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Abstract

We construct an implicit first-order Lagrangian scheme to approximate inviscid compressible gas
dynamics in dimension d ∈ {1, 2, 3}. Our main theoretical result is that this finite volume scheme
is unconditionally stable with regard to the time step, which means that solutions provided by the
scheme ensure positivity of density and growth of physical entropy for all ∆t > 0. We detail the
issues related to the displacement of the mesh in dimension d ∈ {1, 2, 3}. Finally we illustrate the
theoretical results with basic tests.

1 Introduction

Our viewpoint is that the rigorous development of implicit solvers for hyperbolic systems of conservation
laws could be highly beneficial for applications when the CFL condition is stringent as in our last mock
ICF (Inertial Confinement Fusion) calculation. In this direction, the notion of a Riemann solver which is
by essence an explicit method [22, 25] is of little help. Instead, elaborating on our first work in 1D [20], we
propose an implicit first-order Lagrangian scheme to approximate inviscid compressible gas dynamics in
dimension d ∈ {1, 2, 3}. Our main theoretical result is that this finite volume scheme is unconditionally
stable with regard to the time step, which means that for all time step ∆t > 0 the solution of the
nonlinear scheme always exists under natural physical conditions and that it satisfies positivity of density
and growth of physical entropy. This is an extension to higher dimensions of our previous work [20] in
dimension d = 1. Following the ideas of Chalons-Coquel-Marmignon [7], we use an isentropic predictor
and a conservative corrector. We treat the geometric difficulties arising in dimensions 2 and 3. Building
on our experience of writing the 1D scheme [20], a key ingredient consists in recasting a multidimensional
Lagrangian scheme as a convex problem plus a skew-symmetric perturbation. Hereafter we propose a
solution to treat the new difficulties that come from high dimension and we illustrate the fact that the
series of iterative solves of the linear systems made of a coercive part plus a non trivial skew-symmetric
part can be realized with standard libraries (PETSc [2] in our case).

An Eulerian scheme is easily derived by implementing an explicit ALE step after the implicit La-
grangian phase discussed in this work. Since an explicit ALE step is just a linear algorithm, it does not
poses fundamental issues even if it can be very technical. One would obtain a scheme which is implicit
with respect to the sound speed c and explicit with respect to the fluid velocity u. The development
of such an ALE method poses only minor technical issues, so we do not discuss them and focus on the
main mathematical issues related to the Lagrangian phase.

The non-viscous multidimensional Euler system of compressible fluids endowed with an entropy in-
equality is 

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) +∇p = 0,

∂t(ρE) +∇ · (ρuE + pu) = 0,

∂t(ρS) +∇ · (ρSu) ≥ 0.

(1)
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Here ρ > 0 denotes the density of the fluid, u its velocity and E is the specific total energy. The
pressure p is given as a function of the local thermodynamic state and can be expressed as a function
of ρ and e = E − 1

2 〈u,u〉, the specific internal energy. S is the physical specific entropy which satisfies
the Gibbs relation TdS = de + pdτ , where T is the temperature. For the sake of simplicity, in the
paper we only consider perfect gas laws that is p(ρ, e) = (γ − 1)ρe with γ > 1. Extensions to more
general complete equations of state are nearly straight-forward as soon as they are provided such that
∀S ∈ R, pS : τ → p(τ, S) is a strictly convex function and ∂p

∂τ

∣∣∣
S
< 0.

For our purposes it will be enough to consider the semi-Lagrangian formulation where τ = 1
ρ > 0 is

the specific volume and Dt = ∂t + u · ∇ is the Lagrangian or material derivative
ρDtτ −∇u = 0,

ρDtu +∇p = 0,

ρDtE +∇ · (pu) = 0,

ρDtS ≥ 0.

(2)

An advantage of implicit schemes is that they are generally not subject to CFL-like conditions with regard
to stability. However, they require the resolution of a nonlinear system. So the main mathematical issue
is to understand under what conditions this nonlinear system admits a solution, and if the solution is
unique. The second issue is of algorithmic nature. Indeed, even if the nonlinear system has a unique
solution (something which is not guaranteed at all in the general case), it is necessary to develop an
algorithm to solve and calculate this solution on a computer in a reliable manner. This is a topic
which has been addressed many times in the literature. In this work, we will say the nonlinear system
is well posed if there exists a unique solution of the nonlinear system for all time step ∆t > 0. The
construction of implicit and semi-implicit schemes for the Euler equations has always been considered as
an important topic in the literature because it is a natural way to address low Mach flows [16, 4, 23]. A
finite difference algorithm is proposed in [3], or implicit upwind methods are experimented in [26, 21].
A large number of references define predictor-corrector-like methods (see for instance [15] or [28]). In
more recent works, implicit schemes are developed after relaxation as in [1] or [24]. In the context of our
study, an important reference is [12], where an implicit Lagrangian scheme is examined for non-viscous
compressible gas dynamics in 1D, but only by means of numerical experiments and without further
theoretical foundation. Indeed, major technical difficulties appear for the resolution of fully implicit
nonlinear schemes. At a theoretical level, it is difficult to prove existence and uniqueness of a solution
for such schemes. Some strategies arise, among them the topological degree [13], or the use of the
symmetrical structure of the linear part of the system as in [5].

Our contribution to implicit Lagrangian schemes in dimension d ≥ 2 is based on a generalization
of our recent work [20] restricted to dimension d = 1. We shall see that after algebraic manipulations,
the proposed multidimensional extension of the scheme enters the theoretical framework that we already
developed. More precisely: the scheme is well defined whichever the dimension is. Moreover it is
unconditionally stable with regard to the time step. Indeed, providing at time tn a physical state (for
each cell j, τnj > 0 and pnj > 0), then the scheme computes a unique solution that satisfies τn+1

j > 0 and
pn+1
j > 0 whatever the time step tn+1− tn > 0 is. Additionally, the scheme is entropy stable in the sense

that ∀j, S(τn+1
j , en+1

j ) ≥ S(τnj , e
n
j ).

We also discuss an important theoretical issue which is linked to the fact there are two natural ways
to compute the volume Vj of a cell j. Firstly by stating that it is a function of the positions of the
vertices r that define the cell

Vj(t) = Vj ((xr(t))r) . (3)

Secondly by integrating the continuity equation (first equation of (2)), which gives for a finite volume
like method, the volume variation in time

V ′j (t) =

∫
∂j(t)

u(t) · n(t). (4)

In dimension d = 1, both methods provide the same result so there is no issue. In dimension d > 1,
both approaches give the same value for the continuous in time scheme and they also give almost the
same value for explicit schemes for which the time step is restricted by the CFL stability condition.
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However this is no more true for implicit schemes in general dimension with a large time step. This
volume difference may yield instability of the scheme when data is recomputed according to the new
volume given by (3). Our contribution to the solution of this issue in dimensions 2 ≤ d ≤ 3 will be a
specific algorithm to restore the equality of the volumes computed by (3) and (4). This will be obtained
by using a special way of approximating the boundary integral in (4).

The organization of this work is as follows. In Section 2, we recall the main 1D results. We discretize
the 1D isentropic Euler equations and explain how to write the scheme under the form (10). Section 2
also gives the ingredients of the proof of existence and uniqueness of a solution to the implicit scheme
whose complete version can be found in [20]. In Section 3, we discretize (2) in semi-Lagrangian setting
by using common notations issued from [9, 17] combined with the isentropic prediction [7]. We show
that the isentropic implicit semi-Lagrangian scheme is endowed with the mathematical structure (10).
Therefore it is a well posed system and it ensures that the isentropic implicit semi-Lagrangian scheme
is also well posed. Section 3.3 is dedicated to a precise description of the volume difference issue that is
introduced above. We explain how it can be cured, defining a practicable scheme that is unconditionally
stable with regard to the time step. In Section 5 we explain how this implicit scheme naturally couples
with the explicit one. This is an important feature since it provides a lot of flexibility and is of practical
interest. Some numerical tests are presented in Section 6. We provide additional technical material on
how we implement the numerical method.

Remark 1 (Boundary conditions). We deliberately omit boundary conditions to keep the discussion as
simple as possible and to focus on the main ingredients of the method. Actually, the treatment of boundary
conditions may be a bit technical to implement but presents no specific difficulty. Classically with regard
to Lagrangian methods, it consists more or less in imposing directly the values of the numerical fluxes
or to deal with ghost cells when imposing symmetries or sliding to a straight wall (see [6]). Implicit
boundary conditions treatment for these implicit schemes have been described and analyzed in [19].

2 Structure of the 1D scheme

Before writing the multidimensional implicit discretization of (2) in the next Section, we remind the main
mathematical observation which is to rewrite the implicit scheme (6)-(7) as a minimization problem plus
a skew symmetric perturbation (10).

Starting from the 1D isentropic Euler equations
ρDtτ − ∂xu = 0,

ρDtu+ ∂xp = 0,

ρDtS = 0,

(5)

consider a mesh M composed of N cells noted j ∈ {1, . . . , N}. The collection of cells is denoted J 3 j
and the mass of cell j is Mj . Let us also introduce the notation R which designates the set of all vertices
or nodes of the mesh. For a cell j ∈ J , we define the set of its nodes by Rj = {j − 1

2 , j + 1
2}. We write

a predictor-corrector scheme followed by the mesh motion, so the algorithm is fundamentally made of 3
steps.

i) The implicit prediction step reads

∀j ∈ J ,


τj = τnj +

∆t

Mj
(uj+ 1

2
− uj− 1

2
),

uj = unj −
∆t

Mj
(pj+ 1

2
− pj− 1

2
),

Sj = Snj ,

(6)

where the implicit fluxes pj+ 1
2
and uj+ 1

2
satisfy

∀j + 1
2 ∈ R,


pj+ 1

2
=
αj+ 1

2

2
(uj − uj+1) +

1

2
(pj + pj+1),

uj+ 1
2

=
1

2αj+ 1
2

(pj − pj+1) +
1

2
(uj + uj+1),

(7)
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and where αj+ 1
2

:= 1
2 (ρjcj + ρj+1cj+1) > 0. For simplicity of 1D notations, the definition of the

fluxes corresponds here to the one state solver because the impedance at interface xn
j+ 1

2

is shared
by the two neighboring cells j and j + 1. In practice one prefers to use two different values of the
impedance (that is ρjcj and ρj+1cj+1) in a more elaborate flux (thus denoted as a two states solver
in [11]). A generic flux which incorporates such more elaborated use of acoustic impedance will be
proposed in the multidimensional Section below.

ii) The explicit correction step is then obtained, after injection of the fluxes computed in the pre-
diction step

∀j ∈ J ,



τn+1
j = τnj +

∆t

Mj
(uj+ 1

2
− uj− 1

2
),

un+1
j = unj −

∆t

Mj
(pj+ 1

2
− pj− 1

2
),

En+1
j = Enj −

∆t

Mj
(pj+ 1

2
uj+ 1

2
− pj− 1

2
uj− 1

2
).

(8)

iii) For mesh motion, the new node coordinates are given by

∀j + 1
2 ∈ R, xn+1

j+ 1
2

= xnj+ 1
2

+ ∆t uj+ 1
2
. (9)

The system (6)–(7) is a discretization of (5) which is considered as a prediction. One also notes that the
correction step consists simply in restoring the conservation of total energy (τn+1 = τ and un+1 = u are
unchanged from the prediction step).

The analysis of the entire loop (6-7-8-9) follows the structure of the method, that is we analyze the
predictor step, then the corrector step, and finally the mesh motion.

2.1 The prediction step (6)–(7)
In [20], we have developed a general mathematical tool to show that the prediction scheme (6)–(7) is
well posed. It relies on rewriting a given implicit nonlinear system under the form

∇J(U) = AU, (10)

where U is the vector of unknowns, J is a strictly convex function which encodes both the physics of
the problem and the numerical viscosity of the scheme, and finally A is a given skew-symmetric matrix
which encodes the operator ∂x in dimension one.

To fix ideas, in the case of the 1D implicit scheme (6)–(7), one has

U =

(
(−pj)j∈J
(uj)j∈J

)
. (11)

The mathematical structure of (10) is the one of a minimization problem with a skew-symmetric per-
turbation. The proof that (10) is well posed is in [20]. It says that there always exists a unique solution
under minor conditions which are fulfilled in our case. We provide the main steps of the next Proposition
as an introduction for the multidimensional extension.

Proposition 1 ([20]). The prediction step (6)–(7), or isentropic scheme, can be written under the
form (10).

Proof. As the entropy S is constant in (6)–(7), we omit its equation in the calculations. We replace the
fluxes in (6) with their explicit formula (7). For all j ∈ J one has

τj = τnj +
∆t

Mj

[
1

2αj+ 1
2

(pj − pj+1) +
1

2
(uj − uj+1)− 1

2αj− 1
2

(pj−1 − pj)−
1

2
(uj−1 + uj)

]
,

uj = unj −
∆t

Mj

[
αj+ 1

2

2
(uj − uj+1) +

1

2
(pj + pj+1)−

αj− 1
2

2
(uj−1 − uj)−

1

2
(pj−1 − pj)

]
.

(12)

4



Since during the prediction step the entropy is constant, the variable τ can be expressed in terms of
the pressure1 only, namely τj = τ(−pj). For the first line, we place on the left hand side the pressure
depending terms and on the right hand side the ones depending on the velocity. We do the opposite for
the second line.

τj − τnj +
∆t

Mj

[
1

2αj+ 1
2

(pj − pj+1)− 1

2αj− 1
2

(pj−1 − pj)

]
=

∆t

Mj

(
1

2
(uj + uj+1)− 1

2
(uj−1 + uj)

)
,

uj − unj −
∆t

Mj

[
αj+ 1

2

2
(uj − uj+1)−

αj− 1
2

2
(uj−1 − uj)

]
= −∆t

Mj

(
1

2
(pj + pj+1)− 1

2
(pj−1 − pj)

)
.

(13)
We rearrange the terms and simplify the expressions to get

Mj

∆t
(τj − τnj ) +

1

2αj+ 1
2

(pj − pj+1) +
1

2αj− 1
2

(pj − pj−1) = −1

2
uj−1 +

1

2
uj+1,

Mj

∆t
(uj − unj ) +

αj+ 1
2

2
(uj − uj+1) +

αj− 1
2

2
(uj − uj−1) =

1

2
pj−1 −

1

2
pj+1.

(14)

We define from there the objects of the formulation (10). The vector of unknowns in (10) is given
by (11). In the case of a perfect gas law2, the convex functional is J : D → R, where D =]−∞, 0[N×RN
and

J(U) =

N∑
j=1

Mj

∆t

[
L1
j (−p) + L2

j (u)
]

+
∑

j+ 1
2∈R

[
Q1
j+ 1

2
((−pj)j∈J ) +Q2

j+ 1
2
((uj)j∈J )

]
. (15)

The elementary function L1
j depends on the equation of state of the fluid. In the case of perfect gases,

one has for all j ∈ J

L1
j : R− → R, L1

j (−p) = −p1− 1
γ γ(γ − 1)

1
γ−1 exp

(
S

Cv

) 1
γ

+ τnj p, (16)

with Cv the thermal capacity at constant volume. For all j ∈ J

L2
j : R→ R, L2

j (u) =
u2

2
− uunj . (17)

The functions Q1
j+ 1

2

and Q2
j+ 1

2

depend on the choice of the scheme via the definition of the fluxes. For
all j ∈ J ,

Q1
j+ 1

2
((−pj)j∈J ) =

1

2αj+ 1
2

(pj − pj+1)
2

2
, (18)

and

Q2
j+ 1

2
((uj)j∈J ) =

αj+ 1
2

2

(uj − uj+1)
2

2
. (19)

The skew-symmetric matrix is A ∈M2N (R). With periodic boundary conditions, it is of the form

A =
1

2

[
0 B
−BT 0

]
with B =



0 1 0 · · · 0 −1
−1 0 1 0 · · · 0

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
0 · · · 0 −1 0 1
1 0 · · · 0 −1 0


∈MN (R). (20)

1During the prediction step pj(t) = p(τj(t), Sn
j ) = pSnj (τj(t)), thus as soon as pSnj is a strictly decreasing function of τ ,

one can write τj = τ(−pj). This is the case for many equations of state, and obviously for perfect gases.
2For other equations of states, the domain of definition D of J itself is likely to change.
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Theorem 1 ([20]). Consider the problem (10) where U , J and A are respectively defined by (11), (15)
and (20). Assume that Un ∈ D. Then (10) has a unique solution U ∈ D = ]−∞, 0[

N × RN .

Proof. The proof of uniqueness relies on elementary considerations. Assume that (10) admits a solution.
Let U1 ∈ D and U2 ∈ D be two solutions of the problem (10), namely{

∇J(U1) = AU1,

∇J(U2) = AU2.

One has
〈∇J(U1)−∇J(U2), U1 − U2〉 = 〈A(U1 − U2), U1 − U2〉.

Since A is a skew-symmetric matrix, therefore 〈A(U1 − U2), U1 − U2〉 = 0. It means

〈∇J(U1)−∇J(U2), U1 − U2〉 = 0.

Since J is strictly convex, this is only satisfied if U1 = U2, which concludes the uniqueness of a solution.
The existence of a solution is tougher than the uniqueness. We only mention the important steps

and the interested reader can find all the details in [20]. We first prove that there exists a minimum
point for J inside of D. It is a classical result in convex analysis and is based on Theorem 27.1 (d) p 265
of Rockafellar [27]. Then, we rewrite the scheme under the form of a family of Cauchy problems with
a parameter ε that varies between 0 (convex minimization problem) and 1 (the principal problem). We
prove that this problem {

Find Uε ∈ D such that
∇J(Uε) = εAUε,

(21)

admits a solution. Finally, using bounds we conclude on the existence of a solution for the prediction
scheme for all ∆t > 0.

Observe that since the solution of the prediction scheme is unique and belongs to D, a direct con-
sequence is that, ∀j ∈ J , pj > 0. It implies immediately that ∀j ∈ J , τj > 0 and ρj > 0. This is an
important stability result. However, one can prove an additional stability result: mathematical entropy
associated to (5) decreases under the action of the prediction step. Actually, following [7] the total
energy E is an entropy for isentropic Euler equations (5)

∂t(ρE) + ∂x(ρuE) + ∂x(pu) ≤ 0, (22)

or in the semi-Lagrangian setting
ρDtE + ∂x(pu) ≤ 0. (23)

In [20], we showed that the solution of the predictor step satisfies

∀j ∈ J ,
Ej − Enj

∆t
+
pj+ 1

2
uj+ 1

2
− pj− 1

2
uj− 1

2

Mj
≤ 0. (24)

This is a second and important stability result. It is of fundamental use to prove that the overall scheme
is entropy stable ∀j ∈ J , Sn+1

j ≥ Snj , see Section 2.2.
Let us mention a few additional features. First, the scheme (6)–(7) is conservative in mass, volume,

momentum and entropy. Second, it is Galilean invariant. To solve the implicit scheme, a Newton algo-
rithm is used. Numerical 1D illustrations are provided in [20], and show that the theoretical properties
of unconditional robustness transfer to real calculations. In practice, the Newton algorithm converges in
few iterations. We have observed a maximum of 7 iterations in 1D for very large CFL numbers (>100).

2.2 The correction step (8)
An extremely important property is that the correction step is explicit, so computationally very cheap,
and it is nevertheless unconditionally stable.
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One has by construction that τn+1
j = τj > 0. Moreover, as the prediction step is entropic (24) in the

mathematical sense, then the specific total energy (8) satisfies the following inequality

∀j ∈ J , En+1
j ≥ Ej .

Therefore, since one has un+1
j = uj , specific internal energies are ordered the same way

∀j ∈ J , en+1
j ≥ ej .

Finally, because the specific volume is unchanged during the correction step and since Gibbs relation
implies that ∂S

∂e

∣∣
τ

= 1
T > 0, S is an increasing function of e and one gets

∀j ∈ J , Sn+1
j = S(τn+1, en+1

j ) = S(τj , e
n+1
j ) ≥ S(τj , ej) = Sj = Snj .

In other words the complete scheme produces physical entropy ∀∆t > 0. This sole property explains that
the correction step is stable for all time step. Once again this is a striking feature since the correction
step is explicit.

2.3 The mesh motion (9)
At the beginning of the time step the mesh is correct: the local volume is positive V nj = xn

j+ 1
2

−xn
j− 1

2

> 0

and the mass in the cell is Mj = V nj ρ
n
j > 0. The issue is to insure the correctness of the mesh after the

mesh motion (9). It appears that this is guaranteed without further conditions.
Indeed the equation for the calculation of τn+1

j = τj can be combined with the mesh displacement (9)
to obtain

Mjτ
n+1
j = Mjτ

n
j +

(
xn+1
j+ 1

2

− xn+1
j− 1

2

)
−
(
xnj+ 1

2
− xnj− 1

2

)
= V nj + V n+1

j − V nj = V n+1
j = xn+1

j+ 1
2

− xn+1
j− 1

2

.

Since it was already proved that τn+1
j > 0, and Mj is conserved in semi-Lagrangian, it implies that

xn+1
j+ 1

2

− xn+1
j− 1

2

> 0.

This inequality explains that the mesh displacement step of our method is stable in 1D without CFL
condition.

3 Extension to higher dimensions

In this section, we explain how to adapt the strategy described above to define implicit Lagrangian
schemes in higher dimensions. A new difficulty related to the evolution of the cells geometry has to be
overcome to chain time steps. To do so, a particular attention will be brought to the management of
geometrical quantities appearing in the scheme in Section 3.3.

To define a multidimensional semi-Lagrangian finite volume scheme, we combine two ideas. The
first one is to use the nodal solver framework introduced in [18, 10] to write multidimensional implicit
versions of Glace [6] or Eucclhyd [17, 14] schemes. The second idea is to use the same time discretization
as the one we proposed in [20]: a nonlinear implicit isentropic predictor scheme, followed by an explicit
corrector which reestablishes the total energy conservation.

Let us remind the general structure of these nodal solvers in arbitrary dimension of space. The
continuous in time scheme family reads in dimension d,

∀j ∈ J ,



Mjτ
′
j =

∑
r∈Rj

〈Cjr,ur〉,

Mju
′
j = −

∑
r∈Rj

Fjr,

MjE
′
j = −

∑
r∈Rj

〈Fjr,ur〉,

(25)

7



where at each node r, Fjr and ur are solutions of the local linear systems

∀r ∈ R,


∀j ∈ Jr, Fjr = Ajr(uj − ur) + Cjrpj ,

and
∑
j∈Jr

Fjr = 0, (26)

and where the Cjr vectors satisfy the two following properties

∀j ∈ J ,
∑
r∈Rj

Cjr = 0, and ∀r ∈ R,
∑
j∈Jr

Cjr = 0. (27)

The scheme is correctly defined as soon as Ar =
∑
j∈Jr Ajr > 0 (for all r ∈ R) are symmetric positive

matrices which is the case on non-degenerate meshes. It is easy to show that the scheme is conservative in
mass, volume, momentum and total energy. Also, as soon as Ajr matrices are non negative, the scheme
is entropy stable. The weak consistency is established in [9] for the generic choice

∀j ∈ J ,∀r ∈ Rj , Cjr := ∇xrVj . (28)

Denote by Fj and Fr the sets of faces connected respectively to the cell j and to the node r. Thus Njfr

is the gradient of variation of the cell j with regard to the position of r associated to the face f . One
has

∑
f∈Fj∩Fr Njfr = Cjr. These notations are enough to describe two popular methods which are the

Glace scheme and the Eucclhyd scheme

AGjr := ρjcj
Cjr ⊗Cjr

‖Cjr‖
, and AEjr := ρjcj

∑
f∈Fj∩Fr

Njfr ⊗Njfr

‖Njfr‖
. (29)

Both choice yield that Ar :=
∑
j∈Jr Ajr > 0 are positive definite in standard conditions. The acoustic

impedance is local in the sense that it is calculated cell-wise, which corresponds to a generic two states
flux in [11]. Then mimicking the 1D scheme, we write a 3 steps scheme where the first two steps are the
predictor-corrector part.

i) The implicit prediction step structure is

∀j ∈ J ,



τj = τnj +
∆t

Mj

∑
r∈Rj

〈Djr,ur〉,

uj = unj −
∆t

Mj

∑
r∈Rj

Fjr,

Sj = Snj ,

(30)

where the numerical fluxes are given by

∀r ∈ R,


∀j ∈ Jr, Fjr = Ajr(uj − ur) + Djrpj ,

and
∑
j∈Jr

Fjr = 0. (31)

The vectors Djr are the geometrical vectors used to represent the influence of the mesh. A natural
choice is of course to take the explicit value Djr = Cn

jr. However it will be obvious later that the
explicit value is not the best theoretical choice. This is why we use this notation and postpone the
exact definition of these vectors.

ii) Then the explicit correction step reads as

∀j ∈ J ,



τn+1
j = τnj +

∆t

Mj

∑
r∈Rj

〈Djr,ur〉,

un+1
j = unj −

∆t

Mj

∑
r∈Rj

Fjr,

En+1
j = Enj −

∆t

Mj

∑
r∈Rj

〈Fjr,ur〉,

(32)

with the same vectors Djr.
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iii) The mesh motion is defined by

∀r ∈ R, xn+1
r = xnr + ∆tur. (33)

All the difficulties to solve this coupled problem come from the implicit step (30)–(31) that corresponds
to the discretization of the isentropic Euler equations.

3.1 The prediction step (30)–(31)
To prove that the implicit predictor step (30)–(31) is correctly defined and admits a unique solution, it
is recast as a perturbed minimization problem [20] of the form (10). To ease the analysis and the further
implementation, the various terms are written within an abstract vector-matrix form.

Proposition 2. The implicit scheme (30)–(31) can be written under the form (10).

Proof. To formalize the implicit prediction step, we want to substitute Fjr and ur by their expressions
in terms of uj and pj into (30). One computes the expression of ur by injecting the first equation of (31)
into the second. One gets

∀r ∈ R, ur = A−1
r

∑
j∈Jr

Ajruj +A−1
r

∑
j∈Jr

Djrpj . (34)

One substitutes this value in the first equation of (31). It gives

∀j ∈ J ,∀r ∈ Rj , Fjr = Ajr

(
uj −

(
A−1
r

∑
i∈Jr

Airui +A−1
r

∑
i∈Jr

Dirpi

))
+ Djrpj . (35)

Then one injects (34) and (35) into (30), omitting the trivial entropy conservation equation. It reads

∀j ∈ J ,


τj = τnj +

∆t

Mj

∑
r∈Rj

〈
Djr, A

−1
r ui +A−1

r

∑
i∈Jr

Dirpi

〉
,

uj = unj −
∆t

Mj

∑
r∈Rj

[
Ajr

(
uj −

(
A−1
r

∑
i∈Jr

Airui +A−1
r

∑
i∈Jr

Dirpi

))
+ Djrpj

]
.

(36)

A reorganization of the terms depending on the pressure on the one side and the ones depending on the
velocity on the other side gives ∀j ∈ J ,

Mj

∆t
(τj − τnj )−

∑
r∈Rj

〈Djr, A
−1
r

∑
i∈Jr

Dirpi〉 =
∑
r∈Rj

〈Djr, A
−1
r

∑
i∈Jr

Airui〉,

Mj

∆t
(uj − unj )−

∑
r∈Rj

AjrA
−1
r

∑
i∈Jr

Airui +
∑
r∈Rj

Ajruj =

��
��

�
��*

0

−
∑
r∈Rj

Djrpj +
∑
r∈Rj

AjrA
−1
r

∑
i∈Jr

Dirpi.

(37)
From this semi-abstract vector-matrix formulation, one deduces the definitions of the objects entering in
(10). The vector of unknowns is U ∈ RN+dN

U =

(
(−pj)j∈J
(uj)j∈J

)
. (38)

The skew-symmetric matrix is A ∈MN+dN (R)

A =

[
0 B
−BT 0

]
, (39)

where B ∈MN (M1,d(R)) is defined by

∀i, j ∈ J , Bji =
∑

r∈Ri∩Rj

(Djr)
TA−1

r Air. (40)
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The convex functional J : D → R is defined by

J(U) =

N∑
j=1

Mj

∆t

[
L1
j (−p) + L2

j (u)
]

+
∑
r∈R

[
Q1
r((−pj)j∈J ) +Q2

r((uj)j∈J )
]

(41)

where the functions L1
j , L2

j , Q1
r and Q2

r are given below.
In the case of a perfect gas law, the function L1

j is given by

L1
j : R− −→ R, L1

j (−p) = −p1− 1
γ (γ − 1)

1
γ−1

γ exp

(
Snj
Cv

) 1
γ

+ τnj p. (42)

The function L2
j corresponds to

L2
j : Rd −→ R, L2

j (u) =
〈u,u〉

2
− 〈unj ,u〉. (43)

The function Q1
r is given by Q1

r : RN → R,

Q1
r((−pl)l∈J ) =

1

2
〈
∑
j∈Jr

Djr(−pj), A−1
r

∑
j∈Jr

Djr(−pj)〉. (44)

Finally one sets Q2
r : RdN → R,

Q2
r((ul)l∈J ) =

1

2

∑
j∈Jr

〈Ajruj ,uj〉 −
1

2
〈
∑
j∈Jr

Ajruj , A
−1
r

∑
j∈Jr

Ajruj〉. (45)

Theorem 2. Assuming that Un ∈ D, then the problem (10) where U , J and A are respectively given by
(38), (41) and (39) has a unique solution in D = ]−∞, 0[

N × RdN .

Proof. The proof is exactly the same as the one of Theorem 1.

Since the unique solution of the isentropic implicit solver lives in D, one gets ∀j ∈ J , pj > 0 as in
1D. Thus as during this isentropic step τ is only a function of p, it ensures that τj > 0, therefore after
the correction step one also gets

∀j ∈ J , τn+1
j = τj > 0.

It ensures that
∀∆t > 0,∀j ∈ J , ρn+1

j > 0.

As we already stated in Section 2, the specific total energy is a mathematical entropy for the isentropic
Euler system (see [7]), in semi-Lagrangian coordinates, it writes

ρDtE +∇ · (pu) ≤ 0. (46)

The predictor scheme (30)–(31) satisfies this inequality.

Proposition 3. The prediction scheme (30)–(31) satisfies the following inequality on total energy

∀∆t > 0,∀j ∈ J , Mj

Ej − Enj
∆t

+
∑
r∈Rj

〈Fjr,ur〉 ≤ 0. (47)

Proof. The proof follows the one given for the 1D case in [20] but requires a few technical but non
essential adjustments. It is detailed in Appendix A.
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3.2 The correction step (32)
The last stability result establishes that the whole predictor-corrector scheme is entropy stable.

Proposition 4. The correction scheme (32)–(31) is stable in the sense that it satisfies an entropy
inequality

∀∆t > 0,∀j ∈ J ,
Sn+1
j − Snj

∆t
≥ 0. (48)

Proof. The proof is exactly the same as in the 1D case, see Section 2.2.

We state a few important results that are more standard with regard to nodal solvers

Proposition 5 (Conservation). The isentropic implicit scheme (30)–(31) is conservative in volume,
mass, momentum and total energy.

The whole implicit scheme (30)–(32) is conservative in volume, mass, momentum and total energy.

Proof. The proof is similar to the explicit case and is omitted here.

Additionally it is easy to check that the isentropic scheme (30)–(31) and the whole scheme (30)–(32)
are Galilean invariant.

3.3 The mesh motion (33)
Mesh displacement in dimension d > 1 cannot be analyzed with the simple method of Section 2.3 which is
specific to dimension d = 1. We do not know a comprehensive theoretical formulation of what is a correct
mesh motion for any type of cells in dimension d > 1. That is why we focus on volume considerations
which is already a guide to understand the issues at stake.

Suppose that the mesh moves at a given velocity ur for all r ∈ R. Take the first equation in the
continuous in time formulation (25)–(26). One can use Mj = Vj(t)ρj(t) and write the variation in time
of the volume as

V ′j =
∑
r∈Rj

〈Cjr,ur〉.

Starting from the velocities computed by the scheme, a first possibility to discretize this equation writes

Vj = V nj + ∆t
∑
r∈Rj

〈Cn
jr,ur〉. (49)

A second possibility is to move the mesh with ∀r ∈ R, xn+1
r = xnr + ∆tur and then to calculate the

new volumes. Since the volume is an homogeneous function of degree d, one can use for example the
exact formula

V n+1
j :=

1

d

∑
r∈Rj

〈Cn+1
jr ,xn+1

r 〉. (50)

The question is: are the two volumes (49) and (50) actually equal? If they are equal one can reproduce
the analysis made in Section 2.3 which ensures the positivity of the new volume after mesh displacement.
If they are not equal we do not know how to continue the analysis. The important property is as follows.

Property 1. One has the exact formula

V n+1
j − Vj = ∆t2Gj , (51)

where Gj depends on the dimension d
d = 1, Gj = 0,

d = 2, Gj = 1
2

∑
r∈Rj 〈u

n
r+1, (u

n
r )⊥〉,

d = 3, Gj =
∑
r∈Rj

∑
f∈Fjr

1
12Nf

〈∑
s∈Rjf

(
2JunKjfr − JunKjfs

)
∧ uns , x

n
r + ∆t

3 unr

〉
,

where the object J·Kjf in dimension d = 3 is introduced in Notation 1 at the end of this Section.
A corollary is that the volumes (49) and (50) are different in the general case in dimension d ∈ {2, 3}.
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Proof. The result is already proved in dimension d = 1. The rest of the proof is technical and thus given
in an Annex paper [8].

The interpretation of (51) is that the two predictions of the volume provide a priori different results
for d > 1. This feature of lagrangian volume calculations has been noticed by many researchers. For
explicit schemes this is not a mere restriction since it is sufficient to take a CFL condition and a time step
which is small enough. The difference is second order in time and (51) explains that the two methods
of numerical integration will provide essentially the same result. However we consider implicit schemes
in this work, and we do not desire to bound the time step with such considerations. In summary (51)
explains that the difference of volumes is small for explicit schemes and can be a priori large for implicit
schemes.

Remark 2 (Special case all dimensions). If all nodal velocities of the cell j are colinear, then Gj = 0
in (51) in all dimensions.

Notation 1 (3D). Let j ∈ J be a 3D cell of a mesh and f ∈ Fj be a face of j.
We define the operator J·Kjf by

∀s ∈ Rjf , JφKjfs = φs+1 − φs−1,

where Rjf is the ordered set of nodes of the face f . The order is set to define the normal to f outgoing
from the cell j. The notation s+1 (resp. s−1) designates the node after (resp. before) the node s in Rjf
(see Figure 1).

x
y

z

j f

r

r + 1

r − 1

Figure 1: Illustration of the local node ordering with regard to a face of a cell. The ordering is locally
defined by browsing the nodes r of the face f in the way that defines the normal outgoing from the cell j.
This ordered set is denoted Rjf .

3.4 Description of Djr vectors
To obtain the equality of volumes in (51) in all dimensions, we replace (50) with the new definition

Vj = V nj + ∆t
∑
r∈Rj

〈Djr,ur〉 (52)

where the vectors Djr are some degrees of freedom. Our objective is to propose a suitable set of Djr

vectors such that the equality of volumes is restored. In other words one wants to solve the following
Problem.

Problem 1. Find specific vectors Djr ∈ Rd, for all j ∈ J and for all r ∈ Rj, such that

∀j ∈ J , ∆t
∑
r∈Rj

〈Djr,ur〉 =
1

d

∑
r∈Rj

〈Cn+1
jr ,xn+1

r 〉 − 1

d

∑
r∈Rj

〈Cn
jr,x

n
r 〉. (53)
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In this Problem, ∆t = tn+1 − tn > 0 and the grid velocity is defined by ur = 1
∆t (x

n+1
r − xnr ). In the

construction of the solution of this problem, we add the conditions

∀j ∈ J ,
∑
r∈Rj

Djr = 0, and ∀r ∈ R,
∑
j∈Jr

Djr = 0 (54)

because they are already mesh conditions naturally satisfied by Cn
jr.

Proposition 6. Problem (1) admits a unique solution.

• In dimension d = 1,
∀j ∈ J , Dj,j± 1

2
= ±1. (55)

• In dimension d = 2,

∀j ∈ J , ∀r ∈ Rj , Djr =
1

2

(
Cn
jr + Cn+1

jr

)
, (56)

where Cn
jr = − 1

2 (xnr+1 − xnr−1)
⊥.

• In dimension d = 3,

∀j ∈ J , ∀r ∈ Rj , Djr =
1

2

(
Cn
jr + Cn+1

jr

)
+ Cδ

jr, (57)

where Cn
jr =

∑
f∈Fjr

1
12Nf

(∑
s∈Rjf

(
2JxKjfr

n
− JxKjfs

n
)
∧ xns

)
and

Cδ
jr = −

∑
f∈Fjr

1

12Nf

∑
s∈Rjf

1

6

[
2
(
JxKjfr

n+1
− JxKjfr

n
)
−
(
JxKjfs

n+1
− JxKjfs

n
)]
∧ (xn+1

s − xns ).

A corollary is that the volumes (49) and (52) are equal in all dimensions.

Proof. The proof is calculative especially in 3D. Thus, for the sake of clarity, it is also given in the Annex
paper [8].

4 Detailed algorithm

Since the vectors Djr must be calculated as well, we introduce them in the predictor step with a fixed
point method. One obtains the Algorithm below.

Full Algorithm

Initialization: All quantities are known at time tn.

• Define initial guess for Djr: ∀j ∈ J , ∀r ∈ Rj , Dn,0
jr := Cn

jr.

• Set step number k = 0.

Iteration k + 1 of the fixed point procedure: Calculation of the isentropic solution guess.

• Solve ∀j ∈ J , 

τj
n,k+1 = τnj +

∆t

Mj

∑
r∈Rj

〈Dn,k
jr ,ur

n,k+1〉,

uj
n,k+1 = unj −

∆t

Mj

∑
r∈Rj

Fjr
n,k+1

,

Sj
n,k+1

= Snj ,

with 
Fjr

n,k+1
= Anjr(uj

n,k+1 − ur
n,k+1) + Dn,k

jr pj
n,k+1,∑

j∈Jr

Fjr
n,k+1

= 0.
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• Compute ∀r ∈ R, xrn,k+1 = xnr + ∆tur
n,k+1.

• Compute ∀j ∈ J , V n,k+1
j = 1

d

∑
r∈Rj

〈
Cn,k+1
jr , xr

n,k+1
〉

• If maxj∈J

∣∣∣∣1− Mj

V n,k+1
j

τj
n,k+1

∣∣∣∣ > ε compute Dn,k+1
jr , set k ← k + 1 and compute next

Iteration k + 1 else compute Correction.

Correction: Restore total energy conservation and physical entropy growth.

• Update conservative quantities ∀j ∈ J ,

τn+1
j = τnj +

∆t

Mj

∑
r∈Rj

〈Dn,k
jr ,ur

n,k+1〉,

un+1
j = unj −

∆t

Mj

∑
r∈Rj

Fjr
n,k+1

,

En+1
j = Enj −

∆t

Mj

∑
r∈Rj

〈Fjr
n,k+1

,ur
n,k+1〉.

Mesh displacement: Move the nodes using the converged velocity

• Compute ∀r ∈ R, xn+1
r = xnr + ∆tur

n,k+1.

Note that each loop (iteration k) of the fixed point procedure in the predictor step is an implicit non
linear problem that we solve with a Newton’s method without any problem. We do not know how to
assess the convergence or the rate of convergence of the fixed point procedure even if our tests show that
it converges pretty well. We prefer to rely on numerical experiments to evaluate the properties of this
method. Thus, we encourage the reader to go to the numerical results Section 6.

5 Implicit and explicit coupled schemes

In practice, one may not want to use the implicit scheme in the whole domain. Indeed, the calculation
of the solution to the nonlinear system may be expensive. Thus, it is better to use the implicit scheme
in limited regions that might impose a very small time step compared with the rest of the domain. This
small time step restriction is relaxed with the use of our implicit scheme. In [20] we proposed such an
approach with success in dimension d = 1.

The implicit-explicit coupling that we have detailed in our previous work [20] is naturally extended
to higher dimensions d ≥ 2. Let us just write the prediction step in that case, the correction step is
unchanged. Let us denote respectively by J exp the sets of cells treated explicitly and by J imp the sets of
cells treated implicitly. One has J = J exptJ imp. Let us also define the set of interface nodes connected
to implicit and explicit cells

Rimp =
{
r ∈ R/Jr ∩ J exp 6= ∅ and Jr ∩ J imp 6= ∅

}
.

The cells treated implicitly have to satisfy the equations

∀j ∈ J imp,



τj = τnj +
∆t

Mj

∑
r∈Rj

〈Djr,ur〉,

uj = unj −
∆t

Mj

∑
r∈Rj

Fjr,

Sj = Snj ,

where
∀j ∈ Jr ∩ J imp,∀r ∈ Rj , Fjr = Ajr(uj − ur) + Djr pj .
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The cells treated explicitly have to satisfy the equations

∀j ∈ J exp,


τn+1
j = τnj +

∆t

Mj

∑
r∈Rj

〈Cn
jr,u

n
r 〉,

un+1
j = unj −

∆t

Mj

∑
r∈Rj

Fnjr,

where
∀j ∈ Jr ∩ J exp,∀r ∈ Rj , Fnjr = Ajr(u

n
j − ur) + Cn

jr p
n
j .

The equality of forces at all nodes is enforced

∀r ∈ R,
∑

j∈Jr∩J imp
Fjr +

∑
j∈Jr∩J exp

Fnjr = 0.

This equation couples cells in the implicit region with cells in the explicit region.
Then the linear system for the calculation of the velocities and pressures is carefully assembled,

retaining only the linear equations that must be treated implicitly. We solve the implicit problem which
provides the implicit node velocities that are used to solve the explicit part. Then, the cell volumes are
updated using the new node coordinates in both regions. So, the scheme is also conservative in volume.
It is easy to check that after the correction step, the overall scheme is conservative in mass, momentum
and total energy.

6 Numerical results

In this Section, we provide numerical examples calculated with the Algorithm of this work, and we use
the standard library PETCs for solving the linear systems. These test cases asses the correct behavior
of the implicit scheme proposed in this paper in dimension 2 and 3. We present two kinds of tests. The
first ones illustrate the robustness of the approach. The second ones are more practical examples which
enlighten the kind of applications that could benefit from using this scheme.

Since we have no theoretical analysis for the convergence of neither the Newton method nor the geo-
metrical fixed point algorithm given in Section 4, we find it educative to use quite demanding convergence
criteria. Thus, we use the following tuning for all the following tests. The convergence criterion for the
Newton method is set to 10−12 and the criterion for the geometry is set to 10−4.

6.1 Sod shock tube
For this first test, we solve the classical Sod shock tube in 2D and 3D using unstructured grid. The
setting is the following. Initial data is

ρ(x, t = 0) =

{
1 if x < 0.5,

0.125 else,
u(x, t = 0) = 0, p(x, t = 0) =

{
1 if x < 0.5,

0.1 else.

The pressure follows a perfect gas law with γ = 1.4. The computation is run until time t = 0.2. Sliding
(or symmetry) boundary conditions are imposed on the boundaries of the domain3.

The results are discussed in two separate parts. First we illustrate the robustness of the proposed
method and second we show the evolution of precision with regard to the explicit scheme while increasing
CFL.

6.1.1 Robustness

To illustrate the robustness of the method, we run the test using only one time step: ∆t = tmax = 0.2
on unstructured grids in both 2D and 3D. In 2D, the mesh contains both triangles and quadrilaterals.
In 3D, it is composed of tetrahedra, pyramids, prisms and hexahedra.

3Actually, it is important to fix the corners of domain, and in 3D to treat the sliding on the edges of the domain. If
not, the convergence of the full algorithm can be much more difficult.
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(a) Mesh and density at time t = 0

(b) Mesh and density at time t = 0.2

Figure 2: Sod test using a 2D unstructured grid. Result is obtained using a single time step: ∆t = 0.2.

1 2 3 4 5 6 7
10−16

10−12

10−8

10−4

100

Newton iteration (l)

‖U
n
,k
,l
−
U
n
,k
,l
−

1
‖ ∞

‖U
n
‖ ∞

iter. 1
iter. 2
iter. 4
iter. 4
iter. 5
iter. 6
iter. 7
iter. 8
iter. 9
iter. 10
iter. 11
iter. 12

2 4 6 8 10 12

10−4

10−3

10−2

10−1

Dk
jr iteration

‖1
−
τ
n
,k

+
1
ρ
n
,k

+
1
‖ ∞

Figure 3: Sod calculation in 2D. ∆t = 0.2. Left: Newton convergence (l) for each fixed point iteration
(k). Right: Fixed point convergence (k).

In Figures 2 and 4, we represent the meshes colored by density in 2D and 3D. The obtained solutions
for such large time step are reasonable and we discuss them more precisely in the next Section.

Figures 3 and 5 display the convergence history of the whole method in both 2D and 3D. On the
right, we plot the convergence of the error in density

k 7→
∥∥1− τn,k+1ρn,k+1

∥∥
which allows the evaluation of the convergence of the fixed point method in each case. One observes a
monotone convergence to a fixed point. The maximum volume error is reduced to a maximum of 10−4

by around ten iterations.
On the left, we plot for each fixed point iteration the convergence history of the Newton method that

is used to solve the isentropic predictor. Again in this case, one observes a monotone convergence. A
maximum number of 7 iterations is required to solve the non linear problem at machine precision. One
also observes that the first fixed point step is the one that requires the more iterations.

6.1.2 Precision

We now discuss the precision of the method with regard to the CFL number. Here we only present
the 2D case since 3D results are similar. In Figures 6a, 6b and 6c we compare the numerical solution
obtained for the explicit scheme (using a CFL number of 0.4) to the solutions of the implicit scheme
using CFL numbers of 0.4, 1 and 5.

Using the explicit CFL number 0.4, one observes that the solution of implicit and explicit schemes
are quite close (see Figures 6a). As expected, the numerical dissipation increases with CFL number (see
Figures 6b and 6c). However, as we have already observed and explained in 1D [20] in the case of 1D
Riemann problems the contact discontinuity position is very accurate even for very large CFL numbers.

Finally in Figure 6 we compare a cut of the density field of the 2D calculation with the 1D result
when using the maximum time step ∆t = 0.2. Solutions are almost superposed. Obviously for such
a large time step, the solution is excessively dissipated, but the contact discontinuity location remains
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(a) Mesh and density at time t = 0

(b) Mesh and density at time t = 0.2

Figure 4: Sod test using a 3D unstructured grid. Result is obtained using a single time step: ∆t = 0.2.
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Figure 5: Sod calculation in 3D. ∆t = 0.2. Left: Newton convergence (l) for each fixed point iteration
(k). Right: Fixed point convergence (k).

quite good. Moreover, as we explained it in [20] the left shift is due to the interaction with boundary
conditions. Using a larger domain, the contact discontinuity is almost perfectly placed (see [20] for details
and an analysis of this behavior).

6.2 Saltzman test case
This test is a classical test of robustness for Lagrangian schemes. Actually the difficulty is twofold, since
the pressure is initially almost null and this piston problem is solved on a perturbed grid which is not
aligned with the shock. The pressure being almost null, this problem is singular at the limit of vanishing
pressure. In this regime the Saltzmann problem is not covered by Theorem 1 because the J becomes
singular, so we expect non convergence of our algorithms for large time steps.
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(b) Implicit CFL=1
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(c) Implicit CFL=5
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(d) Implicit 1D vs Implicit 2D. CFL≈ 110.

Figure 6: Density plot at time t = 0.2. Illustration of the quality of the approximation of the implicit
scheme with regard to the CFL number.

The computational domain is Ω =]0, 1[×]0, 0.1[ which is meshed using a uniform 100 × 10 grid that
is perturbed by displacing its nodes as{

x̃ = x+ 0.1(1− 20y) sin(πx),

ỹ = y.

Initial data is set as
(ρ,u, p) = (1,0, 10−4),

where the pressure p follows a perfect gas law with γ = 5
3 . On each boundary we impose wall conditions

except on the right boundary where a constant normal velocity of −1 is prescribed.
In Figure 7 we compare the obtained meshes at time t = 0.6 using the explicit scheme and with

the implicit scheme for two time stepping strategies. One first observes that numerical solutions are
remarkably close for this difficult test. The agreement for the shock location is notable. The explicit
solution (see Figure 7a) is obtained using CFL = 0.02, which is approximately the maximum value
that we can take to run the calculation. Figure 7b depicts the solution for the implicit solver using
CFL = 0.05. One notices the similarities with regard to the mesh deformation for a 2.5 times larger
CFL. Finally, in Figure 7c we show the result obtained with the implicit scheme using a constant time
step dt = 10−2 (which corresponds more or less to CFL = 10). One observes that if the solution remains
close to the explicit one, the mesh displays oscillations. Since this is almost the maximum time step
that allows the fixed point method to converge, an interpretation is that these oscillations illustrate the
stability limit experienced for this test.
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(a) Explicit scheme CFL = 0.02

(b) Implicit scheme CFL = 0.05

(c) Implicit scheme ∆t = 0.01 (CFL ≈ 10)

Figure 7: Comparison of explicit scheme and different CFL numbers for the implicit scheme at time
t = 0.6. Density color map is fixed between 1 and 5 to ease comparison.

In our view these results assess the robustness of the method. Even if the method fails for arbitrary
time step, it allows the use of much larger time steps than the explicit version. The gain of time step is
in this case

∆timp

∆texp
= 500.

6.3 Converging Sod shock tube with a rebound
This test is an example of a potential application of the method. It is quite common for ICF (Inertial
Confinement Fusion) simulation to study the growth of interface perturbations. To do so, a classical
strategy consists in using polar grids (see Figure 8) that allow to capture symmetries of radial flows. The
main drawback of this strategy is that cells at the center of the flow are very small and may constrain
the time step, increasing the whole computational cost.

Figure 8: Example of a polar grid of Ω.

The test problem below models this behavior, but without the perturbations to focus on the stability
of the method. It consists in a convergent Sod shock tube. The computational domain is

Ω =
{
x ∈ R2 s.t. x1 > 0, x2 > 0 and ‖x‖ < 1

}
.
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The initial data is

ρ(x, t = 0) =

{
1 if ‖x‖ > 0.3,

0.125 else,
u(x, t = 0) = 0, p(x, t = 0) =

{
1 if ‖x‖ > 0.3,

0.1 else.

The pressure follows a perfect gas law and we set γ = 1.4. Notice that the initial discontinuity is set at
radius 0.3 so that the shock bounces back on x = 0 approximately at time t = 0.1. Final time is set to
t = 0.2. A 100× 100 polar mesh of Ω (100 layers and 100 sectors) is used to perform calculations.

Here we try a different strategy with the implicit/explicit scheme explained in Section 5. The cells
that are treated with the implicit scheme are the ones that require a time step smaller than 5 × 10−5,
so the implicit region evolves through time. Thus time step is defined only by the cells that are treated
explicitly.

Results are presented in Figure 9. The solutions obtained using the reference explicit scheme and the
implicit/explicit strategy are almost superposed (see Figure 9a). One should notice that the number of
time steps used to compute the solution decreases from 17751 in the explicit case to 2969 when using
implicit cells where the required local time step is below 5 × 10−5, a ratio of approximately 6. The
total computational cost using the implicit/explicit approach is pretty much reduced by a factor 1

3 . In
Figure 9b we plot the number of implicit cells for each time step. Since the radial symmetry is perfectly
preserved by the scheme, one observes that the number of implicit cells evolves by sets of 100 cells. It
corresponds to the number of cells in each layer of the polar grid.

For this problem, one observes that the implicit/explicit scheme relaxes the time step constraint at
the center of the domain of calculation, still with the same numerical solution.
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Figure 9: Implicit/explicit scheme for the converging Sod shock tube.

7 Conclusion

In this paper we proposed and analyzed an extension of our previous work [20] to dimensions 2 and 3. The
proposed method is an implicit finite volume discretization for compressible Euler in semi-Lagrangian
coordinates. It can be decomposed as a three-step algorithm that treats separately the different kinds of
non-linearities. The first step consists in solving isentropic Euler equations. It handles the non-linearity
due to the equation of state (at fixed entropy). This non-linear step is solved using Newton’s method.
This problem is well-posed in the sense that it admits a unique solution that lives in the invariant
domain. This solution is entropy stable which is a strong guarantee of numerical stability. The second
step is the restoration of the total energy conservation and treats the non-linearity due to the work of
the pressure forces (∇ · pu). Actually, this step is free since it is explicit: pressure and velocity fluxes
are the ones computed in the first step. This step ensures physical entropy growth. The third step is
the mesh motion xn+1

r = xnr + ∆tur. Starting from dimension 2, the cell volume computed according
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to these new node positions may differ with regard to the one resulting of the continuity equation, so
that ρn+1

j =
Mj

V n+1
j

6= 1
τj
, which can break the stability of the method when chaining time steps. This is

the result of potential non-linearities of the deformation of the cells. This last non-linearity is treated
using a fixed-point method that ensures Vj = V n+1

j at convergence. This restores the entropy stability
of the whole procedure. We have also explained how to couple the implicit and explicit schemes, which
is probably more suited for applications. From the numerical point of view, we proposed numerical
experiments that illustrate the behavior of the method.

With regard to the numerical analysis of the scheme a few questions remain to be addressed. Firstly,
we always observe a very good behavior of Newton’s method. This is something that we do not explain
yet. The structure of the third derivative of the functional J(U) is quite simple, the analysis of this
Newton’s method might be possible. Secondly, as expected and experimented on Saltzman test which is
a singular test problem at the limit of the theory, the fixed point method used to treat the geometrical
non-linearity becomes marginally stable. It seems quite difficult to analyze, but obviously a convergence
analysis in the regime of vanishing pressure would be of practical interest.

A Entropy stability of the prediction step

The aim of this Section is to prove Proposition 3: the predictor-scheme (30)–(31) satisfies the entropy

inequality (46), that is Mj
Ej−Enj

∆t +
∑
r∈Rj 〈Fjr,ur〉 ≤ 0.

Rewrite E as a function of U := (τ,u, S). According to the Gibbs formula

dE = −pdτ + 〈u, du〉+ TdS,

thus

∇UE =

 −pu
T

 .

Since E is a convex function of U , for two arbitrary states Ui = (τi,ui, Si), i ∈ {1, 2}, one has

E(U1)− E(U2) ≤ 〈∇UE|U1
, (U1 − U2)〉.

Let us now choose U1 = Uj and U2 = Unj . Here j ∈ J designates a cell, Unj is the state in this cell at
time tn and Uj is the result of the predictor scheme (30)–(31).

So, we have
∀j ∈ J , E(Uj)− E(Unj ) ≤ 〈∇UE|Uj , (Uj − U

n
j )〉,

which rewrites using the scheme notations

∀j ∈ J , Ej − Enj ≤
〈 −pjuj

Tj

 ,

 τj − τnj
uj − unj
Sj − Snj

〉.
One now substitutes the scheme (30)–(31), remembering that Sj = Snj during the isentropic step, and
gets

∀j ∈ J , Ej − Enj ≤
〈 −pjuj

Tj

 ,


∆t
Mj

∑
r∈Rj
〈Djr,ur〉

− ∆t
Mj

∑
r∈Rj

Fjr

0


〉
,

which rewrites

∀j ∈ J , Mj

∆t
(Ej − Enj ) ≤ −pj

∑
r∈Rj

〈Djr,ur〉 −

〈
uj ,

∑
r∈Rj

Fjr

〉
.

Injecting on both sides
∑
r∈Rj 〈Fjr,ur〉, it rewrites after few manipulations

∀j ∈ J , Mj

∆t
(Ej − Enj ) +

∑
r∈Rj

〈Fjr,ur〉 ≤ −pj
∑
r∈Rj

〈Djr,ur〉+
∑
r∈Rj

〈Fjr,ur − uj〉.
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Finally, we replace Fjr by its definition (31) which gives

∀j ∈ J , Mj

∆t
(Ej − Enj ) +

∑
r∈Rj

〈Fjr,ur〉 ≤ −pj
∑
r∈Rj

〈Djr,ur〉+
∑
r∈Rj

〈Ajr(uj − ur) + Djrpj ,ur − uj〉,

which is rearranged as

∀j ∈ J , Mj

∆t
(Ej − Enj ) +

∑
r∈Rj

〈Fjr,ur〉 ≤ −
∑
r∈Rj

(uj − ur)
TAjr(uj − ur)−

���
���

��:0∑
r∈Rj

〈Djrpj ,uj〉.

Since Ajr matrices are non-negative, it ends the proof.
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