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The value of using Gaussian Process (GP) regression to emulate costly computational
codes for uncertainty management is now widely established. The probabilistic meta-
model provided by GP-regression, in the sense that it provides a predictive distribution
for each new evaluation point, offers great added value, particularly for safety, reliability
or risk assessment studies. However, guaranteeing confidence in the use of this metamodel
requires two crucial steps: its training on the available learning data and its validation
(often by cross-validation process in our application context). We are particularly inter-
ested here in the context of given data, small data (number of model simulations limited
to a few hundred) and large numbers of uncertain inputs (from a few dozen to a hun-
dred). In this context, building a successful GP metamodel often calls for a preliminary
variable selection. Kernel-based methods (HSIC) and associated independence tests are
especially appropriate, for screening but also ranking the inputs. Then, particular care is
required when estimating GP hyperparameters: going beyond simple maximum likelihood
approaches may be wise. Finally, GP validation must include various criteria to assess
the preditivity and reliability of the metamodel’s entire predictive law.

The presentation will focus on recent advances in these three topics, with the aim of pro-
viding guidelines and recipes for successful GP metamodeling in the considered application
context.
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Risk assessment in nuclear accident analysis ﬁ

Safety studies: compute a failure risk (margins, rare events) with validated computer/numerical models
Numerical simulators: fundamental tools to understand, model & predict physical phenomena
Large number of input parameters, related to physical and numerical modelling

Uncertainty on some inputs - uncertainty on output & safety margins

BEPU (Best-Estimate-Plus-Uncertainties): realistic models + uncertain inputs > Better assessment of

the real margins
? .p
‘ 4

Uncertain input W

Uncertain output
Y = M(Xy, ..., Xg)

Numerical
parameters :

X= (X1, X0)
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Risk assessment in nuclear accident analysis

= How to deal with uncertainties in numerical simulation?

- Probabilistic framework and Monte Carlo-based methods

- CPU-expensive simulator = Use of machine learning to propagate input uncertainties

- Applicative constraints/framework:

v' Given data: a single inputs/output sample (x(i),yi)1<]<

., Where y; = M (x@) to be used

for multi-purpose (sensitivity analysis, uncertainty propagation... And training a metamodel)

v" Small sample size: n ~ 100 to 1000 simulations
v' Large number of uncertain inputs: d ~ 10 to 100 inputs

v Required UQ associated to each prediction

— [ Gaussian Process Regression (GPR): particularly well-suited tool = Very popular ]

Crucial use of GPR metamodel

Design of numerical
experiments

Numerical
simulations

)=

"R

N
—) [ Analysis of simulator outputs ]

Metamodel Predictor

P’y
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o ‘o In case of costly M: y ™~ }:;th:rg"c;zzlc
o % °° Approximation with GPR . =

N | Metamodel: Y,, = % (X) ~ m(X) | «
Incertain inputs domain 10

v' Build from the dataset, GPR mimics the true model M, providing a GP
predictive distribution for each new evaluation point
= Intrinsic quantification of prediction error!

= A very appealing theory, but in practice calls for a few good practices!

Quantiles of predictive distribution

0.95-quantile
0.05-quantile
@  Simulation points




Challenges for an efficient GPR in practice

1. Dealing with the large input dimension

AR RANYS
Dealing with the large input dimension ﬁ
=== How to train the GP in large dimension? (d~10 to 100, e.g.)

» Curse of dimensionality = too many GP hyperparameters have to be optimized!

— [ Use of preliminary SCREENING for input selection (and thus dimension reduction). ]

P Sensitivity measure from HSIC (Hilbert-Schmidt Independence Criterion [GFT+07]), built-upon RKHS embeddings

HSIC(X;,Y) = MMD?*(Py,y,Px,®Py) = ||”]PXl.y - llIPXi®1Py|| g

ML (X x D)

Dependence AHSIC(X;, Y)
Px, @ Py Px, ®Py E

Independence

v' HSIC: Estimation of from a unique random
sample, efficient in practice from n~100

v' HSIC "summarizes" the cross-cov between
feature maps = Large panel of input-output
dependency captured

space of all probability distributions RKHS
R . . for the input-output pair (X;,Y)
@ MMD: Maximum Mean Discrepancy Extract from a presentation by G. Sarazin (CEA)



Dealing with the large input dimension | ’&4

» HSIC-based independence tests [GFT+07]: HSIC(X;,Y) =0 X; LY (with characteristic kernels!)
v Null hypothesis: H,:X; LY against H;:X; kY
v’ Test statistics: nHSIC(X;,Y)

v’ Decision rule: #{, rejected iff nHSIC(X;,Y) > q;_, where q;_, is the (1 — a)quantile of nHSIC(X;,Y)
under H, (several available procedures to estimate q;_, [GFT+07, EM24])

= Use for screening of inputs

P-value of global-HSIC tests

= R i 1 Selection of significant inputs (<20) |
0§ A 0 ) . @
04 ) ) 0o - K I
b L I
02| V' | 5 Q
P8t ;—H 114 r;Hg—er—»|-mﬁ~gr;:_ﬁ~|-'
XM xer X36 Xx42 X50 X52 X545 / Explicative inputS Of GPR
® Selected inputs v Non-significant influential inputs captured by
@ an additional variance in GPR (nugget effect)

Dealing with the large input dimension W%

» HSIC-based ranking [Dav15]

Inputs ordered by degree of influence

|

Can be used for more robust sequential GPR estimation

= “forward” estimation of GPR hyperparameters: successive inclusion of ordered inputs

See the “ICSCREAM” methodology [MIC21]




Dealing with the large input dimension | E%

P HSIC can capture a large spectrum of relationships (power of RKHS ©)

» Able to deal with many types of variables and purposes:

Goal-oriented for safety studies [M(C21], to measure the influence in a restricted domain: Y € C

Functional output = definition of specific kernels [EM24]

» More powerful tests based on SupHSIC [EM24] and HSIC-ANOVA indices [SMD+23]

—) More robust selection of inputs

Efficiency demonstrated in numerous industrial applications, especially with
small sample size n and large dimension d

l

Challenges for an efficient GPR in practice

1. Dealing with the large input dimension

2. Reliable estimation of GPR hyperparameters




P Probabilistic surrogate model: response is considered as a realization of a random GP field
[RWO05,Gra21]:

Reminders on GPR

Y(x)~GP(u(x), k(x', x))
With p(x) the mean and k(x’, x) the covariance function. .. |

kriging the sinus function

= Predictive GP is the GP conditioned by the observations (X, ,Ys): ™ |
Y (X)) v (x)=v,~GP(A(x*), 3(x, x)) F <

With analytical formulations for fi(x*) and $(x’, x*)

= Conditional mean fi(x*) serves as the predictor at location x* ; ; ; ; .
2 4 6 8 10

= Prediction variance (i.e. mean squared error) is given by conditional covariance §(x*, x*)

= Prediction interval of any level a can be built at any location x*

"R

Recommendations for parametric choices

P In practice: parametric choices for trend function u and covariance function k
Y(x)~GP(u(x), k(x', x))
= For u: either constant or linear basis
= For k: stationary covariance built-upon tensorized 1-D covariance functions of v-Matérn

) 91-v ( /21/h>"1, <, /2uh 3/2 or 5/2 Matérn covariances

) — offer good properties and

1-Dim— kyuo(2, %) = 0°—— <,
I'(v) 0 0 « intermediate » regularity
d
d-Dim— k,,0(x,X) = o’ H k1,0, (x; — ;) withh = |x—%| Hyperparameters
=1 0 € R+

= Additional variance (nugget effect — nugget hyperparameter 1 € R*)

=1 ;=3 y =3 ) =
V=3 v =3 v=3 v = +00
Usual name expouential 3/2-Matérn 5/2-Matérn Gaussian
2 5 _1(h)?
koo, T) 02§ (1 + ﬁ%)(’*ﬁ% o? (1 +v5k 43 (%) ) V55 | o2e3(5)
Differentiability o o 2 o
of GP trajectories



Estimation of GP hyperparameters | E%

= How to robustly estimate the hyperparameters 8 € R™¢ from the learning

sample ?
For good predicitivity + reliable GP prediction intervals
= Crucial for safety applications
N \ee/%
Estimation of GP hyperparameters ﬁ

» Usual estimation methods [KO22,Mur21,Pet22,PBF+22]

—>Maximum likelihood } lll-posedness of MLE, problem of flatness of

functions to be minmized

—Cross-validation Mean Squared Error

—Bayesian approaches Except RobustGAsp method of [GWB18]

} CPU ++, delicate choice of priors

Proposition of a new multi-objective estimation algorithm for more reliable GP prediction
intervals in [MI124b]

/ \
m “Bertrand looss’ talk on Wednesday, MS 120: Work supported by French
> / Vh ) Gaussian process regression: new hyperparameter ANR SAMOURAI Proiect
ot /) estimation algorithm for more reliable prediction - ey
Application to an aquatic ecosystem model”
u OURAI




Challenges for an efficient GPR in practice

1. Dealing with the large input dimension
2. Reliable estimation of GPR hyperparameters

3. Careful GPR validation for confident use

"R

GPR validation

» Validation criteria computed by cross-validation (LOO or K-fold CV) [DIG*21]

— Accuracy of the GP predictor (only):

MSE . 1 ~ DN 2
Q*=1-1— P with MSE = =3, (y; —9-;(x®))
n&i=1 i_; i=1 Vi

where y_;(x®) is the metamodel predictor in x®Pwhen (x®, y,) is removed from the learning sample.

The closer to one the Q? the better the accuracy of the metamodel predictor. 5 Piadiothviey
4 +
Values Interpretation 9 4 Q2 ~ 0.90 A
g 4
High value, close to 1 |Good predictive capability of metamodel predictor for unobserved points. E 2 ;
@
Poor predictive capability. Some possible reasons: .g .
Low value - unsuitable or poorly estimated model; E 0
(Q*<0.5,e.g) - very poorly predicted areas (Q? sensitive to highest or extreme errors)| .
- Insufficient learning sample to properly explore the space of input 2
-2 -1 0 1 2 3 4 5

Observed values



GPR validation ’ %é

P Validation criteria computed by cross-validation (LOO or K-fold CV) [DIG*21]

— Accuracy of the whole GP conditional distribution [DIG*21,ABG23]

n
—~ 1 .
From empirical coverage function for a€[0,1]: A(a) = EZ 1{y; € Pl _;(x©)}
i=1

with PI, _;(x®) the a-level GP prediction interval for x® when (x(®, y;) is removed from learning sample

Accuracy of Gp prediction intervals
w /
0.4 /
0.2 / -

0 0.2 04 0.6 08
Level of prediction interval o

= a-Pl Plot Accuracy of Gp prediction mter\fal‘s

//IAEazO.Z

0.2 04 0.6 0.8 1
Level of prediction interval o

GPR validation W%

» One message: Joint interpretation of Q% and IAEa ! [MI24a]

o
©

— Integrated Absolute Error on A(a)
[MI124a]

IAEa = [/|A(a) —

=}
=3

=]
>

o
N

Observed o (rate of data in the interval)

=}

Observed « (rate of data in the interval)

=]

Criterion Values Interpretation

Value close to 0 Only if Q2 is also high, reliable predicted confidence intervals

IAEax
Unreliable predicted prediction intervals ("underconfident" or
"overconfident" model)

—> Explanation from cross-interpretation with Q> and a-Pl plot

High values, close to
0.5e.g.
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IHlustration of criteria for GPR validation [vi24a]

Branin function (rescaled)

n=30, GPR with constant
mean and Gaussian covariance

Objective function for negative log-likelihood

[6,,6,] =[1.12 0.8]
Predictivity

Fredicted values

4

3

2

1

0
. H

=
0 02 04 06 08 1

Observed values

Accuracy of Gp prediction intervals

interval)

' AEZIEI005

02 0.4 06 08 1
Level of prediction interval o

Predicted values

Observed o (rate of data in the interval)

o
@

[6,,6;] = [0.78 0.52]
Predictivity

Observed values

Accuracy of Gp prediction intervals

o

IAEa = 0.2

o

0.2 0.4 06 08 1
Level of prediction interval o

Conclusions and

% %

| MLE estimates: [6;,6,] = [0.88 0.37] |

Predictivity

Predicted values

4

o o o
IS o o

Observed o (rate of data in the interval)
o
o

; Accuracy of Gp prediction intervals

Observed values

IAEa = 0.02

o

0.2 04 0.6 0.8 1
Level of prediction interval o

remaining challenges
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Conclusions :

» Recommendations for an efficient GP Regression:

v GPR benefits greatly from preliminary HSIC-based screening = All these recipes are
integrated in ICSCREAM

v’ GPR calls for robust estimation of hyperparameters
methodology [MIC21]

v/ Particular attention must be paid to GP validation

= Part of a more general effort to ensure confidence in machine learning for UQ

P Interesting challenges for UQ applications

v" High dimensional problems (for example beyond 30 to 50 inputs and screening-free)
v Extension to more complex inputs (graph structure, e.g.)

v’ Learning outputs with highly irregular, or even chaotic behavior (due to physical threshold
phenomena and phenomenological bifurcations, for instance)
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