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In the framework of the emulation of CPU-time expensive numerical simulators with
Gaussian process (GP) regression, we propose in this work a new algorithm for the esti-
mation of GP covariance parameters, referred to as GP hyperparameters. The objective is
twofold: to ensure a GP as predictive as possible w.r.t. to the output of interest, but also
with reliable prediction intervals, i.e. representative of GP prediction error. To achieve
this, we propose a new constrained multi-objective algorithm for the hyperparameter es-
timation. It jointly maximizes the likelihood of the observations as well as the empirical
coverage function of GP prediction intervals, under the constraint of not degrading the
GP predictivity. Cross validation techniques and advantageous update GP formulas are
notably used. The benefit brought by the algorithm compared to standard algorithms
is illustrated on a large benchmark of analytical functions (with dimensions from 1 to
20 input variables). Different designs of experiments and different covariance models are
considered. An application on a real data test case modeling an aquatic ecosystem is also
proposed: GP metamodeling within a log-kriging approach is used to predict the biomass
of a species at a given time. The multi-objective algorithm performs better than stan-
dard algorithms and this particular metamodeling framework shows the crucial interest
of well-estimated and reliable prediction variances in GP regression.
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Use of models and metamodels in UQ
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Use of models and metamodels in UQ

Design of numerical > Numerical > Analysis of
[ experiments ] [ simulations ] [ simulator outputs

Ex : Polynomials, random forests, ..., Gaussian process (GP)

GP Metamodel Predictor
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Metamodel: Y, (X) = M (X)
— Probabilistic metamodel |

Quantiles of GP predictive distribution

Build from the dataset a predictor that mimics the true
model M, with good prediction capabilities (validation)
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Bonus: with reliable quantification of prediction error

6
4
2
o
2
4

Reminders on GP metamodel

» Only a n-sample of simulations is available (Monte-Carlo, LHS, space-filling...)
Ds = (xP,vP) where v = (x{”)

1<j<n

» Probabilistic surrogate model : response is considered as a realization of a
random GP [rRwo6]:

Y(x)~GP(,u(x), k(x’,x)) with u(x) the mean and k(x’, x) the covariance function.
—=The predictive GP is the GP conditioned by the observations (X;,Y;) :
Y () y (xg)=v,~GP(a(x"), $(x', x*))

With analytical formulations for A(x*) and §(x’,x*)

= Conditional mean fi(x™) serves as the predictor

at location x*

= Prediction variance (i.e. mean squared error) is given by conditional

covariance §(x*, x*)

S . . .
= Prediction interval of any level o can be built at any location x* ‘< eoF



In practice: parametric choices for trend function ¢ and covariance function k
Y (x)~GP(u(x), k(x', x))
= For u: either constant or linear basis
= For k: tensorized 1-D covariance functions of v-Matérn (with h = |x — X |)

=2 (VI (V2

ka.llAf)(T-'lT) =0 T(v) 9 v

= Need to estimate from the dataset the correlation hyperparameters 8 € R*4

How to ensure that the estimated hyperparameters 0 yield good predictivity
> but also reliable GP prediction intervals?

= Crucial for safety applications: a « reliable » confidence interval is required on
an estimated quantity of interest related to safety (as a high-order quantile)

See application in nuclear safety in [IL19,ILG19]

> Especially in large dimension (d > 10) and
small dataset (n = 100)

]
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We note y; = y(x;)
» Usual estimation methods /K023 Mur21,Pet22] Yi = ax)
— Maximum likelihood-based estimation (MLE) <> minimization oanLL o
— Cross-validation-based estimation: minimization of RMSE= {%Z(y" - yi)z}

i=1

— Bayesian approaches (CPU ++)

. Predictivity
. . P . . 4
P> Validation criteria computed by cross-validation (LOO) ¢ :_,4 5
83
—> Accuracy of the GP predictor: Q% = 1 — RMSE?/Var(Y) ;f 2
81
— Accuracy of the predictive variance: n 2 £o
_ 1 (YL - yL) 4
PVA = |log— )
n L S_l 2
i=1 2 -1 0 1 2 3 4 5
Observed values
— Accuracy of the whole GP conditional distribution /D/iL22.ABG23]
E " Accuracy of Gp prediction intervals s ’ y of Gp p lonikitervls
Empirical coverage function for o« € [0,1]: £ IAEa ~ 0.05 / 5 /
A(Q):lil{lji e PLo_; (Xi)} éus / gos B ///
n— ' 3 R 5 5 sl
= Integrated Absolute Error on A(a) S0 / M /IAEMO_Z
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- Study of criteria NLL, Q?, PVA and IAEa on many test cases

— Close behavior of NLL and Q% = keep NLL as the main estimation objective
to ensure the predictivity of the metamodel = Consistent with PBF+23,Pet22]
— Similar behavior of PVA and IAEa but more irregular w.r.t. 6
= Some local minima compatible with optimal values of the other criteria
= No to be optimized independently of the others

n = 50 — Matérn 5/2 Covariance
_logNLL R 100

10°

lllustration with a test
on a 2D G-Sobol fet

G-Sobol Function NW——

New estimation algorithm for GP hyperparameters

From these understandings:

— Close behavior of NLL and Q% = keep NLL as the main estimation objective
to ensure the predictivity of the metamodel

— IAEa more directly related to reliable predictive intervals, than PVA

— In the neighborhood of the optimal NLL point, existence of better points
0 w.r.t IAEa, but need to control the possible degradation of Q2 value, which
guarantees the predictivity

We propose the following algorithm:

= Optimization based on NLL and IAEa + Control of Q?
(IAEa and Q? estimated by cross validation)

= Proposition of a multi-objective NSGA-II algorithm with constraint on Q?

q.
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Step 1: Initial MLE-based estimation of & with
standard algorithm

Estimation of hyperparameters by minimizing
the NLL with a multistart BFGS algorithm

]
Gl

Computation of LOO estimator of Q2
of the GP built-upon 8% :
= oy

|

Step 2: Estimation of 8 with constrained
multi-objective algorithm

> 2 objectives to be minimized: NLL and IAEa
(IAEc. computed by LOO)
> 1 constraint on LOO estimator of Q2:
QZ5s™ = Q758" — v with ¥y = 0.05, e.g.
> Optimization performed by NSGA-II algorithm,

with initial population based on 8}t

Pareto front of np,..;, NON-dominated solutions

anew gnew
(ONGSAJ' 1 ONGSAmpareto )

|

Computation of LOO estimator of Q*
for each candidate 87¢%,:

A2new
Q

== Each Pareto solution verifies

QZrew > gt — y with @2 computed
for One%a: , for i =1,.., myareto

Step 3: Selection of the “best” solution in Pareto front

3.1 Clustering of Pareto front set of solutions according
to the values of both objectives (NLL and IAEw)

— Number of clusters k optimized with Elbow method

3.2 Selection of the cluster C1 with optimal NLL (cluster

with lower values of NLL)

3.3 Selection of the “best” solution in C1: solution of C1

with optimal (i.e. lowest) value of IAEa

pBestC1
ONSGa

]
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d =2 to 20, # covariance, # sample sizes, # DoE, with/without nugget effect
Comparison with usual algorithms based on NLL optimiz. only (BFGS/multistart)

Example: Marrel-d20 function
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Multi-BFGS
GA-ll - BestC1

5/2-Matérn covariance
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1D-Mean effects
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C “IMulti-BFGS
C-NSGA-1I - BestC1

min

—> Predictivity with Constr-NSGA-II
algorithm at least as good as the simple
NLL optimization

= Improvement of IAE « especially if :

= The model is misspecified, i.e. if
the covariance does not match the

regularity of the function

50 100

[ = When the number of
hyperparameters is large (case of
large dimension d + tensorized
anisotropic stationary covariance)



Application: aquatic prey-predator chain model

Studies of biological contamination of rivers

[ J
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Application: aquatic prey-predator chain model

EDO-type equations describing the growth of microorganisms,
periphyton, grazing and prey-predator interactions

q.
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MELODY model: prey-predator chain in an aquatic ecosystem [IPB+12]

d = 20 uncertain inputs:
= Periphyton: photosynthesis/mortality/excretion rates, survival temperature, saturation constants, ...
= Grazers: consumption/assimilation/mortality/excretion rates, survival temperature, ...

2 outputs of interest: Periphyton (Y,) and Grazers (Y,) biomasses at day n°60
Sample of n = 7100 simulations of the model MELODY (space-filling design)

= Need of preliminar logarithmic transformation

Distribution of Z, = log(Y;) sample = Lognormal-kriging mOdeIing:
———emel estmator > Emulation of Z; = log(Y;) with GP regression

P
3

@
8

> Lognormal-kriging back-transformations to
obtain metamodel for Y;

i (X) = e(fi(x)—l—O.S.fg,_ (x))

% () = (50— 1) 2 +3)

Number of simulations
® © »
8 8 8

5

.o

1 -10 9 8 7 -6 -5

Y, values G.ﬁ
-~ = EDF

Additional comparison with Bayesian RobustGaSP approach /GwB18]

= With nugget effect (included in the set of GP hyperparameters to be estimated)

Predictivity Coefficient Q2 IAEa
Data | Covariance
Multi-BFGS |C-NSGA-II-BestC1| RobustGaSP Multi BFGS | C-NSGA-II-BestC1 RobustGaSP
Matern3/2 0,70 0,74 0,25 0,10 [ 0,07 | 0,04
Y, |Matern5/2 0,77 0,82 0,66 0,09 [ 1 o,02 0,07
Gaussian 0,75 0,79 0,66 | o0s] [ ] o02 [ )

=> Best results with Constr-NSGA-II algorithm: better Q% and IAEa

= Without nugget effect

Predictivity Coefficient Q2 IAEa
Data | Covariance
Multi-BFGS | C-NSGA-II-BestC1 RobustGaSP Multi BFGS | C-NSGA-II-BestC1 RobustGaSP
Matern3/2 0,70 0,75 0,47 0,10 [ 0,06 0,03
Y, Matern5/2 0,78 0,84 0,83 0,08 |:| 0,02 [ 0,07
Gaussian 0,70 0,72 0,89 [ 0,06 [ | 0,03 ENco0s |

= Better behavior of RobustGasp without nugget : best Q2 but not IAEa

—> Constr-NSGA-II algorithm is also more robust to modeling choices
= T E€DF



Conclusions & Perspectives

= High benefits of considering validation criteria of the whole GP distribution
when estimating hyperparameters — enables more robust estimation !

= Particular attention must be paid to GP validation

= Part of a more general effort to ensure confidence in machine learning
models

= Perspectives: some are methodological but the main ones concern software
& industrial deployment of GP!
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Reference of this work: A.Marrel and B. looss, Probabilistic surrogate modeling by
Gaussian process: A new estimation algorithm for more robust prediction, Preprint
https://hal.science/cea-04322818

See also: A. Marrel and B. looss, Probabilistic surrogate modeling by Gaussian
process: A review on recent insights in estimation and validation, Preprint
https://hal.science/cea-04322810

‘s talk “Hidden but essential recipes for
successful GP metamodeling to support
UQ in numerical simulation”

on Friday, MS 194, 10:00AM
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