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Thermal conductivity is a fundamental material property that plays an essential role in technol-
ogy, but its accurate evaluation presents a challenge for theory. In this work, we demonstrate the
application of E(3)-equivariant neutral network interatomic potentials within Green-Kubo formal-
ism to determine the lattice thermal conductivity in amorphous and crystalline materials. We apply
this method to study the thermal conductivity of germanium telluride (GeTe) as a prototypical
phase change material. A single deep learning interatomic potential is able to describe the phase
transitions between the amorphous, rhombohedral and cubic phases, with critical temperatures in
good agreement with experiments. Furthermore, this approach accurately captures the pronounced
anharmonicity that is present in GeTe, enabling precise calculations of the thermal conductivity. In
contrast, the Boltzmann transport equation including only three-phonon processes tends to overes-
timate the thermal conductivity by approximately a factor of 2 in the crystalline phases.

I. INTRODUCTION

Thermal conductivity, as an intrinsic material prop-
erty, holds significant implications in technology as it
plays a crucial role in determining the thermal manage-
ment of electronic devices [1, 2] and serves as a key pa-
rameter in thermoelectric device performance [3, 4]. Heat
transport in semiconductors and insulators is primarily
governed by lattice vibrations, i.e., phonons. Substan-
tial efforts have been directed towards precise calcula-
tions of lattice thermal conductivities from a microscopic
perspective. The main methods for calculating lattice
thermal conductivity include the Boltzmann transport
equation (BTE) [5–7], nonequilibrium Green’s function
(NEGF) theory [8–10], nonequilibrium molecular dynam-
ics (NEMD) [11] and the Green-Kubo (GK) formula [12–
14]. The BTE assesses the response of phonon occupa-
tion to a temperature gradient, typically including three-
phonon scattering processes, which limits its applicabil-
ity to weakly anharmonic crystalline materials. In con-
trast, NEGF treats phonons quantum mechanically, con-
sidering interface scatterings and phonon anharmonicity
through self-energies, but it comes with a computational
cost [8]. The NEMD method is based on a direct simu-
lation of stationary heat fluxes in a nonequilibrium state
and naturally include anharmonic effects. Finally, GK
provides the lattice thermal conductivity from the auto-
correlation of heat fluxes usually computed in an equi-
librium molecular dynamics (MD) simulation, account-
ing for anharmonic effects to all orders [15]. Further-
more, recent developments extend GK to low tempera-
tures [13, 14], which makes it a robust approach for a wide
range of temperatures and materials. GK theory provides
a unified approach to compute the lattice thermal con-
ductivity in ordered and disordered solids. For harmonic
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amorphous systems, thermal transport can be described
by the Allen and Feldman (AF) theory [16]. However, it
has been shown that the AF theory may be inadequate
when anharmonic effects become important [17, 18].

The MD simulation in the GK approach requires a rela-
tively long simulation time (up to a few nanoseconds) for
sufficient statistical sampling and an accurate description
of interactions among atoms. Such long simulation times
are affordable for MD with empirical force fields, but at
the price of reduced accuracy and universality. Ab ini-
tio MD has better accuracy but is too computationally
expensive for large systems or long MD simulations. Ex-
trapolation schemes have been proposed [19] to reduce
the computational cost, but they are unsuitable for dis-
ordered solids.

Over the past few years, machine learning has emerged
as a practical alternative for tasks where ab initio meth-
ods encountered difficulties. Notably, machine learning
interatomic potentials (MLIP) have proven successful in
rapidly predicting energies, forces, and stress tensors with
an accuracy comparable to first-principle methods. Par-
ticularly in thermal transport GK calculations, MLIPs
have been employed using descriptor-based approaches,
such as Behler-Parrinello neural networks or kernel-based
methods [20–22]. Recently, neural network interatomic
potentials utilizing message passing architectures [23–26]
have been proposed as an alternative to hand-crafted de-
scriptors. In this approach, structures are encoded as
graphs, where atoms are depicted as nodes connected by
edges. In initial models, the information at the nodes and
edges was made invariant with respect to the Euclidean
group E(3) (i.e., the group of translations, rotations, and
inversions in Euclidean space), and the atomic represen-
tations were limited to scalar interatomic distances [23].
Such models have since been largely superseded by archi-
tectures built on convolution operations that are equiv-
ariant with respect to the E(3) group. In equivari-
ant approaches, isometric transformations on the rela-
tive atomic displacement vector inputs are propagated
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through the network to correspondingly transform the
outputs. Equivariant MLIPs have been shown to achieve
substantially improved data efficiency and unprecedented
accuracy compared to their invariant counterparts [24–
26]. However, in such message passing architectures,
many-body interactions are captured by iteratively prop-
agating information along the graph at each layer in the
network. This has the effect of extending the local re-
ceptive field of an atom to significantly beyond the cut-
off radius, which renders parallelization impractical [27].
Recently, a strictly local equivariant neural network po-
tential has been proposed to address this drawback [27].
In this architecture, information is stored as a per-pair
quantity, and instead of nodes exchanging information
with its neighbours via edges, a convolution operation
acts on the cutoff sphere in the form of a set of invariant
(scalar) latent features and a set of equivariant (tensor)
latent features that interact at each layer.

In this work, we employ the strictly local E(3)-
equivariant neural network potential from Ref. [27] to
compute the temperature-dependent thermal conductiv-
ity of germanium telluride (GeTe) in various phases us-
ing GK theory. GeTe is a chalcogenide material em-
ployed in many technological applications, such as phase
change nonvolatile memory storage [28, 29], thermoelec-
tricity [3, 30, 31] and spintronics [32–34]. It undergoes a
ferroelectric phase transition from the low temperature
rhombohedral α-GeTe (spacegroup R3m) to the cubic
β-GeTe (spacegroup Fm3̄m) at a Curie temperature of
Tc ≈ 650 − 700 K [35–37]. Amorphous GeTe also plays
an important role in technological applications such as
phase change memories. Hence, GeTe serves as a proto-
type material to demonstrate the universality of the GK
method combined with equivariant neural network in-
teratomic potentials. This approach effectively captures
strong anharmonicity and materials in diverse crystalline
phases or amorphous states for the calculation of lattice
thermal conductivity.

II. METHODOLOGY

The thermal conductivity tensor within GK theory is
defined as

καβ(T ) =
1

kBT 2V
lim
τ→∞

∫ τ

0

dt ⟨jα(t) · jβ(0)⟩T , (1)

where kB is the Boltzmann constant, T the temperature,
V the volume, jα(t) the α-th Cartesian component of the
macroscopic heat flux, and ⟨jα(t) · jβ(0)⟩T the heat flux
autocorrelation function, with the symbol ⟨·⟩T denoting
the ensemble average over time and over independent MD
trajectories.

The total heat flux of a system of N atoms is given by

j(t) =

N∑
i=1

d

dt
(riEi) , (2)

where Ei = miv
2
i /2 + Ui is the total energy (i.e. kinetic

and potential energy) of atom i with mass mi, velocity
vi and atomic position ri. In MLIPs, the partitioning
U =

∑
i Ui of the total energy of the system into atomic

contributions Ui allows the total heat flux of a periodic
system to be expressed as [12]

j(t) =

N∑
i=1

viEi −
N∑
i=1

∑
j ̸=i

rij

(
∂Ui

∂rij
· vj

)
(3)

where the sum over j runs over the atoms that are within
the cutoff radius rc of atom i. We implemented the cal-
culation of Eq. (3) in the LAMMPS code [38]. The
term ∂Ui/∂rij is obtained by automatic differentiation
and was also used for the calculation of the virial ten-
sor [12, 39], which is required to perform simulations in
the isothermal-isobaric (NpT) ensemble.

III. MACHINE LEARNING INTERATOMIC
POTENTIAL

A. Training dataset

To create the reference dataset for training the MLIP,
ab initio MD simulations based on density functional the-
ory (DFT) were carried out using the VASP code [40, 41],
with temperatures ranging from 100 K to 2500 K. The
generalized gradient approximation of Perdew, Burke,
and Ernzerhof (PBE) [42] was used for the exchange-
correlation energy and Grimme’s D3 dispersion correc-
tion [43] was applied. The supercells contained 192
and 216 atoms for the initial rhombohedral and cubic
structures, respectively. Then, a total of 6000 struc-
tures were extracted from the MD trajectories and re-
computed to obtain more accurate energies, forces, and
stress tensors. We used an energy cutoff of 400 eV
and a 2 × 2 × 2 k mesh to sample the Brillouin zone.
The equivariant NN model was trained using the Al-
legro package [27]. Details of the training procedure
and dataset partitioning are provided in Appendix A.
The training and test GeTe datasets can be found on
Zenodo [44]. The root mean squared errors (RMSE)
and mean absolute errors (MAE) on the predicted en-
ergies, forces and stress tensors on the test dataset
are 0.90 meV/atom, 29.87 meV/Å, 0.28 meV/Å3 and
1.07 meV/atom, 42.97 meV/Å, 0.37 meV/Å3, respec-
tively.

B. Model validation

To validate the MLIP further, the equilibrium geome-
tries of crystalline GeTe were optimized using the MLIP.
For α-GeTe, the lattice parameter was a = 4.42 Å and
the angle α = 57.13◦, closely matching the DFT results
(a = 4.41 Å and α = 57.42◦). Similarly, for β-GeTe, the
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FIG. 1. Comparison of phonon dispersions computed with
DFT and with the MLIP of (a) α-GeTe and (b) β-GeTe

MLIP yields a = 4.24 Å, in excellent agreement with the
lattice parameter from DFT of a = 4.23 Å.

Moreover, the phonon dispersion obtained from the
MLIP is in excellent agreement with DFT for both α and
β-GeTe, as shown in Fig. 1. In particular, our model de-
scribes optical phonons well, which is usually challenging
for MLIPs [20, 45]. Imaginary soft phonon modes in cubic
GeTe are also well described by the MLIP, which is es-
sential in capturing the phase transition [46, 47]. Phonon
dispersions were computed using the finite displacement
method implemented in Phonopy [48] with 3×3×3 and
5× 5× 2 supercells of the conventional unit cells for cu-
bic and rhombohedral phases, respectively. For the DFT
calculations, we used the same settings as those used to
generate the reference dataset. LO-TO splitting was not
included in our calculations as long-range Coulomb in-
teractions tend to be screened by free carriers in real
samples [49].

IV. RESULTS AND DISCUSSION

A. Finite temperature lattice dynamics

We investigated the lattice dynamics of GeTe through
MD simulations across the α → β phase transition
with our MLIP. For each temperature, rhombohedral
and cubic GeTe supercells were first equilibrated for at
least 200 ps in the NpT ensemble at ambient pressure
with a 2 fs timestep in order to obtain the averaged
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FIG. 2. Evolution of (a) the lattice parameter a and (b) the
angle α as a function of temperature in the NpT MD sim-
ulations of crystalline GeTe, compared against experimental
data from Ref. [35–37]. Simulated lattice parameters in (a)
were shifted by −0.1 Å.

temperature-dependent structural parameters shown in
Fig. 2. The rhombohedral lattice parameter a and angle
α reach cubic values for T>650 K, in good agreement
with experimental data. Interestingly, below the Curie
temperature, the cubic phase remains confined within a
local energy minimum and does not undergo transforma-
tion into the rhombohedral phase throughout our MD
simulations.

By employing the temperature-dependent effective-
potential (TDEP) method [50–52], the temperature-
dependent interatomic force constants (IFCs) were ex-
tracted from configurations sampled from MD trajecto-
ries. We used 512-atom rhombohedral or cubic GeTe su-
percells using the temperature-dependent structural pa-
rameters from Fig. 2. Each structure was equilibrated in
the NVT ensemble for 80 ps (thermalization step). Then,
snapshots were taken from a 600 ps MD simulation in the
microcanonical ensemble for each temperature to extract
the IFCs. Details of the TDEP extraction are provided
in Appendix B. Temperature dependent phonon disper-
sions and spectral functions obtained using these IFCs
are shown in Fig. 3 and 4 for the α and β phases, respec-
tively.

In Fig. 5, the evolution of the longitudinal and trans-
verse optical phonon modes (Γ6 and Γ4, respectively) is
depicted as a function of temperature. The softening of
these two modes up to the Curie temperature is con-
sistent with previous theoretical studies [46, 47] and is
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FIG. 3. Temperature dependent phonon dispersions (white
lines) and spectral functions of α-GeTe computed using the
TDEP method at (a) 300 K and (b) 600 K (just before the
R3m → Fm3̄m phase transition).
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FIG. 4. Temperature dependent phonon dispersions (white
lines) and spectral functions of β-GeTe computed using the
TDEP method at (a) 300 K and (b) 700 K.

comparable to experiments [49, 53, 54]. Beyond 650 K,
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FIG. 5. Temperature evolution of A1 and E optical phonon
modes computed with the TDEP method and compared
against experimental data from Ref. [49, 53, 54].

the optical phonons merge, indicating the transition to
the cubic phase where optical phonons exhibit three-fold
degeneracy.

B. Green-Kubo thermal conductivity

To compute the GK thermal conductivity of both crys-
talline and amorphous GeTe, MD simulations with the
MLIP were performed at different temperatures. The
amorphous GeTe structure was generated using a melt-
quench process (see Appendix C). Heat flux was com-
puted during MD simulations in the microcanonical en-
semble and the ensemble average was carried out over
independent trajectories of at least 1 ns after equilibra-
tion in the NpT ensemble.

Figure 6(a) shows the averaged heat flux autocorre-
lation function (HFACF) at 300 K as a function of the
correlation time τ for the initial GeTe structures in the
rhombohedral, cubic, and amorphous phases. The av-
erage HFACF features large oscillations before decaying
to zero, mainly due to the kinetic contribution of the
heat flux (first term in Eq. 3). The cumulative time inte-
gration of the HFACF yields the thermal conductivities
κavg = 1/3

∑3
α=1 καα that are plotted in Fig. 6(b).

After testing the convergence with respect to system
size (see Appendix D), we employed supercells contain-
ing 360 and 512 atoms for crystalline and amorphous
structures, respectively. Figure 7 shows the computed
lattice thermal conductivities as a function of tempera-
ture for both amorphous and crystalline GeTe together
with existing experimental data from Refs. [30, 55, 56].
Comparing against experiments is challenging because
experimental values of lattice thermal conductivities of
crystalline GeTe show a large dispersion. This variabil-
ity can be attributed to two main reasons. First, ther-
mal conductivity comprises a lattice contribution and an
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FIG. 6. (a) Averaged heat flux autocorrelation function
(HFACF), normalized by its value at τ = 0 and (b) lattice
thermal conductivity computed using GK theory as a func-
tion of correlation time at T = 300 K for rhombohedral, cubic
and amorphous GeTe.

electronic contribution. Therefore, experimental lattice
thermal conductivity is an indirect measurement, which
is obtained by removing the electronic contribution from
the measured thermal conductivity, typically evaluated
using the Wiedmann-Franz law that introduces an addi-
tional approximation from the Lorenz number. Second,
the quality of the samples varies, leading to variations in
thermal conductivity measurements. Despite the signif-
icant experimental variations mentioned above, the cal-
culated GK thermal conductivity values are found to fall
within the range of experimental values.

The GK lattice thermal conductivity for the amor-
phous phase (solid green line) is in excellent agreement
with the experimental data of Ref. [56] (green squares).
This can be regarded as a direct comparison with the
experiment since the electronic contribution to the ther-
mal conductivity was found to be negligible in amorphous
GeTe [57]. A previous study obtained a similar value of
0.27 ± 0.05 W·m−1·K−1 at 300 K from GK simulations
with a Behler-Parrinello-type MLIP [22]. The predicted
thermal conductivity for amorphous GeTe is constant un-
til ∼ 450 K. It then starts to increase, indicating a transi-
tion to a crystalline phase, as evidenced by the evolution
of the radial distribution function (see Fig. 10.) and con-
sistent with the amorphous-crystalline phase transition
temperature observed experimentally [56].
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FIG. 7. Calculated thermal conductivities using Green-Kubo
theory (solid lines) of amorphous and crystalline GeTe. The
thermal conductivity computed using direct solution of lin-
earized Boltzmann transport equation are also reported (dot-
ted line for three phonon, dashed line for three and four
phonon). Experimental data are shown for crystalline GeTe
from Ref. [30, 55, 56]) (empty symbols) and for amorphous
GeTe from Refs. [56] (green symbols).

C. BTE thermal conductivity

To compute the thermal conductivity using the BTE,
we employed the FourPhonon code [58] with the TDEP
IFCs up to fourth order and an 11 × 11 × 11 q-mesh.
This allows a direct comparison between GK and BTE
methods, as both calculations were conducted under the
same conditions, utilizing identical interatomic potentials
and temperatures; the only difference lies in the ther-
mal transport formalism employed. BTE including only
three-phonon processes overestimates the thermal con-
ductivity by about 1.8 W·m−1·K−1, which is about twice
the GK result at 300 K, and about three times that at
900 K. Including four-phonon processes significantly im-
proves BTE results. The BTE thermal conductivity ap-
proaches that of GK, especially at high temperatures in
the cubic phase. However, the discrepancy at 300 K re-
mains about 50%. Such overestimation indicates that
higher-order IFCs are mandatory in BTE to capture the
strong anharmonicity. Furthermore, the computational
expenses escalate considerably when incorporating four-
phonon processes in BTE. Consequently, the GK method
emerges as a viable approach for assessing the lattice
thermal conductivity of materials exhibiting strong an-
harmonicity. We observed differences when comparing
our results to previous BTE calculations reported in the
literature [47, 56, 59]. These discrepancies are discussed
in Appendix E.
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V. CONCLUSION

In conclusion, we developed an equivariant graph neu-
ral network interatomic potential to study thermal trans-
port in both amorphous and crystalline GeTe. The po-
tential describes GeTe at a near-ab initio level of accu-
racy for the rhombohedral, cubic and amorphous phases
with a single model. Furthermore, it successfully cap-
tures phase transitions with transition temperatures in
good agreement with experimental data. When coupled
with Green-Kubo theory, it can determine the lattice
thermal conductivity not only for strongly anharmonic
crystals, but also for the amorphous phase.
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Appendix A: Machine Learning Interatomic
Potential generation

1. Training

The equivariant graph neural network (GNN) model
was trained using the Allegro code [27] on an NVIDIA
A100 GPU with float32 precision. The dataset con-
tained 6000 reference configurations, randomly split into
5000, 500 and 500 configurations for the training, vali-
dation and test sets, respectively [44]. The training was
done using a mean squared error (MSE) loss function
based on a weighted sum of energy, forces and stress loss
terms:

L =
λE

B

B∑
b

(
Êb − Eb

N

)2

+
λF

3BN

BN∑
i=1

3∑
α=1

(
F̂i,α − Fi,α

)2
+

λσ

9B

B∑
b

3∑
α=1

3∑
β=1

(σ̂b,αβ − σb,αβ)
2 (A1)

where B is the batch size, N is the number of atoms,
Eb is the DFT energy, Êb is the predicted energy, Fi,α

is the DFT force of atom i along direction α, F̂i,α is the
predicted force of atom i along direction α, σb,αβ is the
DFT stress tensor αβ component and σ̂b,αβ is the pre-
dicted stress tensor αβ component. We used the scaling
factors λE = 1, λF = 1 and λσ = 10 (with energy, force
and stress units in eV, eV·Å−1 and eV·Å−3, respectively).

2. Hyperparameters

The scalar latent features were generated via a projec-
tion onto eight trainable Bessel functions and the asso-
ciated two-body multi layer perceptron (MLP) consisted
of four hidden layers of dimensions [128, 256, 512, 1024]
with SiLU nonlinearities [60]. A cutoff function with a
cutoff radius of 6.5 Å and a polynomial envelope func-
tion with p = 6 was used. For the equivariant features,
a maximum rotation order lmax = 2 with 16 features of
even parity was used. The model contained one interac-
tion layer, where the latent MLP contained three hidden
layers of dimensions [1024, 1024, 1024] with SiLU non-
linearities [60] and the embedding MLP for the tensor
product operation contained a single layer with no non-
linearity. The final output MLP was a single layer with
128 nodes and no nonlinearity.

Training was performed with a batch size of 5 and the
Adam optimizer was used with an initial learning rate of

0.01, decaying by a factor of 0.5 whenever the validation
loss had not seen an improvement for 20 epochs.

Appendix B: TDEP

For TDEP calculations, we used cutoff radii of 12, 8
and 5 Å to extract second, third and fourth-order IFCs,
respectively. We verified that the employed cutoff radii
lead to converged results. We also tested the conver-
gence of the thermal conductivity values with respect to
the number of configurations for different temperature,
as shown in Fig. 3. We used 300 configurations to ex-
tract the IFCs used to compute phonon dispersions and
thermal conductivities presented in Sec. IV A.

In addition, for the rhombohedral phase, we used equi-
librium atomic positions computed as an average over
all MD snapshots to avoid the spurious soft LO phonon
mode at Γ. For the cubic phase we used ideal atomic
positions.

Appendix C: Amorphous structure

The amorphous structure was generated by a melt-
quench (MQ) MD simulation using our GeTe MLIP. We
used a 512-atom cubic GeTe supercell at the experimen-
tal density (0.03327 atoms/Å3 [61]) as the starting struc-
ture. The structure was first melted at 1800 K for 200 ps,



7

2.5

3.0

3.5
av

g (
W

/m
K)

300 K (R3m)

1.5

2.0

av
g (

W
/m

K)

600 K (R3m)

2.0

2.1

2.2

2.3

av
g (

W
/m

K)

700 K (Fm3m)

0 100 200 300
# configurations

1.8

1.9

2.0

av
g (

W
/m

K)

800 K (Fm3m)

FIG. 8. Thermal conductivity of GeTe as a function of the
number of configurations used to extract second and third
order force constants using the TDEP method.

then quenched to 300 K over 200 ps in the NVT ensem-
ble. Finally, the structure was equilibrated in the NpT
ensemble at 300 K for 1 ns. The density of the final
structure was 0.03328 atoms/Å3, very close to the ex-
perimental value. The amorphous structure is shown in
Fig. 9.

For the lattice thermal conductivity calculations, the
amorphous structure was equilibrated for 0.8 ns in the
NpT ensemble at different temperatures before comput-
ing the heat flux in the microcanonical ensemble. We
computed the time-averaged radial distribution function
(RDF) g(r) at the end of the NpT simulation for 10 ps
(see Fig. 10). Between 300 K and 450 K, the RDFs are
very similar and show no long range order beyond 6 Å. In
contrast, at 550 K the RDF displays some peaks beyond
6 Å, which suggests a crystallization of the structure.

FIG. 9. Amorphous GeTe structure generated by melt-quench
MD simulation.
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FIG. 10. Radial distribution function of the amorphous struc-
ture after equilibration at different temperatures.

Appendix D: Convergence of Green-Kubo
simulations

Green-Kubo calculations require large system sizes and
long simulation times in order to obtain a converged
thermal conductivity. We computed the lattice thermal
conductivity of the rhombohedral phase using supercells
with 192, 360, and 2880 atoms. For each system size, we
performed 10 independent MD simulations with differ-
ent initial velocities. The averaged thermal conductivity
over the different MD trajectories is shown in Fig. 11,
along with the standard error (shaded region). The ther-
mal conductivity computed for the 2880-atom supercell
exhibits larger standard errors compared to 360- and 192-
atom supercells due to the shorter simulation times used.
The lattice thermal conductivities are extracted for cor-
relation times where the averaged thermal conductivity
reaches a plateau (i.e., typically for τ > 25 ps).
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Appendix E: Comparison with previous theoretical
works

Figure 12 shows the comparison of calculated lattice
thermal conductivity of crystalline GeTe using the BTE
(circles) or GK (squares) method, compared to previous
theoretical works from Refs. [47, 56, 59]. It should be
noted that for T ≲ 650 K, GeTe is in the rhombohedral
(R3m) phase, while for T ≳ 650 K, GeTe is in the cubic
(Fm3̄m) phase. In our calculations, we used the struc-
tural parameters obtained from the NpT MD simulations
(which captures the phase transition at T ≈ 650 K). The
BTE calculations shown in Fig. 12 include three-phonon
processes using IFCs extracted with the TDEP method.
BTE thermal conductivities including three- and four-
phonon processes are shown in Fig. 7.

A similar approach was employed in Ref. [47] (light
blue curve in Fig. 12) but the reported values are signifi-
cantly different compared to our results for the rhombo-
hedral phase. The primary source of discrepancy seems
to be related to the convergence with respect to the num-
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W
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This work (GK)
Dangic et al.

Ghosh et al.
Xia et al.

FIG. 12. Lattice thermal conductivity of crystalline GeTe
(rhombohedral R3m at the left, and cubic Fm3̄m phase at the
right) as a function of temperature calculated by the Green-
Kubo (GK, squares) or the Boltzmann transport equation
(BTE, circles) methods and compared with previous theoret-
ical works of Ref. [47, 56, 59], all solving the BTE.

4.20

4.25

4.30

4.35
a 

(Å
)

Fm3mR3m

This work
Dangic et al.

300 500 700 900
Temperature (K)

57

58

59

60

 (d
eg

)

Sist et al.
Chatterji et al.
Chattopadhyay et al.

(a)

(b)

FIG. 13. Evolution of (a) the lattice parameter a and (b) the
angle α as a function of temperature in the NpT MD simu-
lations of crystalline GeTe (starting with a R3m supercell),
compared against simulations from Ref. [62] and experimen-
tal data from Ref. [35–37]. Simulated lattice parameters in
(a) were shifted by −0.1 Å.

ber of configurations used to extract second and third
order TDEP IFCs. In Ref. [47], the authors used only 24
configurations. According to our convergence test (see
Fig. 8), such a small number of configurations results
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in strongly underestimated thermal conductivity values.
Another source of discrepancy lies in the temperature
evolution of the structural parameters (see Fig. 13) which
may also lead to some differences in the computed lattice
thermal conductivities. For the cubic phase (T ≥ 700 K),
our results show a good agreement with those of Ref. [47],
presumably because less configurations are required to
achieve convergence compared to the rhombohedral sym-
metry.

In Ref. [56] (green curve in Fig. 12), the authors used
0 K IFCs and structural parameters of α-GeTe to com-

pute the BTE thermal conductivity. Therefore, their re-
sults exhibit a different temperature evolution.

Finally, in Ref. [59], temperature-dependent IFCs were
computed for the β phase of GeTe up to fourth order (i.e.
three- and four-phonon scattering processes) and BTE
was solved under the relaxation time approximation at
800 K. Their thermal conductivity value considering only
three-phonon scattering is significantly larger compared
to the one from our work or Ref. [47]. Including four-
phonon scattering reduces the thermal conductivity by
the same factor as in our work (reduction by a factor
2.23).
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