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Abstract. Cooperation between verification methods is crucial to tackle
the challenging problem of software verification. The paper focuses on
the verification of C programs using pointers and it formalizes a coop-
eration between static analyzers doing pointer analysis and a deductive
verification tool based on first order logic. We propose a framework based
on memory models that captures the partitioning of memory inferred by
pointer analyses, and complies with the memory models used to gener-
ate verification conditions. The framework guided us to propose a pointer
analysis that accommodates to various low-level operations on pointers
while providing precise information about memory partitioning to the de-
ductive verification. We implemented this cooperation inside the Frama-C
platform and we show its effectiveness in reducing the task of deductive
verification on a complex case study.

1 Introduction

Software verification is a challenging problem for which different solutions have
been proposed. Two of these solutions are deductive verification (DV) and static
analysis (SA). Deductive verification is interested in checking precise and ex-
pressive properties of the input code. It requires efforts from the user that has
to specify the properties to be checked, plus other annotations – e.g., loop in-
variants. Using these specifications, DV tools build verification conditions which
are formulas in various logic theories and send them to specialized solvers. For
C programs with pointers, DV has been boosted by the usage of Separation
Logic [29], which leads to compact proofs due to the local reasoning allowed
by the separating conjunction operator. However, for programs with low-level
operations on pointers (e.g., pointer arithmetics and casting), this approach is
actually limited by the theoretical results on the fragment of separation logic
employed [7] and on the availability of solvers. Therefore, this class of programs
is most commonly dealt using classic approaches based on memory models à la
Burstall-Bornat [9,6], which may be adapted to be sound in presence of low-
level operations [31] and dynamic allocation [36]. The memory model is chosen
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Fig. 1: Verification using memory partitioning inferred by pointer analysis

in general by the DV engine which may employ some heuristics to guide the
choice [20]. Indeed, changing the memory model may result in an increase of the
number of proofs discharged automatically [35]. However, annotations on non
aliasing between pointers and memory partitioning complicates the task of users
and of underlying solvers.

On the other hand, static analysis targets checking a fixed class of prop-
erties. This loss in the expressivity of properties is counterbalanced by a high
degree of automation. For example, static pointer analysis for C programs usually
computes over-approximations of the set of values (addresses) for each pointer
expression at each control point. These abstractions do not speak about concrete
memory addresses, but refer to symbolic memory regions provided by the mem-
ory allocated to program variables and in heap by dynamic allocation methods.

The information obtained by static analysis may help to infer partitioning of
the memory in disjoint regions which can then be used by DV tools. The success
of this collaboration between SA and DV tool strongly depends on the coarseness
of the abstraction used by SA to keep track of the locations scanned by a pointer
inside each memory region. For example, consider p a pointer to integer and a
variable s of type record with five integer fields, struct {int m,n,o,p,q;},
such that p scans locations of all fields of s except o (i.e., &s.m, &s.n, &s.p and
&s.q). Pointer analyses (e.g.,Section 5.2 of [28]) over-approximate the location of
p to any location in the memory region of s which is multiple of an integer, thus
including the spurious o field. Therefore, it is important to be able to try several
SA algorithms to gather precise information about the memory partitioning.

Our contribution targets this specific cooperation of SA and DV methods
in the context of first-order logic solvers. The verification process we propose is
summarized by the flow diagram in Figure 1. The code to be verified is first given
to the static analyzer to produce state invariants including a sound partitioning
P of the program’s memory. The partitioning P is exploited by a functor M which
produces a memory model environment MME used by the DV tool to generate
verification conditions into a logic theory supported by automatic solvers. Our
first contribution is the formalization of the functor M and of the information
it needs from the static analysis. Secondly, we demonstrate that several existing
pointer analyses may be used in this general framework. Thirdly, we implemented
this functor in the Frama-C platform [22] between the plug-ins Eva for static
analysis and WP for deductive verification. Finally, we propose a new pointer
analysis exploiting a value analysis based on abstract interpretation; this analysis
is able to produce the memory model that reduces the verification effort of a
relevant benchmark.



1 typedef int32_t data_t;
2 typedef uint8_t pos_t;
3 typedef struct {
4 data_t *in1 , *in2 , *in3 , *in4;
5 data_t *out1 ,*out2 ,*out3 ,*out4;
6 pos_t *pos1 ,*pos2 ,*pos3 ,*pos4;
7 } intf4_t;
8 /*@ requires:
9 * sep({args ->in1 ,...,args ->in4},

10 * args ->out1 ,...,args ->out4 ,
11 * args ->pos1 ,...,args ->pos4);
12 * ensures:
13 * sorted_vals (&(args ->out1) ,4);
14 * ensures:
15 * perm (&(args ->in1) ,&(args ->out1),
16 * &(args ->pos1) ,4); */
17 void sort4(intf4_t *args) {
18 data_t ** inArr =
19 (data_t **) &(args ->in1);
20 data_t ** outArr =
21 (data_t **) &(args ->out1);

22 pos_t ** posArr =
23 (pos_t **) &(args ->pos1);
24 /** init arrays from inputs */
25 int32_t sortArr [4]; // values
26 uint8_t permArr [4]; // permutation
27 /*@ loop invariant: ... */
28 for (int i = 0; i < 4; i++) {
29 sortArr[i] = *inArr[i];
30 permArr[i] = i;
31 }
32
33 /* sorting algorithm on sortArr
34 * with permutation in permArr */
35
36 /** copy results to outputs */
37 /*@ loop invariant: ... */
38 for (int i = 0; i < 4; i++) {
39 (* outArr[i]) = sortArr[i];
40 (* posArr[i]) = permArr[i];
41 }
42 }

Fig. 2: Sorting function for N = 4 inputs and outputs

2 A Motivating Example

We overview the issues targeted and the solution proposed in this work using
the C code given in Figure 2. This code is extracted from the C code generated
by the compiler of a high level data flow language. It combines at least three
complex features of pointers in C.

The first feature is the duality of records and arrays, which is used here
to interpret the (large) list of arguments for a function as individual fields in
a compound (record) type or as cells of an array. Thus, the read of the k-th
field (k ≥ 0) named fk of a record stored at location s and using only fields of
type τ may be written s->fk or *(&(s->f0)+k), where f0 is the first field. It is
debatable whether the C standard actually permits this form of dual indexing
between records with fields of the same type and arrays [34], but some programs,
including this one, use this feature with success. In our example, this duality is
used in function sort4 to ease the extraction of numerical values from the inputs
and the storage of the sorted values in the outputs. This first feature makes our
running example more challenging, but the technique we propose is also effective
when the parameters are encapsulated in arrays of pointers, e.g., when inputs
and outputs are declared as a field of type array by data_t* in[4]. The second
feature is precisely the usage of arrays of pointers which is notoriously difficult
to be dealt precisely by pointer analyses. The third feature is the complex sepa-
ration constraints between pointers stored in arrays, which leads to a quadratic
number of constraints on the size of the array and complicates the task of DV
tools. In the following, we discuss in detail these issues and our approach to deal
with them.

Inputs and outputs of sort4 have the same type, data_t, which shall encap-
sulate a numerical value to be sorted. For simplicity, we consider only one field
of int32_t type for data_t. Type pos_t models an element of the permutation



and denotes the destination position (an unsigned integer) of the value sorted.
The parameters of sort4 are collected by type intf4_t: four pointers to data_t

for input values, four pointers to data_t for output values, and four pointers to
pos_t for the new positions of input values.

The function is annotated with pre/post conditions and with loop invariants.
The pre-condition requires (predicate sep) that (1) all pointers in *args are
valid, i.e. point to valid memory locations, (2) the pointers in fields in are disjoint
from any pointer in fields out and pos, and (3) pointers in fields out and pos are
pairwise disjoint. Notice that the in fields may alias. The post-condition states
that the values pointed by the fields out are sorted (predicate sorted_vals)
and, for each output i, the value of this output is equal to the value of the input
j such that pos[j] is i (predicate perm).

The separation pre-condition is necessary for the proof of the post-condition
because any aliasing between fields out may crush the results of the sorting
algorithm. The encoding of this pre-condition in FOL is done by a conjunction
of dis-equalities which is quadratic on the number of pointers concerned. More
precisely, for n inputs (and so n outputs and n positions), there are O(n2) such
constraints. (In SL, this requirement is encoded in linear formulas.) The original
code from which our example is inspired instantiate n with 24 and therefore
generates a huge number of dis-equalities. Several techniques have been proposed
to reduce the number of dis-equalities generated by the separation constraints.
For example, a classic technique is assigning a distinct logic value (a color) to
each pointer in the separated set. This technique does not apply in our example
if the type data_t is a record with more than one field because the color shall
concern only the numerical value to be sorted.

As an alternative, we propose to use precise points-to analyses to lift out such
constraints and to simplify the memory model used for the proof of the function.
Importantly, we perform a per-call proof of sort4, instead of a unitary proof.
For each call of sort4, the static analysis tries to check that the separation pre-
condition is satisfied and provides a model for the memory where the pointers
are dispatched over disjoint zones. Unfortunately, the precision of the points-
to analyses (and consequently the number of separation constraints discharged)
may change radically with the kind of initialization done for the arguments of
sort4. We will illustrate this behavior for two calls of sort4 given in Figure 3:
the call in listing (a) uses variables and the one in listing (b) uses arrays. Notice
that each call satisfies the separation pre-condition of sort4.

Typed memory model: For completeness, we quickly present first how DV tools
using FOL deal with our example using the Burstall-Bornat model. In this model,
the memory is represented by a set of array variables, each array correspond-
ing to a (pre-defined, basic) type of memory locations. For our example, the
memory model includes six array variables: M_int32, M_uint8, M_int32_ref,
M_uint8_ref, M_int32_ref_ref, M_uint8_ref_ref storing values of type re-
spectively int32_t, uint8_t, int32_t*, uint8_t*, int32_t** and uint8_t**.
Program variables are used as indices in these arrays, e.g., variable inArr is an
index in array M_int32_ref_ref and sortArr is index of M_int32.



Listing 1.1: (a) using variables

1 data_t df_1 ,df_2 ,..., df_8;
2 pos_t pf_1 ,pf_2 ,pf_3 ,pf_4;
3 intf4_t SORT = {
4 .in1=&df1 , .in2=&df2 ,
5 .in3=&df3 , .in4=&df4 ,
6 .out1=&df5 , .out2=&df6 ,
7 .out3=&df7 , .out4=&df8 ,
8 .pos1=&pf1 , .pos2=&pf2 ,
9 .pos3=&pf3 , .pos4=&pf4 };

10
11 df_1 = nondet_data ();
12 df_2 = nondet_data ();
13 df_3 = nondet_data ();
14 df_4 = nondet_data ();
15
16 sort4(&SORT);

Listing 1.2: (b) using arrays

1 data_t df[8];
2 pos_t pf[4];
3 intf4_t SORT = {
4 .in1=df+1, .in2=df+2,
5 .in3=df+3, .in4=df+4,
6 .out1=df+5, .out2=df+6,
7 .out3=df+7, .out4=df ,
8 .pos1=pf , .pos2=pf+1,
9 .pos3=pf+2, .pos4=pf+3 };

10
11 df[1] = nondet_data ();
12 df[2] = nondet_data ();
13 df[3] = nondet_data ();
14 df[4] = nondet_data ();
15
16 sort4(&SORT);

Fig. 3: Two calls for the sorting function using different initialization

The separation pre-condition of sort4 is encoded by dis-equalities,
e.g., M_int32_ref[args_in4] <> M_int32_ref[args_out1] where args_in4

is bound to the term shift(M_int32_ref_ref[args], in4) which encodes the
access to the memory location &(args->in4) using the logic function shift ;
args_out1 is defined similarly. However, these dis-equalities are not propagated
through the assignments at lines 18–23 in Figure 2, which interpret the sequence
of (input/output/position) fields as arrays. Therefore, additional annotations are
required to prove the correct initialization of the output at lines 39–41. Some
of these annotations may be avoided using our method that employs pointer
analyses to infer precise memory models, as we show below.

Base-offset pointer analysis: Consider now a pointer analysis which is field and
context sensitive, and which computes an over-approximation of the value of
each pointer expression at each program statement. The over-approximation,
that we name abstract location, is built upon the standard concrete memory
model of C [25]. An abstract location is a partial map between the set of pro-
gram’s variables and the set of intervals in N. An element of this abstraction,
(v, i#), denotes the symbolic (i.e., not related with the locations in the virtual
memory space used during the concrete execution) memory block that starts at
the location of the program variable v (called also base), and the abstraction
by an interval i# of the set of possible offsets (in bytes) inside the symbolic
block of v to which the pointer expression may be evaluated. In this memory
model, symbolic blocks of different program variables are implicitly separated:
it is impossible to move from the block of one variable to another using pointer
arithmetic. The memory model is modeled by a set of logic arrays, one for each
symbolic block. The over-approximation computed by the analysis allows to dis-
patch a pointer expression used in a statement on these arrays.

In our example, for the call of sort4 in Figure 3 (a), the memory model in-
cludes the symbolic blocks for program’s variable dfi, pfi and SORT. The above
analysis computes for the pointer expressions args->in1 and *(args->in1)

at the start of sort4, the abstract location {(SORT, [0, 0])} and (df1, [0, 0]) re-



spectively. The abstract locations for the pointer expressions involving other
fields of args are computed similarly. The separation pre-condition of sort4

is implied by these abstract locations. After the fields of args are interpreted
as arrays (lines 18–23 of sort4), the pointer expression outArr+i at line 39,
where i is restricted to the interval [0, 3], is over-approximated to the abstract
location {(SORT, [16, 31])}. Similarly, inArr+i is abstracted by {(SORT, [0, 15])}.
Therefore, the left value given by the pointer expression outArr[i] (at line 39)
is (precisely) computed to be {(df5, [0, 0]), ..., (df8, [0, 0])}. This allows proving
the correctness of the output computed by sort4.

For the call in Figure 3 (b), the memory model includes symbolic blocks for
program’s variable df, pf and SORT. The analysis computes for pointer expres-
sions args->in1 and *(args->in1) (used at the start of sort4), the abstract
location {(SORT, [0, 0])} resp. (df, [0, 3]), which also allows to prove the separa-
tion pre-condition. The interpretation of fields as arrays (lines 18–23) leads to
the abstract location {(df, [1, 4])} for inArr+i, which is very precise. However,
because the initialization of the field SORT.out4 at line 18 in Figure 3 (b) breaks
the uniformity of the interval, the pointer expression outArr+i (at line 39) is
over-approximated to {(df, [0, 7])}. This prevents the proof of the post-condition.

In conclusion, such an analysis is able to infer a sound memory model that
offers a finer grain of separation than the typed memory model. However, it is
not precise enough to deal with the array of pointers and field duality in records.

Partitioning analysis: Based on the base-offset pointer analysis above, we de-
fine in Section 5.3 a new analysis that computes for each pointer expression an
abstract location that collects a finite set of slices of symbolic blocks, i.e., the
abstraction is a partial mapping from program’s variables to sets of intervals
representing offsets in the block. With this analysis, the abstract location com-
puted for outArr+i (at line 39 of sort4, call in Figure 3 (b)) is more precise, i.e.,
{df 7→ {[5, 7], [0, 0]}}, and it allows to prove the post-condition for sort4. Notice
that the analysis computes a finite set of slices in symbolic blocks whose con-
cretizations (sets of locations) are pairwise disjoint. For this reason, this analysis
may be imprecise if its parameter fixing the maximum size of this set is exceeded.
This analysis also deals precisely with the call of sort4 in Figure 3 (a).

Dealing with different analyses: The above comments demonstrate the diversity
of results obtained for the memory models for different points-to analysis algo-
rithms. One of our contributions is to define a generic interface for the definition
of the memory model for the DV based on the results obtained by static analy-
ses doing points-to analysis (SPA). This interface eases the integration of a new
SPA algorithm and the comparison of results obtained with different SPA algo-
rithms. We formalize this interface in Section 4 and instantiate it for different
SPA algorithms in Section 5. Our results are presented in Section 6.

3 Generating Verification Conditions

To fix ideas, we recall the basic principles of generating verification conditions
(VC) using a memory model by means of a simple C-like language.



n ∈ N, k ∈ Z integer constants num integer type in {i8, u8, i16, . . . , u64}
rt ∈ Rtyp record type names f ∈ Fld field names
v ∈ Cvar program variables op ∈ O unary and binary arithmetic operators

scalar types Styp 3 u ::= num | t ptr

program types Ctyp 3 t ::= u | rt | u[n]

expressions Expr 3 e ::= ie | a
integer expressions Iexpr 3 ie ::= k | lv | op ie | ie op ie′

address expressions Aexpr 3 a ::= null | lv | &lv | a + ie

left-values Lval 3 lv ::= v | lv.f | ∗a
statements Stmt 3 s ::= lv=e | assert e

Fig. 4: Syntax of our Clight fragment

3.1 A Clight Fragment

We consider a fragment of Clight [4] that excludes casts, union types and multi-
dimensional arrays. We also restrict the numerical expressions to integer ex-
pressions. The syntax of expressions, types and atomic statements is defined by
the grammar in Figure 4. This fragment is able to encode all assignment state-
ments in Figures 2–3 using classic syntax sugar (e.g., **(arr + i) for *arr[i],
&((*args).in1) for &(args->in1)). Complex control statements can be en-
coded using the standard way. User defined types are pointer types, static size
array types, and record types. A record type declares a list of typed fields with
names from a set Fld; for simplicity, we suppose that each field has a unique
name. We split expressions into integer expressions and address expressions to
ease their typing. Expressions are statically typed by a type t in Ctyp. When
this information is needed, we write et.

We choose to present our work on this simple fragment for readability. How-
ever, our framework may be extended to other constructs. For example, our
running example contains struct initialization. Struct assignment may be added
by explicit assignment of fields. Type casting for arithmetic and compatible
pointer types (i.e., aligned on the same type) may be dealt soundly in DV tools
employing array-based memory models using the technique in [31]. Functions
calls may be also introduced if we choose context-sensitive SA. In general, DV
tools conduct unit proofs for functions. We restrict this work to whole-program
proofs, because it avoids the requirement that SA is able to conduct analyses
starting with function’s pre-conditions. Our memory model could however be
instantiated with an inter-procedural SA, thus enabling unit proof of functions.

3.2 Memory Model

We define the denotational semantics of our language using an environment
called abstract memory model (AMM). (This name is reminiscent of the first
abstract memory model defined in [24,25] for CompCert. We enriched it with
some notations to increase readability of our presentation.) Figure 5 summarizes



sig AMM :

type Loc , Cvar× N
ops base : Cvar→ Loc

shift : Loc→ N→ Loc

types Mem, Val , Vint(Z) | Vptr(Loc)
ops load : Mem→ Styp→ Loc→ Val⊥

store : Mem→ Styp→ Loc→ Val→ Mem⊥

Fig. 5: Abstract signature for the concrete memory model

the elements of this abstract memory model. The link between abstract and
concrete standard memory models is provided in the extended version.

The states of the memory are represented by an abstract data type Mem
which associates locations of type Loc to values in the type Val. Locations are
pairs (b, o) where b is the identifier of a symbolic block and o is an integer giving
the offset of the location in the symbolic block of b. Because we are not consid-
ering dynamic allocation, symbolic blocks are all labeled by program’s variables.
Thus we simplify the concrete memory model by replacing block identifiers by
program variables. Values of type Loc are built by two operations of AMM:
base(v) gives the location of a program variable v and shift(`, n) computes the
location obtained by shifting the offset of location ` by n bytes. The shift op-
eration abstracts pointer arithmetics. The typing function cty(.) is extended to
elements of Loc based on the typing of expressions used to access them. Some
operations are partial and we denote by ⊥ the undefined value. A set A extended
with the undefined value is denoted by A⊥. The axiomatization of loading and
storing operations is similar to the one in [24,25].

3.3 Semantics

Figure 6 defines the rules of the semantics using the abstract memory model, via
the overloaded functions [[ · ]]. The semantic functions are partial: the undefined
case ⊥ cuts the evaluation. The operators ôp are interpretations of operations op
over integer types num. The functions offset(·) and sizeof(·) are defined by the
Application Binary Interface (ABI) and depend on the architecture. Conversions
between integer values are done using function cast(·, ·).

3.4 Generating Verification Conditions

Verification conditions (VC) are generated from Hoare’s triple {P} s {Q} with
P and Q formulas in some logic theory T used for program annotations and
s a program statement. The classic method [23,18] is built on the computa-
tion of a formula Rs(vb,ve) in T specifying the relation between the states of
the program before and after the execution of s, which are represented by the
set of logic variables vb resp. ve. The VC built for the above Hoare’s triple is
∀vb,ve.

(
P (vb)∧R(vb,ve)

)
=⇒ Q(ve) and it is given to solvers for T to check

its validity. In the following, we denote by E the set of logic terms built in the
logic theory T using the constants, operations, and variables in a set X . For a
logic sort τ , we designate by Eτ the terms of type τ .

Compilation environment: Formula Rs(·, ·) is defined based on the dynamic se-
mantics of statements, like the one given in Figure 6 for our language. The



[[ · ]] : Stmt→ Mem → Mem⊥
[[ lvu=e ]](m) , store(m, u, [[ lv ]](m), [[ e ]](m))

[[ assert e ]](m) , if [[ e ]](m) 6∼ 0 then m else ⊥

[[ · ]] : Expr → Mem→ Val⊥
[[ ie ]](m) , Vint([[ ie ]](m))

[[ a ]](m) , Vptr([[ a ]](m))

[[ · ]] : Iexpr → Mem→ Z⊥
[[ i ]](m) , i

[[ lvnum ]](m) , i,Vint(i) = load(m, num, [[ lv ]](m))

[[ op ie ]](m) , ôp([[ ie ]](m))

[[ · ]] : Lval → Mem→ Loc⊥
[[ v ]](m) , base(v)

[[ lv.f ]](m) , shift([[ lv ]](m), offset(f))

[[ ∗a ]](m) , [[ a ]](m)

[[ · ]] : Aexpr→ Mem → Loc⊥
[[ null ]](m) , base(null)

[[ lvu[n] ]](m) , [[ lv ]](m)

[[ lvt ptr ]](m) , ` where load(m, t ptr, [[ lv ]](m)) = Vptr(`)

[[ &lv ]](m) , [[ lv ]](m)

[[ at ptr + ie ]](m) , shift([[ a ]](m), sizeof(t)× cast([[ ie ]](m), u32))

Fig. 6: Semantics of our Clight fragment

compilation of this semantics into formulas T uses a memory model environ-
ment (called simply environment) that implements the interface of the abstract
memory model given in Figure 5. This environment changes at each context call
and keeps the information required by the practical compilation into formulas,
e.g., the set of variables used for modeling the state at the current control point of
this specific context call. Figure 7 defines the signature of memory environments.

The types Mem and Loc encapsulate information about the program states
and memory locations respectively. Notice that the logical representation of lo-
cations is hidden by this interface, which allows to capture very different memory
models. The compilation information about the values stored is given by the type
Val, which represent integers by integer terms in T , i.e., in the set EI. Operation
shift implements arithmetics on locations by an integer term. Operation store
encapsulates the updating of the environment by an assignment and produces a
new environment and a term in EB, i.e., a formula of T .

Prerequisites on the logic theory: For DV tools based on first order logic, the
theory T is a multi-sorted FOL that embeds the logic theory used to anno-
tate programs (which usually includes boolean and integer arithmetics theories)
and the McCarthy’s array theory [26] employed by the Burstall-Bornat memory
model [6] to represent atomic memory blocks. The memory model environment
associates to each memory blocks a set of logic array variables using base op-
erations. It encodes the operations load(m, t, `) resp. store(m, t, `, v) into logic
array operations read(a, o) resp. store(a, o, v), where a is the array variable for
the symbolic block b of location ` that stores values of type t and o is the offset
of ` in b. T also embeds abstract data types (or at least polymorphic pairs with

sig MME :
type Loc
ops base : Cvar→ Loc

shift : Mem→ Loc→ EI → Loc⊥

types Mem, Val , Vint(EI) | Vptr(Loc)
ops load : Mem→ Styp→ Loc→ Val⊥

store : Mem→ Styp→ Loc→ Val→ (Mem× EB)⊥

Fig. 7: Signature of the memory model environments



component selection by fst and snd), and uninterpreted functions. Polymorphic
conditional expression “(econd)?etrue : efalse” are also needed.

In the following, we use the logic theory above T and suppose that an in-
finite number of fresh variables can be generated. To ease the reading of envi-
ronment definitions, we distinguish the logic terms by using the mathematical
style and by underlining the terms of T , e.g., x+ x. For example, the logic term
read(m(b), 4 + x) is built from a VC generator term m(b) that computes a logic
term of array type and the logic sub-term read(·, 4 + x).

Example: Consider the Hoare’s triple {P} (∗(&r.f))i8 = 5 {Q}. Let l0 be
shift(m0, base(r), offset(f)), where m0 (resp. m1) is the environment for the
source state (resp. modified by the store for the destination state); that is
m1, φ1 , store(m0, i8, l0,Vint(5)). The formula P (resp. Q) is generated from
P (resp. Q) using compilation environment m0 (resp. m1). Then the VC gener-
ated by the above method is P ∧ φ1 =⇒ Q. Notice that the above calls of the
environment’s operations follow the order given by the semantics in Figure 6,
except for the failure cases. Indeed, to simplify our presentation, we consider
that statement’s pre-condition includes the constraints that eliminate runs lead-
ing to undefined behaviors. Therefore, the VC generation focuses on encoding
in Rs(·, ·) the correct executions of statements.

4 Partition-based Memory Model

We define a functor that produces memory models environments implementing
the interface on Figure 7 from the information inferred by a pointer analysis. The
main idea is that the SA produces a finite partitioning of symbolic blocks into
a set of pairwise disjoint sub-blocks and each sub-block is mapped to a specific
set of array logic variables by the compilation environment. We first formalize
the pre-requisites for the pointer analysis using a signature constrained by well-
formed properties. Then, we define the functor by providing an implementation
for each element of the interface on Figure 7.

4.1 Pointer Analysis Signature

A necessary condition on the pointer analysis is its soundness. To ease the rea-
soning about this property of analysis, we adopt the abstract interpretation [16]
framework. In this setting, a SA computes an abstract representation s# of the
set of concrete states reached by the program’s executions before the execution
of each statement. The abstract states s# belong to a complete lattice (S#,v#)
which is related to the set of concrete program configurations State by a pair
of functions α : 2State → S# (abstraction) and γ : S# → 2State (concretiza-
tion) forming a Galois connection. In the following, we overload the symbol γ to
denote concretization functions for other abstract objects.

Aside being sound, the SA shall be context sensitive and provide, for each
context call, an implementation of the signature on Figure 8. The values of S
provides, for each statement of the current context, the abstract state in S#



sig PA :
type L
ops base : Cvar→ L

domain : L → 2B

type S
ops load : S → Ptr→ L → L

shift : S → L → EI → L

type B
ops base : B → Cvar

slice : B → EI → EB

disjointness: ∀b#1 , b
#
2 ∈ B · b

#
1 6= b#2 ⇒ γ(b#1 ) ∩ γ(b#2 ) = ∅ (1)

completeness: ∀v ∈ Cvar ∀i ∈ [0, sizeof(cty(v))− 1) ∃b# ∈ B · (v, i) ∈ γ(b#) (2)

unique base: ∀b# ∈ B ∃!v ∈ Cvar · γ(b#) ⊂ {(v, i) | i ∈ N} (3)

sound B ops: ∀b# ∈ B · γ(b#) = {(v, i) ∈ Loc | v = base(b#) ∧ slice(b#, i) = true} (4)

sound L ops: ∀`# ∈ L ∀` ∈ γ(`#) ∃b# ∈ domain(`#) · ` ∈ γ(b#) (5)

sound S ops: ∀s ∀s# ∈ S(s) ∀`# ∈ s# ·
γ(shift(s#, `#, e)) ⊇ {shift(`, i) | ` ∈ γ(`#),m ∈ γ(s#), i ∈ [[ e ]](m)}(6)

∀s ∀s# ∈ S(s) ∀`# ∈ s# ·
γ(load(s#, t ptr, `#)) ⊇ {load(m, t ptr, `) | ` ∈ γ(`#),m ∈ γ(s#)} (7)

Fig. 8: A signature for pointer analysis and its properties

computed by the analysis. The type L represents the domain of abstract val-
ues computed for the pointer expressions in abstract states. The concretization
function γ : L → 2Loc maps abstract locations to sets of concrete locations.

The type B stands for the set of pairwise disjoint abstract blocks partitioning
the symbolic memory blocs, for the fixed specific context call. The concretization
function for abstract blocks γ : B → 2Loc maps blocks to set of concrete locations.
Equations (1) and (2) in Figure 8 specify that abstract blocks in B shall form a
partition of the set of concrete locations available in symbolic blocks such that
an abstract block belongs to a unique symbolic block.

The operation base(b#) returns the symbolic block to which b# belongs,
represented by the program variable labeling this symbolic block. The range
of an abstract block b# inside its symbolic block is specified by the operation
slice(b#, e), which returns a formula (boolean term in EB) that constrains e to
be in this range. The soundness of the base and slice operations is specified
by equation (4). The set of abstract blocks covered by an abstract location is
provided by the operation domain, whose soundness is specified by equation
(5). The operation base abstracts the offset 0 of a program variable. Abstract
locations may be shifted by an integer term using operation shift. Operation
load(s, t ptr, `#) computes the abstract location stored at `# in some context
s, i.e., it dereferences `# of type t ptr ptr for some t. (We denote by Ptr the
set of all pointer types in the program.) The last two operations shall be sound
abstract transformers on abstract locations, as stated in equations (6) resp. (7).

4.2 A Functor for Memory Model Environments

We define now our functor that uses the signature PA to define the elements
of the memory model environment MME defined in Figure 7. To disambiguate
symbols, we prefix names of types and operations by the name of the signature
or logic theory when necessary.



Environment’s type: A compilation environment m ∈ Mem stores the mapping to
abstract states from PA and and a total function that associates to each abstract
block in PA.B a logic variable in X :

MME.Mem , PA.S × [PA.B → T .X ] (8)

where [A → B] denotes the set of total functions from A to B, i.e., BA. We
designate by ms and mε the first and second component of some m ∈ Mem.

If an abstract block b# stores only one type of values, the logic variable
mε(b

#) has type array(Z, τ) where τ is the logic type for the values stored.
For blocks storing integer values (i.e., num), τ is naturally (logical) Z or N. For
blocks storing pointer values, τ is Z× Z, (b, o) where the b denotes the abstract
block of the location and o represents the location’s offset. We denote by b# the
integer constant that uniquely identifies b# ∈ B. If an abstract block b# stores
values of both kinds of scalar types (notice that only scalar values are stored
in array-based models), the logic variable mε(b

#) has the type pair of arrays,
(array(Z,Z), array(Z,Z×Z)) where the first array is used for integer values and
the second one for pointer values. For readability, we detail here only the case
of homogeneously typed blocks. Notice that the mapping mε binds fresh array
variable names to abstract blocks changed by store operation.

Locations’ type: The type MME.Loc collects the logic encoding of locations as
a pair of integer terms (eb, eo) ∈ EI × EI together with the abstract location `
provided by the static analysis, i.e., MME.Loc , EI×I×PA.L. Intuitively, in the
logic pair (eb, eo), eb is interpreted as an abstract block identifier and eo models
the offset of the location in the symbolic block of the abstract block eb, i.e., an
integer in the slice of eb.

Locations’ operations: The values of MME.Loc are built by two operations
MME.base and MME.shift defined as follows. For a program variable v,
MME.base(v) is based on the abstract location `# returned by PA.base(v). The
domain of `# shall have only one abstract block b# because program variables
are located at the start of symbolic blocks. Moreover, the term denoting the
offset shall be the constant 0. Formally:

MME.base(v) , 〈(b#, 0), `#〉 where PA.base(v) = `#, domain(`#) = {b#} (9)

The shifting of a location in Loc by an expression e is computed based on the
abstract shift operation as follows:

MME.shift(m, 〈(eb, eo), `#〉, e) , 〈(e′b, eo + e), `#s 〉 (10)

where `#s = PA.shift(ms, `
#, e) and the new logic base e′b selects (using a

conditional expression) the base b#i from the ones of `#s . Let us denote by
fits(eb, `

#, b#) the boolean term testing that the block identifier in eb is one
of the blocks identifiers in PA.domain(`#) which has the same symbolic block

(i.e., base) as b#i , i.e.:

fits(eb, `
#, b#) ,

∨
b#j ∈PA.domain(`#) s.t. PA.base(b#j )=PA.base(b#)

eb = b#j (11)



Using fits, if PA.domain(`#s ) is {b#1 , . . . , b#n }, the formal definition of e′b is:

e′b ,

fits(eb, `
#, b#1 ) ∧ PA.slice(b#1 , eo + e) ? b#1 :

. . . fits(eb, `
#, b#n−1) ∧ PA.slice(b#n−1, eo + e) ? b#n−1 : b#n

 (12)

Indeed, since the shift operation can not change the symbolic block, we have
to test, using fits, that each resulting block identifier b#i has the same symbolic
block as eb.

The size of the expression encoding MME.shift depends on the product of
sizes of domains computed by PA for `# and `#s . If the abstract locations have

a singleton domain, i.e. PA.domain(`#s ) = {b#1 }, then e′b is simply b#1 . When the
precision of the SA does not enable such simplification, we could soundly avoid
big expressions generated by MME.shift by using in MME.load and MME.store
operations only the component abstract location of an environment’s location.

Loading from memory: Reading an integer value in the environment m at a
location l = 〈(eb, eo), `#〉 is compiled into a read operation (denoted by a[e] for
concision) from an array variable obtained by statically dispatching the logical

base eb of l among the possible base identifiers in PA.domain(`#) = {b#1 , . . . , b#n }
as follows:

MME.load(m, num, 〈(eb, eo), `#〉) , Vint (e) (13)

where

e ,

 eb = b#1 ? mε(b
#
1 )[eo] :

. . . eb = b#n−1 ? mε(b
#
n−1)[eo] : mε(b

#
n )[eo]

 (14)

The size of the expression above may be reduced by asking to SA an over-
approximation o# of the values of expression eo in the current state. If SA is
able to produce a precise result for o#, we could remove from the expression
above the cases for abstract blocks b#j for which PA.slice(b#j , o

#) = false (i.e.,

the formula is invalid for the values in o#).
The expression in equation (14) is also used for reading pointer values. In

this case, the expression obtained is a tuple. The abstract location corresponding
to this logic expression is obtained using the abstract PA.load operation in the
abstract state component ms of the environment:

MME.load(m, t ptr, 〈(b, o), `#〉) , Vptr
(
e,PA.load(ms, t ptr, `#)

)
(15)

Storing in memory: The compilation of store semantic operation is done by the
MME.store operation that produces a new environment m′ and a boolean term
(formula) e′ encoding the relation between the logic arrays associated to blocks
before and after the assignment as follows:

MME.store(m, t, 〈(eb, eo), `#〉, v) , m′, e′ for v ∈ {Vint(e),Vptr(〈e, `#v 〉)} (16)

where m′ = 〈s′#,m′ε〉 with s′# the abstract state computed by the analysis for
the control pointer after the assignment compiled. The new block mapping m′ε



uses fresh logic variables for the abstract blocks in the domain PA.domain(`#) =

{b#1 , . . . , b#n } of the abstract location `# at which is done the update:

m′ε , m[b#1 ←− α1, · · · , b#n ←− αn] (17)

The fresh variables are related with the old ones using the store operator on logic
arrays, denoted by a[i←− e], in the generated formula e′ defined as follows:

e′ , ∧ni=1

(
(eb = b#i ) ? αi = m[b#i ][eo ←− e] : αi = m[b#i ]

)
(18)

The size of this expression may be reduced using the SA results in a similar
way as for load. In general, the size of expressions generated by the compilation
in equations (12), (14) and (18) depends on size of the domain for the abstract
locations computed by the static analysis. Indeed, if the analysis always provides
abstract locations with a singleton domain, the compilation produces expressions
with only one component, while proving most separation annotations. However,
if the analysis computes a small set B (however bigger or equal to the number of
program variables), the VC generated does not win any concision (we are falling
back to the separation given by the typed model).

Functor’s properties: The requirements on the signature PA ensure that the
operations domain, load and shift are sound. This enforces the soundness of defi-
nitions for the MME’s operations. Based on this observation, we conjecture that
these operations compute a sound post-condition relation, although this relation
maybe not the strongest post-condition. A formal proof is left for future work.

5 Instances of Pointer Analysis Signature

The signature PA may be implemented by several existing pointer analyses. We
consider three of them here and we show how they fulfill the requirements of PA.
We also define an analysis which exploits the results of a precise pointer analysis
to provide an appropriate partitioning of the memory in PA.B.

All pointer analyses we consider computes statically the possible values (i)
of an address expression, i.e., an over-approximation of [[ a ]] (a ∈ Aexpr from
Figure 4) and (ii) of an address dereference, i.e., an over-approximation of [[ ∗a ]].
For these reason, these analyses belong to the points-to analyses class [19].

5.1 Basic Analyses (B and B>)

The first points-to analysis abstracts locations by a finite set of pairs (v, I#)
built from a symbolic block identifier v and an abstraction for sets of integers
I# collecting the possible offsets of the location in the symbolic block. If we
fix I# to be the abstract domain used to represents sets of integers, then the

abstract domain for locations is defined by Loc# , 2Cvar×I
#

.
Many abstract domains have been proposed to deal with integer sets in ab-

stract interpretation framework. For points-to analysis, most approaches use the
classic domain of intervals [16]. To obtain more precise results, we consider here



L , Loc# S , Stmt→ S# (20)

B , Cvar base(v) , {(v, {0})} slice(v, e) , 0 ≤ e < sizeof(cty(v)) (21)

domain(`#) , {v | (v, I#) ∈ `#} (22)

shift(s, `#, e) , t#

(vk,I
#
k

)∈`#
{(vk, I#k +# [[ e ]]#(s))} (23)

load(s, t ptr, [[ a ]]#(s)) , [[ ∗a ]]#(s) (24)

Fig. 9: Implementation of PA by analyses B and B>

the extension of the interval domain which also keeps modulo constraints and
small sets of integers. This domain is implemented in the Eva plugin of Frama-
C [22]. Then, the abstract sets in I# are defined by the following grammar:

I# 3 I# ::= > | [i∞..i
′
∞]r%n | {i1, . . . , in} (19)

where r, n ∈ N are natural constants, i1, . . . , in ∈ Z are integer constants and
i∞, i′∞ ∈ Z ∪ {+∞,−∞} are integer constants extended with two symbols to
capture unspecified bounds. We wrote [i∞..i′∞] for [i∞..i′∞]0%1. The concretiza-
tion of a value I# in I#, γ : I# → 2Z maps [i∞..i′∞]r%n to the set of integers
k ∈ [i, i′] such that k%n = r. Because the abstract intervals are used to cap-
ture offsets in symbolic blocks which have a known size (given by the ABI), the
concrete offsets are always bounded, but they may be very large. We obtain in-
dependence of the ABI by introducing unspecified bounds for intervals and the
> value. For efficiency, the size of explicit sets {i1, . . . , in} is kept bounded by a
parameter of the analysis, denoted in the following ilvl. The domain I# comes
with lattice operators (e.g., join t#) and abstract transformers for operations
on integers. Our work requires a sound abstract transformer for addition, +#.

Precise offsets (B): Let us consider a precise instance of such an analysis, i.e.
field-sensitive and employing the abstract domain of intervals I# defined above.
Let S# be the abstract domain for program’s states implemented in this analysis.
This domain captures the abstract values for all program’s variables. We denote
by JaK#(s) the abstract location (in Loc#) computed by the analysis for the
address expression a at statement s. For address expressions typed as pointer to
pointer types, the abstract value of the address expression J∗aK#(s) is also an
element of Loc# and computes the points-to information.

The types and operations of PA are shown in Figure 9. The symbolic blocks
are not partitioned, since B , Cvar. Then, the slice for a block is the set of
valid offsets for the symbolic block and the generated constraint is very simple.
Abstract locations are shifted precisely using the abstract transformer for addi-
tion in I#. It is usually precise when e is a constant. The soundness properties
required by PA are trivially satisfied due to the simple form of abstract blocks’
type and the soundness of operations on the abstract domains used.

Imprecise offsets (B>): We also consider an instance of the points-to anal-
ysis which is not field-sensitive. For example, the B> analysis computes for
[[ &SORT.out2 ]]

#
(s3), where s3 is the assignment at line 3 of listing in Figure 3(a),

the set of abstract location {(dfi,>), . . . , (pfj,>) | 1 ≤ i ≤ 8, 1 ≤ j ≤ 4}. The
definition of the elements of the signature PA is exactly the one given in Figure 9.



5.2 Partitioning by Cells (C)

Analyzers that do not handle aggregate types (arrays and structs) decompose
the symbolic blocks of variables having aggregate types into atomic blocks that
all have a scalar type. We call these blocks cells. For examples, the symbolic
block of variable pf in Figure 3(b) is split into four cells of type pos_t. For this
analysis, the definitions for PA are those given in Figure 9 except for the type B
and the operations using this type slice and domain. To define B, we first define
the set C(t) of cells-paths of type t by induction on the syntax of t as follows:

C(t) ,


{ε} if t ∈ Styp⋃

1≤i≤n fi · C(ti) if t is the record type {f1 : t1, . . . , fn : tn}⋃
0≤i<n[i] · C(te) if t is the array type te[n]

where the operator “·” prefixes each path of its second operand by its first
operand. For a variable v, we define C(v) = v · C(cty(v)). For example in Fig-
ure 3)(b), C(df) = {df·[0], . . . , df·[7]}. Given a cell-path c, we denote by r(c) the
range of offsets (in bytes) that correspond to the path and which is computed
using ABI. Then, we replace definitions in equation (21-22) from Figure 9 by:

B , {C(v) | v ∈ Cvar} slice(v · c, e) , e ∈ r(c)
domain(`#) , {v · c ∈ B | ∃i ∈ N, (v, i) ∈ γ(`#) ∧ i ∈ r(c)}

meaning that the slice of a cell-path is given by the range of bytes corresponding
to the cell, and the domain of an abstract location is defined by enumerating all
cells that intersect with abstract location’s abstract offsets.

5.3 Partitioning by Dereference Analysis (P)

We have seen in Section 4.2 that the size of generated VC strongly depends on
two factors: the size of B and the number of abstract blocks in the domain of
abstract locations. This section defines an analysis which, based on the results
of B, aims to minimize these two factors while still producing sound results.
Roughly, the idea is to group cells that are accessed by a set of left values which
is upwards-closed w.r.t. the relation “points-to” computed by B. Therefore, two
different abstract blocks will never be pointed-to by the same left value, i.e., if
the domains of abstract locations [[ ∗a1 ]]

#
(s1) and [[ ∗a2 ]]

#
(s2) share an abstract

block b#, then [[ a1 ]]
#

(s1) and [[ a2 ]]
#

(s2) belong to the same block.
For this, we define a partition P of pointer-typed left-values used by state-

ments of the current context call using the equivalence relation ' defined as
follows. We denote by `# ↓n the set of concrete locations γ(`# +# 0) ∪ . . . ∪
γ(`# +# n− 1). Then, two left-values appearing in some statements are related
by ' if the concretization of the abstract locations computed by B for their
addresses on the corresponding statements overlap. Formally, for any left-values
lv1 and lv2 used in statements s1 resp. s2,(
J(&lv1)t1K#(s1) ↓n1

) ⋂ (
J(&lv2)t2K#(s2) ↓n2

)
6= ∅ =⇒ (lv1, s1) ' (lv2, s2)



where ni = sizeof(ti). By definition, this relationship is reflexive and symmet-
ric, and we close it transitively. It is computed by a simple iterative process on
top of the results of B analysis. For a given element p ∈ P , we compute the set
of concrete locations pointing to left-values in p:

B(p) ,
⋃

(lvi,si)∈p
γ(J&lviK#(si))

Analysis P implements signature PA using the definitions in Figure 9 except for
(21-22) that are replaced by:

B , {〈v, s〉 | ∃p ∈ P ∧ s = {i | (v, i) ∈ B(p)}}
slice(〈v, s〉, e) , e ∈ s

domain(`#) , {〈v, s〉 ∈ B | ∃i ∈ N, (v, i) ∈ γ(`#) ∧ i ∈ s}

In the example on Figure 3(b), if B is precise enough, P computes a B which
splits the symbolic block labeled by the array variable df into (only) two abstract
blocks: one for the bytes located at indexes [1..4] (whose addresses are stored in
input fields) and another for indexes {0} ∪ [5..7] (stored in output fields).

6 Experimental Results

6.1 Implementation

We implemented our framework in Frama-C [22], an extensible and modular
platform for the analysis of software written in C. Frama-C includes various
plug-ins, interacting with each other through interfaces defined by the platform.

The plug-in Eva is a context-sensitive static analyzer based on abstract in-
terpretation; it employs several numerical abstract domains, including the one
defined in eq. (19) for sets of integers. On top of the value analysis provided
by Eva, which includes the B analysis from Section 5, we coded new partition
analyses to obtain analyses B>, C and P.

The WP plug-in of Frama-C is a DV tool which also includes a built-in sim-
plifier for formulae, Qed [14], a driver to call SMT solvers and the signature
MME for memory model environments [15]. We coded in WP the signature PA,
the functor defined in Section 4.2, and each implementation of PA for the above
static analyses. The full development represents 1680 LoC of Ocaml.

6.2 Experimental setup

Case study: We consider a case study which extends our running example from
Figure 2 such that the type data_t is a record which encapsulates numerical
values to be sorted and other information. We attempt to prove the functional
correctness of the sort function for various number of inputs N ∈ {4, 8, 16, 32}.
The specification of sort consists of 40 ACSL properties, which WP transforms
into 62 VC for each memory model. We also consider 3 different context calls
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Fig. 10: Comparison between analyses on number of partitions

for sort as the entry point for the analysis. They initialize the fields of the SORT

variable using pointers to: variables on the stack similar to Figure 3(a) (vars),
fields of a single record (strct) and two arrays (for values and permutations)
(arrs). In addition, we consider two variants for contexts strct and arrs. In the
(grp) variant, all input and output fields are grouped together, i.e., inputs point
to the first N fields/indexes in a regular way and outputs to the remainder. For
the (rdn) variant, inputs and outputs are initialized in a randomized order, as
in Figure 3(b) for arrs. The latter case is designed to defeat points-to analyses
where offsets are abstracted solely by intervals plus congruences.

Variants of memory models: For comparison with the basic DV tools, we also
conduct proof using the default memory model of WP (case Typed). To observe
the influence of the precision of points-to analysis B on the generated memory
models environments, we vary the parameter ilvl which gives the upper limit for
the size of small sets kept by the abstract domain I# in Section 5.1. We apply B
for ilvl in {4, 8, 16, 32} to generate its memory model environment and the VC.
For the same values, we launch the C (resp. P) analysis after B and generate
the corresponding environments.

Proving VCs: WP generates VC using the library for many sorted first-order logic
provided by Qed. After applying on-the-fly simplifications of VCs, Qed exports
the VC to back-end solvers. We configure WP to discharge simplified VCs to the
Alt-ergo prover and the remaining unproved VCs to be sent to CVC4. Those
experiments ran on an Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz with a
timeout of 10 seconds per goal for each solver.

6.3 Results

Figure 10 shows the number of partitions (size of PA.B ) inferred by the various
analysis for a given call context. Recall that the partitioning generated by B is
always constant, since fixed by the program variables. As expected, C’s result is
linear in the number of inputs (right plot in 10). The partitioning by P creates
fewer abstract blocks when N is less than ilvl (left plot in 10). Fewer blocks
means a less precise analysis: in our example, the two equivalence classes that
get merged are those corresponding to inputs and outputs.

Figure 11 (left) shows that B partitioning is sufficient to prove all goals for
the vars context, since all values are implicitly separated onto different symbolic
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bases. However, for contexts strct and arrs, inputs and outputs share the same
symbolic base which is too imprecise to prove all goals. Analysis B> infers that
the fields of SORT point to all possible inputs and outputs, which yields even worse
results. The results for C partitioning worsen with the increase in the number
of inputs due to the complexity of the VCs generated. For P partitioning, we
are not interested in the vars context considering it is but a small refinement
of B in that context. In our experiments, we were able to identify two classes
of experiments giving similar results in term of provability and time: Pmax are
results for experiments where partitions are maximal and conversely for Pfew.
For readability reasons, we display only the worse results of those two classes.

Figure 11 (right) shows for each model the total time spent on the VCs that
get proven (i.e., do not timeout), and the total number of proven goals. For an
equal number of proven goals, shorter times are better. We observe that more
partitions lead to bigger VCs which take more time to be proven, especially for
C partitioning. Refining B partitioning within P leads to a better provability
at the cost of a negligible increase in time in provers. Indeed, we are interested
in proving all VCs since some goals (shown as valid) implicitly assume that
other goals are verified. These results demonstrate that P analysis offers the
best trade-off between partition’s granularity and provability in reasonable time,
regardless of the context. Moreover, all verification conditions are proved for
the regular context; for randomized contexts, better results are obtained by
increasing the precision of points-to analysis B. The improvement of P is real
because B exhibits the same performance only for the vars context.

7 Related Work and Conclusion

Memory Model for C: Program verification and certified compilation have pro-
posed several memory models to capture the semantics of C pointers. All these
models view the memory as a collection of disjoint regions. Two main classes
may be distinguished: (i) the regions are typed by the value stored, therefore
regions storing values of different types are disjoint and (ii) the regions are seen
as raw arrays of bytes to capture low-level manipulations of memory in C. The
first class provides a good abstraction for verification of type-safe languages,
(e.g., Java-like [2,1], HOL [27]) or type-safe C programs (GRASSHoper [30],
HIP/Sleek [13]). The second class is mainly used inside static analyzers for



C (Infer [10], MemCAD [11], Eva [8]) or deductive verifiers (Caduceus [17],
HAVOC [12], SMACK [31], VCC [5], VeriFast [21]). Hybrid memory models
either introduce typing in raw memory models for efficiency, or introduce raw
models in typed ones for precision. WP supports both classes of models and
provides instances of the environment MME for them [15].

The CompCert project [25,24] employs an abstract memory model to capture
in an uniform way refinements of memory models for the certified compilation of
C. This work also inspired [33], which surveys several concrete memory models
for C and proposes a method to design static analyzers based on abstract memory
models. Eva is not built following these principles for efficiency reasons.

Separation Logic versus FOL: Separation Logic [29] is used in many verification
tools for C (e.g., GRASSHoper, HIP/Sleek, Infer, VCC, VeriFast) due to the
efficiency of local reasoning. The specification logic used in Frama-C, ACSL [3],
includes a separating conjunction operator (understood by WP and Eva plugins),
but it is far weaker than the standard separating conjunction operator. The
underlying solvers for SL of the above tools are either not available or deal
with the type safe fragment of C. The recent SL-COMP initiative motivated the
development of several independent solvers for type safe fragments of SL, one of
them included in the CVC4 [32] solver. Our work focuses on DV tools using FOL
and infers separation properties between memory regions. Our pointer analyses
may be used in SL-based tools to obtain precise properties on arrays of pointers.

Pointer Analyses for DV: Static analysis based on region inference is used in [20]
to partition a typed memory model. The analysis is less precise than the points-
to analysis in Eva because the loss of precision for one location could force many
precise locations to be collapsed in the same region. [31] employs pointer analysis
to ensure a sound usage of the typed memory model in presence of casts. This
work may be applied to extend the class of programs we deal with, but our
focus is on improving efficiency of DV, not its realm. Recent work [36] proposes
a precise points-to analysis to infer separation information in order to decrease
the size of VCs. Although Eva is doing a less precise analysis, it is still able
to infer such separation properties. In addition, we define a formalized channel
to transfer such information to DV tools. The authors of [5] explore different
memory models to generate with VCC a benchmark of problems for SMT solvers.
By implementing various memory models for WP, we increase such benchmark.

Conclusion: We have formalized the collaboration of a pointer analysis tool and
a deductive verification tool by a functor which exploits the results of the pointer
analysis to define sound and precise memory model environments used in the
generation of verification conditions in first order logic theories. We applied this
functor to several pointer analyses, including classic analyses (points-to analysis)
and a new analysis that allows to obtain precise partitioning information of
the program’s memory. We reported on the implementation of the functor in
Frama-C and on the results obtained by different analyses on a benchmark of C
programs that exhibit complex features of pointers in C (arrays of pointers,
duality of fields) and complex separation annotations. The results obtained show
the interest of our functor for the automatization of deductive verification.
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5. S. Böhme and M. Moskal. Heaps and data structures: A challenge for auto-
mated provers. In Proceedigns of CADE-23, volume 6803 of LNCS, pages 177–191.
Springer, 2011.

6. R. Bornat. Proving pointer programs in Hoare logic. In Proceedings of MPC,
volume 1837 of LNCS, pages 102–126. Springer-Verlag, 2000.

7. J. Brotherston and M. Kanovich. On the Complexity of Pointer Arithmetic in
Separation Logic (an extended version). arXiv:1803.03164 [cs], Mar. 2018. arXiv:
1803.03164.

8. D. Bühler. Structuring an Abstract Interpreter through Value and State Abstrac-
tions. PhD thesis, University of Rennes, 2017.

9. R. M. Burstall. Some techniques for proving correctness of programs which alter
data structures. Machine Intelligence, 7:23–50, 1972.

10. C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Beyond reachability: Shape
abstraction in the presence of pointer arithmetic. In SAS, volume 4134 of LNCS,
pages 182–203. Springer, 2006.

11. B.-Y. Chang, X. Rival, and G. Necula. Shape analysis with structural invariant
checkers. In Proceedings of SAS, volume 4634 of LNCS, pages 384–401. Springer,
2007.

12. S. Chatterjee, S. K. Lahiri, S. Qadeer, and Z. Rakamarić. A low-level memory
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