
correlated better with the task, e.g. Ren, Shuo, et al. "Codebleu: a method for 
automatic evaluation of code synthesis." arXiv preprint arXiv:2009.10297 (2020).9 
Please consider reporting them too. 

○

○

Minor Comments
A citation to Vaswani et al. (2017)10 for Figure 2 would probably be appropriate.○

Fig 5 and Fig 6 could be smaller or the text (numbers) larger.○
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Author Response 17 Oct 2023
Cristian Robledo 

First of all, thanks a lot for your time and your review. I will try to response you following the 
same structure you used for your comments. Regarding the classification, we agree with 
you about perhaps "Method Article" is not the most appropriate tag for the article. 
However, given the alternatives available in the "Engineering and technology" subject area, 
we selected this tag because we thought that it is more suitable than the others at least. We 
also thought about classifying the paper as "Software Tool Article", but the problem is that 
we (the authors) did not work on the integration and deployment side of the whole tool 
(known as Persistent Knowledge Monitor, or PKM), so we lack most of the information to 
develop and implement the toolkit from scratch, as it should be stated in a "Software Tool 
Article".   
High-level comments

We use the term "toolkit" because they belong to a set of tools integrated in the PKM 
that aim to facilitate the daily work of software developers and mantainers. In the 
article, we try to emphasise the development of these three Natural Lanugage 
Processing tools rather than the synergies existing between them. However, they 
exist: Imagine using this set of tools at a single project level. In case a new person 
joins the project with no idea about how it is its architecture/structure or how its 
code works, he/she could use some of this tool in order to understand, fix and 
maintain any programme file of the project. Code summarization could help him by 
giving short explanations for those undocumented functions/methods, while 
Varmisuse could alleviate his workload by fixing most minor errors related to wrong 
variables localisation or use. Perhaps the most disparate tool is the Semantic Parsing 
one, but it could also be used as an introduction tool to the project, because it could 
help to code easily in a fast way with no need of having a complete knowledge of the 
project. 
 

○

The response of this comment has been included in the 2nd version of the work, 
which has already been submitted.

○

Related Work We have already had most of the works you mention in mind in previous 
stages of the study. However, these have not been included in the article since we did not 
want it to be too long. We have opted for including just the most related works in our paper. 
Technical Comments

Variable Misuse:
All the replies to these comments have been already included in the 2nd 
version of our work in their corresponding sections. Please, check them.

○

○

Code Summarisation
We have an specific section explaining this that we have extended in this 2nd 
version of the work. Please, check 3.2.2.

○

○

Semantic Parsing
Yes, positionnal encoding was used 
(https://github.com/kleag/transformer_NMT/blob/944f45ffe911a706cf7de40b2ec0c3e9bb0f1db1/transformer_model/translation_script_concode.py#L149),
so the sentence can be rewritten as "classical transformer model with 
positionnal encoding". However, we miss do this in the 2nd version. Hopefully 
this comment serves as additional information for readers.

○

○
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Yes, BLEU4 is not able to judge the quality of produced code, just its similarity 
at tokens level with the reference. Our future work will be evaluated with more 
recent metrics dedicated to code, like "Codebleu" and test-oriented 
benchmarks like HumanEval-X, but we think it is not necessary for the purpose 
of this paper, which is more generalist.

○
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