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ABSTRACT

Nowadays, High-Performance Computing (HPC) systems need to
deliver computational performance by processing complex appli-
cations and workloads at high speeds in parallel. To provide com-
puting power, Multiprocessor System-on-Chip, the main design
paradigm, is scaled with advanced technology nodes and even with
heterogeneity. These improvements open up more design possibil-
ities, leading to an increase in its complexity. Therefore, chip de-
signers are facing unprecedented challenges to find the best Power,
Performance, and Area architectural configurations, inducing a
Design Space Exploration problem. This work proposes a complete
framework to ease the next generation of HPC processor designs. By
combining competitive simulators VPSim and McPAT for a realistic
estimation of Key Performance Indicators, with a time-consuming
simulation-adapted exploration algorithm such as Bayesian Opti-
mization, we leveraged an Automated Design Space Exploration
for efficient HPC processor designs based on ARMv8 architecture.
We have also demonstrated the potential of Bayesian Optimization
to reach a similar or even larger Pareto front than Genetic Algo-
rithm while being around 2x to 5x sample-efficient. Furthermore,
the diversity of the obtained Pareto-front enables deep analysis
of relevant architectural parameters that significantly impact de-
sign performances and thus, empowering architects’ knowledge
for further targeted design exploration and design choices.
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1 INTRODUCTION

The emergence of Artificial Intelligence and High-Performance
Computing (HPC) applications requires more and more comput-
ing power. Various hardware options are arising to support these
growing computing needs. From Multi-Processor System-on-Chip
(MPSoC) to heterogeneous architectures, processor designers must
face a combinatorial explosion of the design space, leading to a
major challenge of seeking efficient computing architectures.

With the sophistication of current HPC systems and proces-
sor architectures, simulation platforms are widely used to access
performance metrics (latency, power, etc.) at early design stages.
It allows running applications on virtual prototypes. Thus, the
simulation-based design flow enables designers to benchmark a
processor architecture given its architectural configuration param-
eters, such as the number of cores, cache sizes, Network-on-Chip
(NoC) placement, etc., and the target applications. Since simulations
are time-consuming, the crucial issue for designers is to intelligently
explore the design space to point out efficient configurations with
as few simulations as possible. Analytical formulations [12, 22] for
performance metrics have been proposed as a substitute for simu-
lators but remain industrial data-dependent and unreachable at a
higher stage level of design. In addition, they could not evaluate
application execution dynamically.

Consequently, with the constraint to simulate, designers com-
monly employ brute-force methods to tune architectural configu-
ration parameters and refine their search based on observations
and expert knowledge. However, this method may be unreliable in
a high-dimensional multiobjective optimization scheme, which is
a main pattern in processor design problems. As a result, Design
Space Exploration (DSE) methodologies [18] have gained a lot of
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interest in the literature for providing better exploration scalability
and design results.

This work follows the generic method of automating the DSE
from the previous work A-DECA [24] (Automated Design space
Exploration for Computing Architectures) by analyzing existing
state-of-the-art optimization algorithms and their integration into
different design flows. Our contributions are as follows:

e We built an automated DSE framework fully adapted for
designing efficient HPC ARMv8 multicore processor system-
level architectures with Power, Performance, and Area (PPA)
multiobjective optimization.

e We used HyperMapper [15], a Bayesian Optimization ex-
ploration tool with VPSim [3] simulator and McPAT [13]
modeler for a complete early system-level design approach.

e We compared Bayesian Optimization to the Genetic Algo-
rithm of A-DECA framework [24] and showed model-based
methods systematically outperform model-free methodolo-
gies in an expensive DSE problem with an extended design
parameter set.

o As aresult, A-DECA framework is enhanced with Bayesian
Optimization features inside and provides a much faster new
exploration strategy.

The paper is structured as follows. Section II discusses the state-
of-the-art in exploration algorithms and their features. Section
III introduces the proposed framework in detail, followed by the
experimental results in Section IV. Finally, Section V ends with the
conclusion and perspectives.

2 RELATED WORK

Design Space Exploration refers to two parts in the literature: a
proposal for new simulation tool to evaluate configuration perfor-
mance, and an efficient strategy to explore the design space.

In [7], the authors introduced MUSA simulator as a DSE enabler
for large HPC machine designs. However, it does not provide a
particular exploration algorithm to automate the search for optimal
designs, which is the ultimate goal of the architect. Most DSE contri-
butions just provide DSE enablers and often neglect the automated
search. To move further towards the goal of fully solving architects’
design problems, optimization algorithms from the Operational
Research and Machine Learning literature must be integrated into
the design flow to complete the process of finding optimal designs.

In Platune [6], a platform-tuning environment with cycle-accurate
simulators inside for performance-power efficient System-on-Chip
architecture design, Pareto Local Search has been used. This tech-
nique employs a local improvement heuristic to expand the search
iteratively. However, it often exhibits large intermediate Pareto
fronts as the number of objectives increases, leading to a time-
consuming neighborhood computation for the next iterations. To
reduce intermediate Pareto fronts, the authors observed that sev-
eral architectural parameters can be clustered depending on their
impacts on performance and power metrics. They built a param-
eter dependency model as a smaller Pareto front to reapply local
search on it. Nevertheless, identifying parameter interdependencies
requires a minimum amount of information about the objective
space, which is rarely available.
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Local optimality is the second limitation of the previous tech-
nique. Indeed, the exploration can be stuck in local optima. Simu-
lated Annealing has been integrated in Cwbexplorer [21] for area-
latency efficient micro-architectural design. It is a variant of Lo-
cal Search that adds a restart mechanism to escape from local op-
tima. Cwbexplorer enables micro-architectural exploration through
pragma tuning with the High-Level Synthesis (HLS) tool Cyber-
WorkBench. However, the proposed simulated annealer aggregates
area and latency metrics into a linear weighted cost function to
evaluate a design as a single objective procedure. Using a stan-
dard linear weighted aggregator leads to omitting Pareto-optimal
solutions in non-convex search space regions.

Metaheuristics provide other novel approaches based on com-
putational intelligence paradigm. For example, Particle Swarm Op-
timization has been exploited in the System Tuning Shell opti-
mization framework [16]. It involves performance and energy con-
sumption optimization for a system-level design using Wattch as
simulation model. The authors adapted the Swarm approach for
discrete design space based on the concepts of random walk the-
ory. On the other hand, an enhanced version of Platune has been
suggested with Genetic Algorithm [17]. By mapping the DSE prob-
lem into a genetic encoding formalism, the algorithm reproduces
evolutionary theory to discover relevant designs.

Despite all the methods mentioned above having been used
to build an automated DSE, we observed a significant number of
simulations is required to be efficient. It means these methods
are only suitable for cheap DSE. Fast simulations enable them to
explore more and to use their strength in numbers to empower the
search. These algorithms are identified as model-free methodologies
since they operate without any specific mathematical properties. In
contrast, Model-based methodologies uses mathematical models to
learn the relationship between design parameters and performance
metrics. By introducing probabilistic and statistical models, these
methods can progressively capture the objective space structure
during the exploration and subtly guide the search.

In [2], the authors are interested in delay-energy efficient multi-
processor design using ReSP and CACTI simulators with multime-
dia compression applications. They availed of the Markov Decision
Process framework as a decision model to define an exploration
policy through Reinforcement Learning. Value Iteration, a dynamic
programming-based algorithm, has been used in the paper to iden-
tify the optimal policy. Although there are more relevant state-of-
the-art Reinforcement Learning algorithms such as Multi-Agent
Proximal Policy Optimization [10], which has been exploited for
latency-power product efficient DRAM memory controller design
with DRAMSys simulator, the reinforcement learning process natu-
rally demands a large number of simulation samples before reaching
the optimal policy.

Instead, Bayesian Optimization delivers a sample-efficient method
to tackle expensive simulations. It combines a surrogate model that
describes the objective function’s behavior and an acquisition func-
tion that tells the next simulation to explore according to the infor-
mation captured by the surrogate from the completed simulations.
In BOOM-Explorer [1], the authors studied performance-power
efficient micro-architecture designs of the RISC-V Berkeley Out-of-
Order Machine (BOOM) through a VLSI flow. They have introduced



Design Space Exploration of HPC Systems with Random Forest-based Bayesian Optimization

Automatic configuration
candidate sampling
VT T .
(" Exploration )
Parameter
o strategy

HyperMapper
Random Forest

Benchmark

applications

RAPIDO 24, January 18, 2024, Munich, Germany

Performance statistics :
- CPU: nb. instructions, loads, stores, etc.
- Caches: hits, misses, writes, reads, etc.
- NoC : nb. packets, total distance, latency, etc.

Best architecture
i configurations
i O

Fully simulated or
analytical formulation-
supported estimations

Pareto front

Bayesian Optimization
AN J

~—_

Feedbacks to the

KPI estimations

Execution time T Power P Area A

exploration model

Figure 1: The generic methodology of automated Design Space Exploration with the use case instance.

an enhanced Bayesian Optimization algorithm with two key fea-
tures: Deep Kernel Learning Gaussian Process (DKL-GP) surrogate
model and Microarchitecture-aware Active Learning (MicroAL)
initialization. DKL-GP enables better learning of the design space
structure using the representational power of neural networks.
Then, since surrogate models need to be set up with initial designs,
sampling a representative set of designs would highly increase the
performance of surrogate-based exploration. Such approaches like
Latin Hypercube Sampling (LHS), I-optimal, and D-optimal designs
are referred to as Design of Experiments [20] (DoE) techniques.
MicroAL, in particular, used Transductive Experimental Design
with design space clustering to generate a diverse initial set.

Moreover, Bayesian Optimization offers a powerful modular
framework for exploration algorithm design. Although the stan-
dard version of Bayesian Optimization uses Gaussian Process (GP),
it would be enhanced by adapting the surrogate model to the prob-
lem specificity. In [11], Tree-structured Parzen Estimator (TPE) has
been exploited as a better surrogate model for dealing with the
high-dimensional and discrete design space of Coarse-Grained Re-
configurable Architecture (CGRA). Thus, Bayesian Optimization
is a promising global approach for automated DSE that requires
time-consuming simulations.

As a result, all the above research demonstrated the potential of
automating DSE through optimization algorithms. However, the
non-optimization specialist must keep in mind that most of the used
optimization algorithms for DSE are well-known baselines in the op-
timization community. It means that even an average-performance
optimization algorithm can significantly improve architects’ design
tasks by providing unseen solution designs that can’t be obtained
with brute-force and a priori methods. Therefore, the architects
should not undervaluate the importance of automating the DSE.
The next section details our automated DSE framework adapted to
optimize HPC processor designs.

3 AUTOMATED EXPLORATION
METHODOLOGY

Figure 1 depicts the automation methodology. Starting from the
parameter space and the set of target applications specified by the
architect, an input candidate configuration is generated and au-
tomatically evaluated by combining high-level simulation results
with or without analytical formulations. The exploration strategy
will then consider this results information to sample the next in-
teresting design efficiently. By repeating this procedure over and
over, a closed-loop process is built and represents the main idea of
how both exploration and optimization of complex designs work.
Ideally, relevant automated exploration frameworks feature multi-
processing simulations to reduce search time drastically.

3.1 Multiobjective Optimization formalism

Achieving relevant MPSoC designs to optimize different Key Per-
formance Indicators (KPI) involves minimizing several metrics si-
multaneously. Since they are negatively correlated, minimizing one
metric comes at the cost of increasing another. It leads to an es-
sential notion of optimality in multiobjective optimization that we
define below.

Pareto Optimality: let D be the design space and n > 2. Given
a n-dimensional objective function:

f(x) = (i(x), fa(x),..., fu(x)), a solution x € D is said to be
dominated by y € D in minimization (resp. maximization) problem

if:
viel[Lnll, fi(y) < fi(x) (resp. fi(y) = fi(x));
Jjelltnll, fiy) <fix) (resp. fi(y) > fj(x)).
A solution x is Pareto-optimal if no other solution dominates it.

The corresponding image set of Pareto-optimal solutions is called
the Pareto front.
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In single-objective optimization, the optimality is trivially de-
duced from the total order of real numbers. On the contrary, multi-
objective optimization aims to reveal all possible Pareto-optimal
solutions that correspond to different objective trade-offs.

In particular, we want to simultaneously minimize here: the
energy consumption E, the execution time T and the area A. This
rely on tuning set of architectural parameters x € D given a target
application I':

min E(x, I, T(x, T), Ax) ()

The design space D is defined by the architect according to his
reflection about sensitive parameters that need to be explored. As
analytical formulations are not directly exploited here, we leverage
a fully simulation-based design flow to compute each objective
value accurately.

3.2 VPSim simulator and McPAT modeler

The choice of simulators is important in DSE problems. Indeed, the
simulation speed and accuracy directly impact the ability to effi-
ciently perform large exploration. However, both these criteria are
antagonists, and the architects must trade-off by choosing selective
simulators for their design tasks.

Recently, the HPC industry focused on ARM-based chips [19]
as a new opportunity to archive large exascale systems with high
computing efficiency while maintaining low power. This turnover
pushes the emergence of HPC-dedicated simulators based on ARMv8
architecture. For instance, in the previous work A-DECA [24], VP-
Sim [3] ARM cores customizable simulator and CACTI modeler
have been combined for PPA evaluation of HPC processor designs.
However, since CACTI only computes power and area for caches,
the authors build analytical formulations for the area and power
of an entire processor with rough formulations. Therefore, we pro-
pose here to improve A-DECA’s simulation flow, using VPSim with
MCcPAT [13] modeler for more accurate evaluations.

VPSim [3] is a virtual prototyping tool dedicated to Hardware-
Software co-design for system-level architectures. It enables archi-
tectural simulations of different CPU models (RISC-V, ARM, etc.)
with a good trade-off between simulation speed and accuracy. VP-
Sim runs applications on simulated architectures to estimate the
execution time and various hardware performance statistics [23]
(cache accesses, misses, writes, NoC counters, etc.).

MCcPAT [13] is an integrated Power, Area, and Timing Modeling
framework for many-core architectures. Built on the top of CACTI,
MCcPAT follows the same analytical approach in the latter to provide
power and area metrics for a complete MPSoC. It exploits common
physics formulas, existing data, and future projections on processor
designs to stand out as a parameterizable numerical model with
curve fitting.

The computation of PPA estimations follows these steps:

(1) The architectural configuration candidate is set by instan-
tiating its system-level parameters, such as the number of
cores, cache sizes, NoC setting, etc., in VPSim.

(2) VPSim simulates the configuration candidate through an
interactive system platform. On this platform, a benchmark
is conducted by automatically running the target application.
VPSim gives, in return, the execution time of the application,
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including performance statistics such as read accesses, writes,
misses, etc. From this step, we get our first objective value T.

(3) The McPAT entries are fed with the system-level parameters
from step 1 and the statistics results from step 2. McPAT then
quickly returns the area A, dynamic, and leakage powers. The
Energy consumption E corresponds to the sum of powers
times the execution time of the application. Thus, the three
objective values E, T, A are finally obtained for the candidate
configuration.

3.3 Exploration strategy: HyperMapper’s search
engine

In A-DECA [24], the exploration is based on a genetic algorithm.
Although genetic algorithms have been proven to be as efficient
as reinforcement learning algorithms, which have made incredible
advances in recent years, it often requires a tremendous number of
simulations to converge towards efficient design solutions. That’s
led us to focus on Bayesian Optimization as the most appropriate
sample-efficient exploration strategy.

Algorithm 1 HyperMapper’s Bayesian Optimization

Input: D design space, X initial designs set, N simulation budget,
R generic random forest, aq acquisition function
1: Simulate Vx € X and get their PPAy estimations;
2: Update the Pareto front P;
3: Initialize R, Rp, R4 for each objective by fitting (training)
with all couples (x, PPAy);
4 while n < N do
5. Xpew ¢ argmax, aq (aggregation (R, Rp, Ra));
6:  if xpew is a valid design then
7 Simulate xpew and n «— n+1;
8 Update the Pareto front P;
9 Fit R, Rp, R4 with (xpew, PPAxnew);
10:  else
11: Fit R1, Rp, R4 with xpe,,y as invalid;
12: return P with Pareto-optimal solutions Xp

HyperMapper [15] is a Bayesian Optimization-based open-source
library that was specially designed to tackle DSE problems from
the computer systems community. Unlike the standard version of
Bayesian Optimization, HyperMapper can handle multiobjective
optimization with categorical/ordinal variables and design con-
straints. Its pseudo-code is presented in Algorithm 1. The core idea
behind Bayesian Optimization is to map the objective space with
already simulated solutions using a specific interpolation function.
The latter then provides objective estimation values coupled with
uncertainty quantification for unexplored designs.

HyperMapper leverages Random Forest for each objective as a
non-linear regressor surrogate to deal with discrete parameters of
computer designs. Random Forests use a set of decision trees to
output a mean prediction for objective function and its variance
value through bootstrap aggregating. Furthermore, the algorithm
takes advantage of random forests to predict invalid design candi-
dates. It ensures that only valid design simulations are progressively
focused on without enumerating the design space explicitly.
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An acquisition function is then used to mathematically define
the next design to be explored. Depending on how it is formulated,
it characterizes the exploration and exploitation trade-off. Popular
acquisition functions [8] involve Expected Improvement, Proba-
bility of Improvement, and Upper Confidence Bound. The next
design to explore is the one that maximizes it. Since the acquisi-
tion function computation is instantaneous, HyperMapper exploits
model-free methods to find the maximum. Thus, the strength of
Bayesian Optimization lies in transforming an expensive DSE into
a cheap prediction problem where simulations are used as an oracle
to verify the prediction model.

To extend towards a multiobjective version, the most common
approach consists of weighted aggregation. HyperMapper, in par-
ticular, uses Augmented Tchebycheff Norm [9] to cover non-convex
search space regions for its exploration.

By interfacing HyperMapper with its particular features in our
simulation-based design flow, we are able to automatically exhibit
Pareto-optimal designs.

4 IMPLEMENTATION AND EXPERIMENTS

The studied architecture in this work focus on ARM Neoverse V1
Reference Design. The processor element contains high-performance
ARMV8.4-A cores. It includes various architectural improvements
compared to previous ARM architectures with customization pos-
sibilities for meeting system performance and area chip require-
ments. In particular, the cores include two-level private caches with
a shared last-level cache from a NoC clusterization.

We focus our experiments on parameters related to the memory
hierarchy since it is crucial in the HPC systems. The full design
space D explored here is given in Table 1 modulo design constraints.
As benchmark applications, we choose: STREAM, DGEMM, and
WalLBerla that are commonly used in this field.

Table 1: The explored design space parameters.

Architectural parameters Candidate values

Number of cores 1,2,4,8, 16, 32, 64
Number of cores per cluster 1,2,4,8
RAM size (GB) 2,4,8
L1 Data/Instruction cache size (KB) 8, 16, 32, 64
L2 cache size (KB) 128, 256, 512, 1024
LLC* size (KB) 512, 1024, 2048
L1/L2/LLC line size (B) 16, 32, 64, 128, 256

L1/L2/LLC associativity 1,2,4,8
NoC X/Y dimension 1,2,4,8, 16
Number of memory channels 1,2,4,8, 16, 32

*Last Level Cache (L3)

STREAM [14] is designed to measure the memory bandwidth and
latency of computer systems. It consists of four simple vectorized
kernels used to evaluate the performance of memory-intensive op-
erations on a given architecture. Thus in HPC, it helps to assess the
memory subsystem’s efficiency and identify potential bottlenecks
in data transfer rates and memory access patterns.

DGEMM [4] is a fundamental linear algebra operation that com-
putes the product of two double-precision matrices, which involves
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a large number of floating-point operations. Optimizing DGEMM
execution is crucial for enhancing the performance of many HPC
applications that rely on linear algebra computations.

WaLBerla [5] is an open-source software framework designed for
the efficient simulation of fluid dynamics and multi-physics prob-
lems on HPC architecture. It is specifically tailored for large-scale
simulations that require the utilization of multiple compute nodes
in parallel and therefore, well suited for the design of massively-
parallel supercomputers. With these three benchmark applications,
we are able to investigate the performance of the architecture in
each aspect of its diverse possible configurations for HPC.

In our experiment, we set HyperMapper with expected improve-
ment acquisition function, 20 initial valid designs from Latin Hy-
percube Sampling (LHS), and 80 optimization iterations for a total
of 100 valid simulations. We spent 9, 49, 174 hours for STREAM,
DGEMM, and WaLBerla to run our automated design flow, including
simulations and HyperMapper’s algorithm. The simulation time
of a single application run for STREAM, DGEMM, and WaLBerla
ranges from 2 to 15 min, 20 to 50 min and 10 to 200 min respectively.
Table 2 gives the Pareto-optimal configuration designs for the three
applications.

First, the obtained configurations show a diversity of the Pareto-
optimal solutions. With a range from 2 to 64 cores, the designers
can choose an optimal configuration according to their metric con-
siderations and design constraints. For instance, the interested de-
signer can select the configuration (6) as the best execution time
for STREAM or could prefer the configuration (7) for around x2
less area at the cost of increasing 30% of execution time. Comparing
optimal solutions also enables architects to analyze the parameters
that have a real impact or inertia on the design performances. For
instance, designs (5) and (6) have the same configuration except
for a difference in RAM and L1 D/I sizes for similar objectives val-
ues. It means that STREAM is not RAM and L1 D/I sizes dependent.
The results for WaLBerla even reinforce this interest. 6 out of 7
optimal configurations have 8 cores, and 4 are nearly identical,
with only the number of memory channels differing. Increasing
the number of memory channels gives a shorter execution time
but with larger energy consumption and area. Despite this obser-
vation being obvious since more memory channels enable better
parallelization for CPU-RAM communication, it confirms that the
automated exploration flow is operational and provides valid solu-
tions. Moreover, it is less apparent that with a decrease in execution
time, the energy consumption still grows proportionally, whereas
both are correlated. The gain on the execution time compared to the
cost of power may not be worth it. In contrast, a higher execution
time doesn’t necessarily mean increased energy consumption. The
configurations (19) and (22) exactly represent it. With an area of
73.98 mm?, 60.22 mm? for the designs (19) and (22) respectively,
the light weight of the configuration (22) carries out the gain on
energy consumption. The interaction between the objectives is thus
very difficult to apprehend, and the automated design flow helps to
get insight into it.

Secondly, the leveraged exploration algorithm is another point
to consider. Figure 3a, which shows the Pareto front for STREAM,
presents an interesting pattern of the exploration process. The ar-
rangement of the grey dots on around 600 mm? of area level implies
that HyperMapper is able to consistently improve one performance
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Table 2: The Pareto-optimal solutions automatically generated among explored designs.

STREAM DGEMM WaLBerla
Config. | () [ @ [ G [ @ 6) [ © @ | ©® ] © 6] 0D ]2 |3 ]G] 15| e ] a7 ] a8 [ 1) | @) ] e ] @)
Cores 8 2 16 16 8 8 32 2 32 16 16 32 32 64 64 8 8 8 8 8 8 4
Cores/cluster 1 1 8 2 8 8 8 1 4 4 4 4 4 8 8 2 1 8 8 8 8 1
RAM (GB) 4 8 8 4 4 2 8 4 2 4 4 8 2 2 4 8 4 2 2 2 2 2
L1 D/1(kB) 64 8 64 8 8 32 8 32 16 64 64 8 8 32 64 64 32 64 64 64 64 16
L2 (kB) 256 | 512 | 128 | 1024 | 128 | 128 | 256 128 | 512 | 256 | 256 | 256 | 128 | 128 | 128 | 128 | 512 | 128 | 128 | 128 | 128 | 512
L3 (kB) 1024 | 1024 | 2048 | 2048 | 512 | 512 | 1024 | 512 | 2048 | 512 | 512 | 512 | 512 | 2048 | 2048 | 1024 | 512 | 1024 | 1024 | 1024 | 1024 | 2048
Line sizes (B) | 32 16 64 128 | 128 | 128 | 256 128 | 128 32 32 16 16 32 32 128 64 256 | 256 | 256 | 256 | 256
L1/L2/L3 asso.| 1,1,1 | 2,44 |8,2,8|4,28|1,8,4|184|24,1|1,1,8|1,8,1|838,2|4,8,2|1,1,8|1,1,8|8,8,1|38,8,1]2,88|4,84|2241/2241/224]/224]|24,2
NoC XxY 8x1 | 1x2 | 2x1 | 1x8 | 1x1 | 1x1 | 1x4 | 2x1 | 8x1 | 2x2 | 2x2 | 4x2 | 4x2 | 1x8 | 1x8 | 2x2 | 8x1 | 1x1 | 1x1 | 1x1 | 1x1 | 2x2
Channels 2 4 1 4 32 32 4 8 8 16 16 2 4 4 4 2 2 4 2 8 16 2
Time (s) 0.188]0.726 | 0.149 | 0.082 | 0.063 | 0.060 | 0.079 || 3.678 | 0.710 | 1.280 | 1.289 | 1.912 | 2.006 | 0.995 | 0.982 || 17.86 | 22.48 | 0.549 | 0.629 | 0.510 | 0.490 | 0.652
Energy (J) |0.867|4.276|0.877|0.525 | 2.741 | 2.845 | 1.690 | 38.13 | 7.248 | 3.689 | 3.692 | 4.639 | 4.358 | 4.938 | 5.200 | 904.9 | 564.2 | 12.40 | 13.38 | 12.66 | 14.74 | 12.07
Area (mmz) 26.81|9.513|37.62|116.4|586.7 | 588.0 | 299.0 | 19.48 | 153.1 [ 99.39 | 99.03 | 49.49 | 40.07 | 105.2 | 110.6 || 35.60 | 28.58 | 75.29 | 73.98 | 83.74 | 146.5 | 60.22
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Figure 2: Exploration results for 100 iterations and HyperMapper’s algorithm convergence.
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Figure 3: Exploration results for STREAM application.

metric without any other metric trade-off. This can’t be done with-
out an optimization algorithm. Compared to A-DECA’s genetic al-
gorithm results for the population size of 50 with 10 generations, we
achieved around 3x larger Pareto-front for 5X less simulations and
with bigger design space. Besides, based on analytical formulations
and CACTI, A-DECA’s model does not account for leakage power,
which is known to be an increasing proportion of total power as the
technology node progresses. Aside from different energy and area
computations between CACTI and McPAT, our configurations (5)

and (6) have similar execution times performance in comparison
to the solutions among the best ones from A-DECA’s exploration
algorithm.

As a result, Bayesian Optimization as a model-based technique
outperforms genetic algorithms. The surrogate model can fully
capture the information of each simulation through active learn-
ing and, therefore, surpasses model-free methods when it’s about
minimizing the number of simulations for the same Pareto-front
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performance. The DoE also plays a major part in obtaining Pareto-
optimal solutions and disparate information about the design space.
In Figures 2a and 3a, 2 to 4 Pareto-optimal solutions are from the
initial LHS showing that DoE is certainly as important as explo-
ration iterations. Optimizing both DoE and exploration algorithm
is key to reaching neat designs.

To push further the analysis, we plotted the Pareto front and the
maximal relative Euclidean distance between the current iteration
objective values and the Pareto front (0.0 distance means it is a
Pareto-optimal solution) in Figures 3b and 3c for 800 optimization
iterations. We notice, this time, a better space coverage of explored
solutions spread in different areas of the objective space. Again,
compared to 100 individual population with 20 generations of A-
DECA’s exploration results, we obtained a similar Pareto-front for
around 2X less simulations. In addition, the capability of HyperMap-
per to consistently exhibits new Pareto-optimal solutions during
the exploration process is illustrated in figure 3c. We observe that
even at the end of the exploration algorithm, between the 600th and
800th iteration, Pareto-optimal solutions can still be found, mean-
ing that designers can even obtain more Pareto-optimal designs at
the cost of a higher simulation budget.

5 CONCLUSION AND FUTURE WORKS

Design Space Exploration techniques are fundamental to striking
relevant system designs in the early stages. This work used VPSim
and McPAT as PPA estimation simulators coupled with HyperMap-
per, a Bayesian Optimization tool for sample-efficient automated
design framework to specifically target HPC ARM cores-based pro-
cessor designs.

We benchmarked several well-known HPC applications (STREAM,
DGEMM, WaLBerla) for large MPSoC design space and achieved
diverse Pareto-optimal system-level architectures with only a hun-
dred simulations, enabling large design choices and deep analysis
of impactful parameters.

Moreover, we confirmed the efficiency of Bayesian Optimization
by comparing it with the Genetic Algorithm of the previous frame-
work A-DECA and highlighted the conclusion that model-based
outperforms model-free techniques in expensive DSE. Bayesian Op-
timization is finally added in A-DECA framework for an enhanced
version of it.

In the future, we plan to extend our work to a larger design
space and use the results of this work as a baseline. To push further,
we will propose our end-to-end optimized exploration algorithm
based on features from Machine Learning and Operational Research
techniques.
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