
HAL Id: cea-04505334
https://cea.hal.science/cea-04505334

Submitted on 23 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data-layout optimization based on
Memory-Access-Pattern analysis for Source-Code

Performance improvement
Riyane Sid Lakhdar, Henri-Pierre Charles, Maha Kooli

To cite this version:
Riyane Sid Lakhdar, Henri-Pierre Charles, Maha Kooli. Data-layout optimization based on Memory-
Access-Pattern analysis for Source-Code Performance improvement. SCOPES 2020 - 23rd Interna-
tional Workshop on Software and Compilers for Embedded Systems, May 2020, Sankt Goar, Germany.
�10.1145/3378678.3391874�. �cea-04505334�

https://cea.hal.science/cea-04505334
https://hal.archives-ouvertes.fr

Data-Layout Optimization based on
Memory-Access-Pattern Analysis for Source-Code

Performance Improvement
Riyane Sid Lakhdar

Univ Grenoble
Alpes, CEA, List, F-38000, France

riyane.sidlakhdar@cea.fr

Henri-Pierre Charles
Univ Grenoble

Alpes, CEA, List, F-38000, France
henri-pierre.charles@cea.fr

Maha Kooli
Univ Grenoble

Alpes, CEA, List, F-38000, France
maha.kooli@cea.fr

Abstract
With the rising impact of the memory wall, selecting the ade-
quate data-structure implementation for a given kernel has
become a performance-critical issue. This paper presents a
newmethodology to solve the data-layout decision problem
by adapting an input implementation to the host hardware-
memoryhierarchy. The proposedmethod automatically iden-
tifies, for a given input software, the most performing data-
layout implementation for each selected variable by ana-
lyzing the memory-access pattern. The proposed method is
designed to be embedded within a general-purpose compiler.
Experiments on PolybenchC benchmark, recursive-bilateral
filter and jpeg-compression kernels, show that our method
accurately determines the optimized data structure imple-
mentation. These optimized implementations allow reaching
an execution-time speed-up up to 48.9x and an L3-miss reduc-
tion up to 98.1x, on an x86 processor implementing an Intel
Xeonwith three levels of data-caches using the least recently
used cache-replacement policy.
CCSConcepts. •Theoryof computation→ Patternmatch-
ing.
Keywords. Code optimization, Source-to-source compi-
lation, Data structure, Code adaptation to the hardware,
Memory-access-pattern detection, Hardware-memory hier-
archy

ACMReference Format:
Riyane Sid Lakhdar, Henri-Pierre Charles, and Maha Kooli. 2020.
Data-LayoutOptimization based onMemory-Access-PatternAnaly-
sis for Source-Code Performance Improvement. In 23rd International
Workshop on Software andCompilers for Embedded Systems (SCOPES

Permission to make digital or hard copies of all or part of this work for
personal or classroomuse is grantedwithout fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SCOPES ’20, May 25–26, 2020, Sankt Goar, Germany
© 2020 Association for ComputingMachinery.
ACM ISBN 978-1-4503-7131-5/20/05. . . $15.00
https://doi.org/10.1145/3378678.3391874

’20), May 25–26, 2020, Sankt Goar, Germany. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3378678.3391874

1 Introduction
In a computation kernel, the total idle-time where the pro-
cessor is stalled, waiting for the end of a memory-fetch, is
usually significant compared to the total execution time. Re-
ducing the memory-fetch time by improving data and cache
locality brings thus an important gain. However, finding ef-
ficient and cache-friendly data-layout placement for a given
access-pattern [2] is a complex task, first due to the large
size of the search space. For instance, for two-dimensional
matrix of size (𝑁,𝑁), four families of implementations can
be referenced, namely the unidimensional, line, diagonal and
column-major [19]. Each one of these families has 16𝑁 2 pos-
sible tiled versions where each submatrix (tile) may belong
to each one of the previous families. Each one of these imple-
mentations has an order of 𝑁 ! shuffled versions designed to
suit accesses with various stride sizes.
In addition, the efficiency of a data-structure depends on its
access pattern [19]. But the complexity for a human program-
mer to identify the pattern followed to access a data structure
increases significantly with the loop-depth and number of
conditional-branches within a software (SW) code.

For most standard data structures, multiple optimized im-
plementations exist in the literature [19]. Proposing these
optimization techniques with regards to a specific hardware
(HW) and SW context, usually require an important engi-
neering effort. In this paper, we are using these results to
propose an optimized data-structure implementation within
an unrelated input code.
This paper introduces HARDSI, a novel method that al-

lows to automatically detect the access-pattern realized to a
givendata structurewithin an input code.Using thismemory-
pattern signature of the variable, the proposed method re-
trieves theoptimized implementation for the considereddata-
structure from a custom data-base. This data-base maps an
ideal implementation with each known pattern to access the
data structure, with respect to the host HW-memory. Our
method is designed as an optimization technique for general-
purpose compilers. It is also taught to adapt input-codes to
different present or future HW-memories. This paper also

https://doi.org/10.1145/3378678.3391874
https://doi.org/10.1145/3378678.3391874

SCOPES ’20, May 25–26, 2020, Sankt Goar, Germany R. Sid Lakhdar, et al.

introduces new Domain-Specific Language (DSL) based on
C/C++. DSL, referred-to as the HARDSI language, allows
the application of the proposed-method to C/C++ source
code. We develop it as a lightweight framework aiming to
bypass the burden of implementing our method within com-
plex C/C++ compilers such as gcc [6] or LLVM [11]. For a
given data structures 𝑑 , it consists of replacing all the C/C++
routines that implement 𝑑 : definition, allocation, access and
release, by custom-defined-primitives.

The main contributions of this paper are:
• A method for the detection and classification of pat-
terns to access different data layouts.

• A framework to apply our optimization method based
on pattern-detection for general-purpose C/C++ code.

• Anevaluationof theperformance-improvementbrought
by our method.

We experiment ourmethod on the PolybenchC-4.2.1 bench-
mark [18], recursive-bilateral filter (RBF) [26] and jpeg com-
pression (JPEG-C) [13] kernels running on an x86 Intel Xeon
processor with three levels of data-caches [4] using the least
recently used cache-replacement policy. Results show that
the proposed method achieves an execution-time speed-up
up to 48.9x and an L3 cache-miss reduction up to 98.09x. We
also show that our method converges toward an optimized
implementationwhile affected by up to 20% of noisymemory-
accesses.
The rest of this paper is organized as follows. Section 2

discusses the state of the art. Section 3 details the different
steps ofHARDSImethod. Section 5 discusses experiments on
a computation kernel. Finally, section 6 concludes the paper.

2 RelatedWork
2.1 Dynamic-Memory Access Pattern
The memory-access pattern is the smallest set of consecutive
accesses (read andwrite) to a given data structure that can be
repeated in order to represent the total accesses to the data
structure. Different existingworks have evaluated the link be-
tween amemory-access pattern and the performance regard-
ingmodernHW-memory hierarchies (at least one level of fast
memory betweenCPUandmainmemory) [2, 8, 15, 17, 19, 20].
All these approaches study manually the link of a memory-
access pattern with the optimal data structure implementa-
tion. To the best of our knowledge, no automatic approach
has been proposed.
The memory-access detection is intensively used by HW

prefetchers [24]. However, the granularity of such method
doesnotallowdetectingpatternoverahigh-leveldata-structure.
In [25], theauthorspresentamemoryaccessdetectionmethod
that builds thememory signature of an application in order
to detect malware-injection. Unlike the signatures that our
method generates, the ones generated in [25] are not fully

reproducible. Indeed, the considered framework uses non-
transformed virtual addresses. It is thus subject to the vari-
ability of virtual addresses for two similar executions of the
same kernel. This signature-variability prevents its use for
SW optimization.

2.2 The Data-Layout Decision Problem
The compiler-driven SW optimization has for long consisted
indetermininganoptimal set andorder of instructionswithin
an input source code [1, 5, 12, 16, 22]. Since the HW-memory
hierarchies are getting complex, different studies rather fo-
cused on optimizing the data-placement across different lev-
els of memory (e.g. RAM, caches or scratchpad memories)
and at different scales (e.g. scalar variables, memory blocks
or pages). Our approach for SW optimization is related to
solving theData-LayoutDecision (DLD) problem.As formost
solutions dealingwithDLDat compiler scale, we assume that
all possible loop-transformations and instruction-shuffling
optimizations are already performed.
Two families of strategies have been proposed to tackle

the DLD problem. Based on a previously observed memory-
footprint, the ideal memory-placement at compile-time stat-
ically determined [14, 15, 21]. In [14], the authors introduce
a general-purpose compiler approach that adapts the array
allocation problem to graph coloring for register-allocation.
The main issue with static approaches arises when the set
of input data, used during the optimization (compilation),
leads to a different behavior than the one at run-time. The
optimal memory placement may then be computed based
on irrelevant observations. In [17], the authors deal with this
over-fitting issue by proposing to divide the consideredmem-
ory (scratchpad) in clusters. The problem of populating each
cluster is then reformulated as an integer-linear program-
ming problem. This strategy scales well with programmable
memories (such as scratchpads). Indeed, these types of mem-
ories require the programmer to decidewhich data to fetch in
whichmemory.However, the overhead of forcing the selected
data in non-programmable fast memories (such as caches)
might significantlydowngrade theperformance. Itmight also
create a performance-pitfall due to potential concurrences
with data prefetchers.
In [2, 9], the authors propose dynamic approaches consisting
to finding, at run-time, the proper placement ofmemorywith
regard to the previous memory-accesses of the current exe-
cution. In [9], dynamic loop-transformations are proposed to
inject data-fetch instructions for scratchpadmemories. In [2],
a heuristic function is proposed to decide which data-copy
to process after each fixed number of memory accesses.

The major limitation of these existing solutions is the lack
of portability to new HW or SW platforms. Indeed, exist-
ing works focus explicitly either on a specific access type
(regular [21] or irregular [14, 23] accesses), or on a specific
HW-memory hierarchy (scratchpadmemories [2] or multi-
processor system on chips with some specific direct memory

Data-Layout Optimization SCOPES ’20, May 25–26, 2020, Sankt Goar, Germany

access [8, 10]). To the best of our knowledge, the proposed
approach in this paper is the first to port data-structure im-
plementations, optimized for a specific HW or kernel, on a
broad spectrum of applications and memory hierarchies.

3 Global Optimization Process
In this section, we introduce the proposed optimization ap-
proach that allows automatically converging toward the opti-
mal data-layout implementation for each variable in a given
code without altering the algorithm (i.e., instruction flow).
The objective of the generatedHARDSI code is to select an
optimized implementation for the used data structures that
fits the followed access pattern. In this paper, we do not al-
low changing the memory access pattern even though the
adaptation of the algorithm could bring an additional gain.
In Figure 1, we summarize the steps of our method. We

also illustrate each step of the method by referring to a case-
study of a matrix multiplication (Figure 3). The objective of
the proposed optimization process is to find the ideal imple-
mentation of each of the three matrices given the respective
memory-pattern followed to access each matrix.

Source Code

(C/C++ based DSL)

Execution Trace

𝑇𝑣[𝑖]

Memory Signature

𝑆 for each 𝑣

Optimal Implementation

of each 𝑣

(a)

(b)

Data Base of known access-pattern signatures

Code

Instrumentation

Transformation

function 𝑓

Correlation

function

Inject optimal implementation

of each variable

Data

Structure

Var.

Name
@_base

Access

Type
Size x y

MATRIX res 0x2e170 WRITE 4x4 3 3

MATRIX a 0x2e010 READ 4x4 0 0

MATRIX b 0x2e0c0 READ 4x4 0 0

MATRIX a 0x2e010 READ 4x4 0 1

MATRIX b 0x2e0c0 READ 4x4 1 0

MATRIX res 0x2e170 UPDATE 4x4 0 0

HW Memory,

Cache Policy,

Transformation Function

(c)

Access Type (signature),

Transformation Function,

Optimal Implementation

(d)

Figure 1. Steps of the proposed optimization-process.

3.1 Memory-Access Tracking
Thefirst stepof theproposedmethod is toobserve thememory-
addresses followed to access each considered variable. We
propose to run the targeted execution of the input kernel. The
memory-accesses of this execution are tracked by injecting
a custom logging-function for each memory-access (read or

write) to the considered variable. The resulting trace, pre-
sented in Figure 1.a, consists, for each variable 𝑣 , in a set of
virtual addresses𝑇𝑣 [𝑖], sorted according to their access rank 𝑖 .

3.2 Generating aMemory-Signature
Once we traced the memory-access, the second step is to
filter this trace through a transformation function 𝑓 . The ob-
jective of the transformation is to remove the randomness
introduced by the kernel’s execution. Indeed, most general-
purpose operating systems store data structures at different
virtual addresses from one execution to an other. The pro-
posed transformation functionmakes the result of this second
step (𝑇 𝑓

𝑣 [𝑖]) totally predictable (reproducible from one run
to an other assuming that the same kernel’s execution and
input is observed).
In this paper, we used x86 Intel Xeon processor with three

levels of data-caches. The corresponding transformationused
to generate all the optimized code is a 𝛿 function: 𝑇 𝛿

𝑣 [𝑖] =
𝑇𝑣 [𝑖] −𝑇𝑣 [𝑖 − 1]. We assume that 𝑇 𝛿

𝑣 [0] is undefined. This
function is a lightweight computation that encompasses the
performance-requirement of thememory hierarchy used and
its cache-replacementpolicy (least recentlyused). Itmakes the
absolute-distance between consecutively-accessed addresses
the prominent parameter for classifying data-structures and
their relative access-pattern. This parameter is known to be
highly correlated with the data-reuse in the considered data-
caches [19]. Adapting our method to different HW-memory
corresponds to finding the adequate transformation function.
This task is one of the perspectives of this study, and it is out
of the scope of this paper.
Finally, we build the memory-signature 𝑆 of 𝑣 by generat-

ing the occurrence-histogram of each set𝑇𝑣 (Figure 1.b and
Figure 2.a). We normalize each histogram by dividing by the
total number of occurrences. This makes the generated sig-
nature independent from the kernel’s execution-inputs, and
representing the absolute memory-behavior of the kernel.

3.3 Access Pattern Data Base
The relation linking a memory-signature 𝑆 with the corre-
sponding optimal implementation is a key step for the pro-
posed method. We thus built a data base as a survey of the
most efficient existing implementations of 𝑑 on the consid-
ered memory hierarchies (represented by the transformation
function) [1, 9, 13, 26]. The data base relative to each 𝑑 is in-
tegrated within theHARDSI framework. We embedded tools
to allow adding or updating data-structure implementations
corresponding to new or preexistingmemory-access patterns.

3.4 Software Optimization
Thegeneratedmemorysignature𝑆 for thevariable𝑣 ofagiven
data structure 𝑑 , identifies the specific memory-pattern fol-
lowed to access 𝑣 in the considered kernel. Thus, we use it to
classify all the known access-patterns of 𝑑 . In the data-base

SCOPES ’20, May 25–26, 2020, Sankt Goar, Germany R. Sid Lakhdar, et al.
m

a
tr

ix
 a

(a) Generated Signature (b) Data base’s closest Signature

m
a

tr
ix

 b
m

a
tr

ix
 r

es

δ values δ values

Correlation

= 0,989

Correlation

= 0,998

Correlation

= 0,415

N
o
rm

a
li

ze
d

 O
cc

u
rr

en
c
e

Figure 2. (a) Generated memory signatures of the 4x4 ma-
trices 𝑎, 𝑏 and 𝑟𝑒𝑠 of matrix multiplication test case; (b) Re-
spective closest signatures in the HARDSI data base. The
memory accesses are observed with matrix indexes (abscissa
and ordinate); transformed using the 𝛿 function; correlation
is calculated using Pearson.
schemed in the relation presented in Figure 1.c, we link each
known pattern of access to 𝑑 with a set of optimized imple-
mentations of 𝑑 . The ideal implementations are also known
to depend on the underlying HW-memory hierarchy. This
dependence is identified by the used transformation-function
and stored in the relation presented of Figure 1.d. An access
pattern to a data structure 𝑑 is thus identifier of an optimal
implementation of 𝑑 (along with the used transformation
function). Finding the optimal implementation of 𝑣 is equiv-
alent to finding the closest signature to 𝑆 in the data base
relative to 𝑑 , as shown in Figure 2. In order to compare the
generated signature 𝑆 with each signature 𝑆 ′ in the data base,
we use the Pearson coefficient [7] as a correlation function.
This coefficient is defined as

𝜌 (𝑆,𝑆 ′)= 𝑐𝑜𝑣 (𝑆,𝑆 ′)
𝜎𝑆𝜎𝑆 ′

=

1
𝑁

∑𝑁−1
𝑖=0 (𝑆 [𝑖]−E𝑆) (𝑆 ′ [𝑖]−E𝑆 ′)

𝜎𝑆𝜎𝑆 ′

where E𝑆 , 𝜎𝑆 and 𝑁 are the expectation, standard deviation
and number of elements (including some elements with a
null-occurrence) of the histogram.
The final step is to inject the optimal implementation of

each variable in the source code of the application kernel.

4 Implementation Framework of HARDSI
We implemented the proposed method within a framework
that permits to generate automatically the optimized source
code of a given kernel. We implement first the considered
kernel in theHARDSI DSL, as shown in the example in List-
ing 1. Then, we use our source-to-source compiler to generate
the corresponding optimized C/C++ code, as shown in the
example in Listing 2. The proposed compiler has first com-
puted the memory signatures of the variables as shown in

Figure 2.a. These signatures are then compared to the data
base signatures in order to select the most correlated one.
The chosen implementation for a given variable is then the
code associated within this closest signature.

void matrixMult () {

MATRIX_DEFINE(int , a);

MATRIX_DEFINE(int , b);

MATRIX_DEFINE(int , res);

int i,j,k, a0, b0;

MATRIX_ALLOCATE(int , N0,

N1,

a);

MATRIX_ALLOCATE(int , N2,

N0,

b);

MATRIX_ALLOCATE(int , N2,

N1,

res);

for (j=0; j<N1; j++)

for (i=0; i<N2; i++)

for (k=0; k<N0; k++) {

a0=MATRIX_GET(a,k,j);

b0=MATRIX_GET(b,i,k);

MATRIX_ADD(res ,i,j,a0*b0);

}

MATRIX_FREE(a,N0,N1, int);

MATRIX_FREE(b,N2,N0, int);

MATRIX_FREE(res ,N2,N1, int);

}

Listing (1)
Inputcode implementedusingour
customHARDSI DSL

void matrixMult (){

int **a;

int **b;

int **res;

int s =sizeof(int);

int sp=sizeof(int*);

int i,j,k, a0, b0;

a = (int**) malloc(N1*sp);

for (i=0; i<N1; i++)

a[i]=(int*) malloc(N0*s);

b = (int**) malloc(N2*sp);

for (i=0; i<N2; i++)

b[i]=(int*) malloc(N0*s);

res = (int**) malloc(N1*sp);

for (i=0; i<N1; i++)

res[i]=(int*) malloc(N2*s)

for (j=0; j<N1; j++)

for (i=0; i<N2; i++)

for (k=0; k<N0; k++){

a0=a[j][k];

b0=b[i][k];

res[j][i]+=a0*b0;

}

for (i=0; i<N0; i++)

free(a[i]);

free(a);

for (i=0; i<N2; i++)

free(b[i]);

free(b);

for (i=0; i<N2; i++)

free(res[i]);

free(res);

}

Listing (2) Corresponding
C/C++ code generated by our
source-to-source compiler

Figure 3.Matrix Multiplication Test Case.

5 Results and Discussion
5.1 Experimental Setup
In this paper, we used an x86 hardware architecture imple-
menting an Intel Xeon E3-1270 v4 processor with an L3 cache
(LLC) containing a total of 8MBytes made of 128 Bytes per
cache line and implementing the LRU cache-replacement
policy. A Debian (4.9.2) operating system is used based on
the Linux (3.16.0-4) kernel. The g++ (4.9.2) compiler (with the
-03 optimization option) is used to compile the considered
computation-kernels. This includes the native C/C++ code
and the one generated by ourHARDSI source-code generator.
The Perfmon2 library [3] is used to access the performance-
management unit of the processor in order to measure dif-
ferent cache misses and CPU cycles. The cpupower toolkit is
used to disable the automatic CPU-frequency scaling of our
processor.
All the presented performance results are obtained following
the same procedural method. Each considered point is as-
sessed (experimental run) 10 times, and the presented results

Data-Layout Optimization SCOPES ’20, May 25–26, 2020, Sankt Goar, Germany

are the average of these runs. Given its relatively small value
(smaller than 1% for all the experiments) no variation is pre-
sented. The performance gain thatwe show in this section are
obtained without re-ordering the instructions of the original
algorithm.Wemake sure to flush all the data-caches between
two consecutive experiments using a CFLUSH assembly in-
struction.
TheHARDSI code is transformed intonativeC/C++ (usingour
source-to-source compiler) once and assessed using different
inputs. No recompilation is made between two executions.
We use input matrices with the following sizes as a learning
input: {(4,4) (4,4)}, {(4,7) (13,4)}, {(128,128) (128,128)}. The
statistical properties of theHARDSI method spare the need
to use larger inputs during this optimization phase because
the same behavior is observed with larger inputs. The list
of matrix implementations embedded within our HARDSI
data-base is shown in Figure 4.
All the results presented in this section are obtained using
float matrices. Similar results might be observed using other
basic types of data such as integers or doubles.

Figure 4.Matrix implementations in theHARDSI data-base

5.2 Experimented Benchmark
In order to evaluate the ability of our method to select an op-
timized data-structure-implementation for different access
types, we use different benchmarks PolybenchC-4.2.1 [18]
benchmark suite. It is designed for polyhedral-compilation
evaluation, and encompasses kernels with a large specter of
matrix-access-types ranging from block up to stencil-walks.
For each one of these access-types, we select one kernel. Ad-
ditionally, in order to evaluate the interest of our method on
a combination of basic access-patterns, we use kernels im-
plementing a jpeg-compression (JPEG-C) [13] and recursive-
bilateral-filter (RBF) [26]. The list of memory-access patterns
evaluated through all these kernels are presented in Table 1.
We consider five different input-matrix sizes: 50, 100, 600,
1000, 2048. This allows representing different cases where the
data fit one of the DL1, L2 or L3 caches (i.e., fitting one cache
line or the whole cache).

5.3 Results and Discussion
The metric used in the experimental evaluation of this sec-
tion is the speed up between a baseline (native C/C++) and

Line-
maj

Column-
maj

Stencil Line-maj
block-line

Line-maj
block-diag

covariance ✓

correlation ✓

adi ✓ ✓

gesummv ✓ ✓

floyd-
warshall

✓

lu ✓ ✓ ✓

JPEG-C ✓ ✓

RBF ✓ ✓ ✓

Table 1.Memory-access pattern followed by considered ker-
nels.

the correspondingHARDSI implementation. This speed-up
is defined by the performance-ratio of the baseline to the
HARDSI implementation.
Table 2 shows that our HARDSI method is able to select

the most efficient (in terms of CPU cycles) data-structure im-
plementation for each kernel and with respect to each input
size. Indeed, the first line of the table (speed up of the imple-
mentation automatically generated by ourHARDSI method)
is always equal to the second line (speed up of the kernel
using the best known implementation of the data structure
in the considered context). The best speed up of a kernel is the
highest speed up reached while evaluating the kernel using
each known implementation of the matrix data-structure in
the data-base.

1
,0

4

1
,3

1

1
,1

0

1
,0

0

0
,9

5

0
,9

5

1
,0

0

0
,6

0

0
,9

6

1
,5

1

1
,4

0

1
,0

5

0
,6

8

1
,0

5

1 1
,2

07
,0

1

5
,6

5 1
3

,1
0

1
0

,6
0 2

0
,4

9

1
4

,6
7

1
0

,5
0

1
2

,6
5

9
8

,0
9

9
,2

4 1
4

,0
0

1
8

,7
9 2
6

,9
8

2
,2

3 1
1

,1
0

1
2

,1
02

2
,1

5 3
0

,1
7

2
1

,2
0 3
0

,1
7

1
0

,5
9

5
,5

2 1
0

,2
0

1
0

,6
0

0

20

40

60

80

100

120

covariance correlation adi gesummv floyd

warshall

lu JPEG-C RBF

L
L

C
-s

p
ee

d
 u

p

50 100 600 1000 2048

Figure 5. Performance speed up, in terms of LLC cache-
misses, between aHARDSI and baseline implementation.

In Table 2, we show that ourHARDSI method allows bring
an execution-time speed-up ranging from 1 to 48.9𝑥 . Our
method is able to keep, inworst case, the default implementa-
tion of a matrix (column-major with no stride nor sub-block)
when no implementation fits better with the realized access
pattern. This case is primarily observed on the stencil ker-
nel adi. Thanks to our method, we reache up a 2.3𝑋 speed
up using a custommatrix implementation. This implemen-
tation duplicates column-data within each line in a config-
uration that allows using single-instruction-multiple-data
operations to update each cell. To the best of our knowledge,
no optimized matrix-implementation has been proposed (for
the considered memory-hierarchy and stride-size). The com-
plexity of this case comes from the simultaneous realization

SCOPES ’20, May 25–26, 2020, Sankt Goar, Germany R. Sid Lakhdar, et al.

Matrix size 50 100 600 1000 2048 50 100 600 1000 2048 50 100 600 1000 2048 50 100 600 1000 2048
covariance correlation adi gesummv

Speed upHARDSI 1.0 1.1 3.2 8.3 12.2 1.0 1.0 3.1 7.7 12.1 1.4 1.6 1.6 1.4 2.3 1.4 1.3 7.1 12.2 12.5
Speed up Best SoA = = = = = = = = = = 1.0 1.0 1.0 1.0 1.3 = = = = =
Reference Best SoA [1] [9] [9] [1]

floyd-warshall lu JPEG-C RBF
Speed upHARDSI 3.9 5.4 28.9 48.9 29.4 1.0 1.0 1.5 4.0 6.3 1.0 3.0 7.9 10.4 12 2.1 10.9 34.5 42.5 45.9
Speed up Best SoA =
Reference Best SoA [9] [1] [13] [26]

Table 2. Performance speed up, in terms of CPU-cycles, between a HARDSI and baseline implementation. The value "="
(respectively "<") means that the highest speed up reached using a state of the art (SoA) implementation is equal (respectively
smaller) to the one observed using theHARDSI implementation.

of two antagonistic access-patterns (line and block-column
major). Thus even though one pattern fits properly the cache-
behavior, the second one does not.
For matrix-sizes smaller than the total L3 size (1000 and

2048), Table 2 shows that the observed execution-time im-
provement for all the kernels other than adi ranges from 4𝑥 up
to 48.9𝑥 . We show in Figure 5 that this time improvement is
mainly explained by the reduction of L3-cache-misses (from
2.23 up to 98.09𝑥). Thus, our method allows to properly iden-
tify the memory-access pattern to each data structure. This
proper identification allows linking each detected pattern
with an efficient implementation of the corresponding data
structure.

For matrices smaller than the size of the used L3 cache (50,
100 and 600), Figure 5 shows that a cache-miss speed-up as
small as 0.20𝑥 is observed. TheHARDSI implementation has
thus led toan increasednumberof L3 cachemisses byup to5𝑥
while an execution-time improvement is still observed (CPU
cycles speed up ≥ 1). Our interpretation is that the results
observedat theL3 level arenot relevant. For thesematrix sizes,
the L3 cache is not much solicited due to the sufficient space
in DL1 and L2 to store all the considered data. Meanwhile,
the DL1 and L2 are intensively solicited. Thus, the speed up
observed on DL1 and L2 (not represented in this paper) is
the one that explains the execution-time speed up. This also
explains the relatively modest speed-up observed for these
smallmatrices (50,100and600) compared to theoneobserved
for bigger matrices (1000 and 2048). Given that an L3-miss
latency is about 3 to 10 times bigger than a DL1 or L2 latency,
then reducing the number of DL1 or L2 misses brings less
time improvement than reducing the number of L3 misses.

6 Conclusion
In this paper, we present a novel process designed to build the
memory signature of a variable within a computation kernel.
We introduce a custom framework in order to automatically
generate the optimal implementation of a data-structure’s
variable based on its memory-signature and with respect to
the specificity of the host hardware-memory.

References
[1] Mohamed Benabderrahmane et al. 2010. The polyhedral model is

more widely applicable than you think. In CC.
[2] Doosan Cho et al. 2008. Compiler driven data layout optimization for

regular/irregular array access patterns. ACM.
[3] Stephane Eranian. 2006. Perfmon2: a flexible performance monitoring

interface for Linux. InOLS.
[4] David Friedman et al. 2004. Three-dimensional memory cache system.

US Patent 6,711,043.
[5] Matteo Frigo and StevenG Johnson. 1998. FFTW: An adaptive software

architecture for the FFT. In ICASSP.
[6] Arthur Griffith. 2002. GCC: the complete reference. McGraw-Hill.
[7] Larry L Havlicek et al. 1976. Robustness of the Pearson correlation

against violations of assumptions. Perceptual and Motor Skills (1976).
[8] Ilya Issenin et al. 2006. Multiprocessor system-on-chip data reuse

analysis for exploring customized memory hierarchies. InDAC.
[9] Mahmut Kandemir et al. 2001. Dynamic management of scratch-pad

memory space. InDAC. IEEE.
[10] Mahmut Kandemir et al. 2005. Memory systems and compiler support

for mpsoc architectures. InMpSoC. Elsevier.
[11] Chris Lattner. 2008. LLVM and Clang: Next generation compiler

technology. In The BSD conf.
[12] Rahman Lavaee et al. 2019. Codestitcher: inter-procedural basic block

layout. In CC. ACM.
[13] Alain M Leger et al. 1991. JPEG still picture compression algorithm.

Optical Engineering (1991).
[14] Lian Li et al. 2005. Memory coloring: A compiler approach for

scratchpad memory. In PACT.
[15] Samy Meftali et al. 2001. An optimal memory allocation for

application-specific multiprocessor system-on-chip. In ISSS. ACM.
[16] Charith Mendis et al. 2019. Revec: program rejuvenation through

revectorization. In CC.
[17] Abdolmajid Namaki Shoushtari. 2018. Software Assists to On-chip

Memory Hierarchy of Manycore Embedded Systems. Ph.D. Dissertation.
UC Irvine.

[18] Louis-Noël Pouchet. 2012. Polybench: The polyhedral benchmark suite.
URL: http://www. cs. ucla. edu/pouchet/software/polybench (2012).

[19] Sid Lakhdar Riyane et al. 2019. TowardModeling of Cache-Miss Ratio
for Dense-Data-Access-Based Optimization. In RSP. ACM.

[20] Manuel Serrano et al. 2019. Property caches revisited. In CC.
[21] Aviral Shrivastava et al. 2016. Automatic management of software

programmable memories in many-core architectures. IET CDT (2016).
[22] Daniele Spampinato et al. 2016. A basic linear algebra compiler for

structured matrices. In CGO.
[23] Manish Verma et al. 2003. Data partitioning for maximal scratchpad

usage. In ASPDAC. ACM.
[24] Christopher BWilkerson et al. 2019. Instruction and logic for software

hints to improve hardware prefetcher effectiveness. US Patent
10,229,060.

Data-Layout Optimization SCOPES ’20, May 25–26, 2020, Sankt Goar, Germany

[25] Zhixing Xu et al. 2017. Malware detection using machine learning
based analysis of virtual memory access patterns. InDATE.

[26] Qingxiong Yang. 2012. Recursive bilateral filtering. In ECCV.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Dynamic-Memory Access Pattern
	2.2 The Data-Layout Decision Problem

	3 Global Optimization Process
	3.1 Memory-Access Tracking
	3.2 Generating a Memory-Signature
	3.3 Access Pattern Data Base
	3.4 Software Optimization

	4 Implementation Framework of HARDSI
	5 Results and Discussion
	5.1 Experimental Setup
	5.2 Experimented Benchmark
	5.3 Results and Discussion

	6 Conclusion
	References

