
BOJKO ET AL.: SELF-IMPROVING SLAM IN DYNAMIC ENVIRONMENTS 1

Self-Improving SLAM in Dynamic
Environments: Learning When to Mask -
Supplementary Materials

Adrian Bojko
adrian.bojko@cea.fr

Romain Dupont
romain.dupont@cea.fr

Mohamed Tamaazousti
mohamed.tamaazousti@cea.fr

Hervé Le Borgne
herve.le-borgne@cea.fr

Université Paris-Saclay, CEA, List
F-91120,
Palaiseau, France

1 Method details

1.1 SLAM Pipeline

Figure 1: Overview of Dynamic SLAM with Temporal Masking and comparison to other
approaches. The key improvement compared to other methods is the per-class choice be-
tween masking and not masking objects that does not depend on the SLAM itself, nor priors
on object motion or semantics.

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

2 BOJKO ET AL.: SELF-IMPROVING SLAM IN DYNAMIC ENVIRONMENTS

We present our SLAM pipeline in Fig. 1. A basic SLAM is composed of two modules:
Keypoint detection and Tracking and Mapping. It takes as input the current frame at time t
and outputs the camera pose at time t. A standard Dynamic SLAM adds semantic masking
between these two elements, unconditionally filtering keypoints that are on masked objects
considered dynamic. Our approach is to add Temporal Masking: a decision module that
computes at frame-level and class-level binary masking decisions, i.e., which classes should
be masked in the current frame to improve SLAM performance (using a given masking
algorithm like Mask R-CNN [4]) and which should not. The decision module uses a video
sample as input, which is a set of past frames (before time t) + the current frame at time t.
Note that the past frames do not have to be consecutive nor immediately precede the frame
at time t: the sample may include frames from the far past.

1.2 LSTM Encoder-Decoder architecture
We propose an architecture for the LSTM Encoder-Decoder in Fig. 2. A ReLU activation
and a dropout follow intermediate fully connected layers. The last layer is activated with a
sigmoid. We use a binary cross-entropy loss for multi-label classification. The last layer has
size p+1 as it corresponds to the p semantic classes to mask + a nothing to mask class: the
latter is a background class and is discarded after inference.

Figure 2: LSTM Encoder-Decoder architecture. When masking p classes, the output has
length p+1 as it includes a nothing to mask class.

1.3 Temporal Annotation: overview and baseline methods
In frame-wise annotations, every frame is separately annotated – manual frame-wise annota-
tions correspond to fully supervised training and automatic ones to self-supervised training.
In sequence-wise annotations, objects of the same class are either masked in all frames or
in none – these are weak annotations and correspond to weakly supervised training. As data
annotation is a costly, SLAM-specific, expert task, we propose to learn temporal masks with
self-supervision and compare self-supervision to simpler approaches, full and weak supervi-
sion. Figure 3 illustrates the different annotation methods.

Full Supervision Annotations for full supervision are manual and frame-wise: they consist
in deciding for every frame and semantic class if masking objects of this class in this frame
improves SLAM performance. They require SLAM expertise and become prohibitively
costly as the sequence length increases.

Weak Supervision Annotations for weak supervision are manual and sequence-wise: they
consist in taking a unique decision for each class and each sequence. The mask of a class

Citation
Citation
{He, Gkioxari, Dollár, and Girshick} 2017

BOJKO ET AL.: SELF-IMPROVING SLAM IN DYNAMIC ENVIRONMENTS 3

Figure 3: Sequence annotation methods. The annotation consists in deciding, per class,
when to mask objects of this class with semantic segmentation. a) In full supervision, a
human expert makes decisions for every frame. b) In weak supervision, a human expert
makes a single decision that is applied to all frames. c) In self-supervision, an automatic
annotation method makes decisions for every frame.

is always active if it improves SLAM performances when at least one frame is masked.
Otherwise, the mask is never active for the training sequence. Note that at inference, a
model may take different masking decisions within the same sequence even if trained with
weak annotations.

1.4 Temporal Annotation: self-supervised method
We first present the annotation method for a single class to mask. Iterating through the full
temporal mask space is computationally intractable (up to 2n masks large, where n is the
sequence length). Thus, we compute temporal masks in three steps for every sequence:

1. Random sampling of a subset of all possible temporal masks. The restricted random
sampling makes the problem computationally tractable.

2. Benchmarking of the sampled temporal masks using a unified metric. The use of a
suitable unified metric makes mask aggregation automatically integrate SLAM failure
cases.

3. Performance-weighted aggregation of sampled temporal masks into a unique mask.

The rationale is that samples that perform well tend to mask objects more appropriately, so
the result from the aggregation masks objects precisely when appropriate. Step 2 is straight-
forward: for every sample to test, we run the SLAM applying semantic masks according to
the masking decisions in the sample and measure its performance with the unified metric.

1.4.1 Random Sampling of Temporal Masks Subspace

We generate a set of basic temporal masks that we will benchmark to know their impact on
SLAM performance. Let l the sequence length, k0 and k1 the minimum required length of
resp. contiguous blocks of zeros and blocks of ones in a temporal mask (0 = do not mask, 1
= mask). For instance, if we set l = 7, k0 = 2 and k1 = 3, then the following temporal masks
(0 = do not mask, 1 = mask):

4 BOJKO ET AL.: SELF-IMPROVING SLAM IN DYNAMIC ENVIRONMENTS

• Respect k0 and k1: 1110000 ; 0011100

• Do not respect k0 and k1: 1110111 ; 0011000

We uniformly sample masks from the space E(l,k0,k1) of all temporal masks of length l
that respect the min. lengths k0, k1. The rationale is that the states of the objects in the scene
do not change too quickly: by skipping high-frequency changes (low k0, k1), we focus on
masks more suited to the scene.

Figure 4: Illustration of sampled temporal masks from a temporal mask space (blue =
masked, black = not masked). Conditions k0,k1 on masked/unmasked block sizes prevent
quick changes between masking states.

We represent E as a binary tree (see Fig. 5). To keep the problem computationally
tractable, the key insight is to use a closed-form expression of the number of possible paths
C(N) under any bifurcating node N. Starting from the root, whenever we reach a node that
has two children, we randomly pick a child with the odds of each child proportional to the
number of possible masks under it. Any mask corresponding to a root-to-leaf path computed
in this way has a uniform probability of being sampled from E. Note that if k0 = k1 = 1 the
sampling is trivial as E is the space of all binary strings of length l. Fig. 4 illustrates what
sampled masks look like.

Constructing the binary tree representing E. We construct E such that any temporal
mask corresponds to the node values of a unique root-to-leaf path in the tree. The differences
with an unconstrained binary tree are: 1) All leaves have a depth equal to the sequence
length 2) Any temporal mask generated from the tree must respect the minimum block size
conditions k0 and k1.

Let i ∈ 0,1. We call an i-node a node of value i, i-branch consecutive i-nodes connected
without intermediate bifurcations, and bifurcating nodes that have two children. A direct
consequence of condition 2) is that we can only add an i-node whose value is different from
its parent if it is inside an i-branch at least ki nodes long. Hence, all temporal masks are
defined by a unique set of bifurcation choices: the first branching choice at the tree root +
the value of the bifurcating nodes it crosses. Other node values are redundant since they are
non-bifurcating and their value determined by their parent.

For instance, let l = 7,k0 = 2, k1 = 3. Fig. 5 illustrates E(7,2,3). If we start with a
0-branch, our mask becomes 00. Then, if we choose to add a 1-branch (we cannot add less
than k1 1-nodes after a 0-node), our mask becomes 00111. For the last bifurcation, we can
either add a 0-branch (resulting in 0011100) or a 1-node. In the latter case, we are then
forced to add another 1-node as there is no space left for a 0-branch, resulting in 0011111.
Represented as bifurcations choices, 0011111 ⇐⇒{0,1,1} (highlighted in in Fig. 5).

Uniformly sampling from the masking binary tree. To compute a root-to-leaf path, we
make consecutive bifurcation choices. At each step of the traversal, let B the last bifurcation
node currently reached. Let C(N) be the number of different masks that can be generated
starting from a node N. We define the criterion Q for the next bifurcation choice b: we
sample a random number r ∈ [0,1[then set b = 0 if r < C(B∪{0})

C(B) (i.e., we branch towards

BOJKO ET AL.: SELF-IMPROVING SLAM IN DYNAMIC ENVIRONMENTS 5

Figure 5: Temporal mask space E(l = 7,k0 = 2,k1 = 3) as a masking binary tree. A temporal
mask is equivalent to a root-to-leaf path.

zero) and b = 1 otherwise (i.e., we branch towards one). Hence, the probability P(b|B) of
making choice b from node B is P(b|B) = C(B∪{b})

C(B) .
Let M = {B0, ...,Bp} an ordered set of bifurcation nodes and {b0, · · · ,bp} the corre-

sponding branching choices to reach them, made with the criterion Q, defining a mask M in
E(l,k0,k1). Thus:

P(B0, ...,Bp) = P(b0)×P(b1|b0)× ...×P(bp|b0, ...,bp−1)

=
C(B0)

|E|
× C(B1)

C(B0)
× ...×

C(Bp)

C(Bp−1)
=

1
|E|

(1)

Note that C(Bp) = 1 (end of tree at the p-th choice) and C(B0) is the total number of
possible masks (i.e., the size of E) since the first bifurcation is the tree root. Thus P(M)= 1

|E| :
the generated mask is uniformly sampled. We only need a closed-form solution for C to be
able to uniformly sample temporal masks.

Closed-form solution. We define un and vn as the number of possible masks starting
from resp. a bifurcating 0-node and 1-node at depth n. This implies than C(B) = un if B is a
0-node and C(B) = vn otherwise. Given the constraints k0,k1 we have the relation:{

un = un+1 + vn+k1

vn = un+k0 + vn+1
(2)

By re-indexing the depth n from the end of the tree and defining k := k0 + k1, we have:{
un = un−1 + vn−k1

vn = un−k0 + vn−1
⇐⇒

{
un = 2un−1 −un−2 + vn−k−1

vn = 2vn−1 − vn−2 + vn−k−1
(3)

Eq. (3) shows that (un) and (vn) are linear recurrence relations with constant coefficients
and the same characteristic equation: xk+1−2xk +xk−1−1 = 0. [1] gives direct formulas for
the initial conditions and approximate solutions. For large n, un and vn have an approximate
form αρn with ρ ⪆ 1,α ∈]0,1[. Finally, we numerically solve the characteristic equation,
obtaining a closed-form solution for C. We are now able to directly evaluate criterion Q for

Citation
Citation
{Austin and Guy} 1978

6 BOJKO ET AL.: SELF-IMPROVING SLAM IN DYNAMIC ENVIRONMENTS

bifurcation choices, i.e., uniformly sample the temporal mask space E(l,k0,k1). The total
size of E is |E|= u(l − k0)+ v(l − k1) as the root is not a node per se but only a bifurcation.

1.4.2 Benchmarking of the Sampled Temporal Masks

This step if straightforward: for every sample, we execute the SLAM while applying seman-
tic masks according to the sample being tested. We then evaluate the computed trajectories
using a single metric as the USM (sec. 1.5).

1.4.3 Sampled Temporal Mask Aggregation

After measuring the performance (i.e., score) of every temporal mask previously sampled,
we aggregate them. To do so, we sum the differences between all pairs of sampled masks
(vectors made of -1,0,1) weighted by their score difference. The idea is that a difference in
performance is explained by the difference in masking decisions, so the score-weighted sum
is a real vector where high values indicate frames that must be masked and low values frames
that must not be masked. Let x,y be two sampled temporal masks and sx,sy their respective
scores. To consider only significant score differences, let σa be the absolute noise (below
which score differences are meaningless) and σr the relative noise (the score difference must
be at least σr times the first score of the pair). Then we compute the result vector R:

R = ∑
x,y∈Samples

max(0,sgn(
∣∣sy − sx

∣∣−max(σr|sx| ,σa)))
×(sy − sx)(y− x) (4)

R is a real-valued vector that has high values at indexes where images should be masked
and low values where images should not be masked. We normalize R in [0,1] and binarize by
applying thresholds in [0,1], generating an arbitrary number of masks. We finally test these
masks and select the best one score-wise. If there are equivalent masks (within the noises σa
and σr), we choose the one that masks the most frames. We call this method Max TM.

1.4.4 Generalization to multiple classes

Let a sequence of length l and p classes to mask. In the single-class case, we sample q
vectors of length l. In the multiclass case, we sample pq vectors that we join in matrices of
size l × p. The benchmarking step is unchanged.

The aggregation step is the same up to the computation of R, which is now a real-valued
matrix. In the single-class case, R is a vector that we binarize by applying thresholds. In the
multiclass case, every class (i.e., column) may have a different optimal threshold. Hence,
for every class i: 1) We generate a matrix Ri by zeroing out all columns other than column
i. 2) As in the single-class case, we apply thresholds, generating an arbitrary number of
temporal masks, evaluate them and select the best one Ti. The rationale is to maximize
the relative effect of masking class i. 3) We select the best temporal mask score-wise. 3)
We concatenate columns 1, . . . , p of resp. T1, . . . ,Tp, resulting in a temporal mask where all
classes are appropriately masked.

1.5 USM: Unified SLAM Metric

ATE RMSE (Absolute Trajectory Error) and sometimes Tracking Rate (% of tracked frames)
are two SLAM metrics of interest for our method since they resp. reflect SLAM accuracy

BOJKO ET AL.: SELF-IMPROVING SLAM IN DYNAMIC ENVIRONMENTS 7

and robustness. As our method maximizes a single scalar value, we propose a metric to unify
both ATE RMSE and Tracking Rate (TR),

Regarding the SLAM literature, the performance of a SLAM method is usually reported
in terms of ATE RMSE. Sometimes, the authors also report the Tracking Rate. This second
metric is nevertheless often ignored although it has important consequences from a practical
and scientific point of view. In practice, it is obvious that a method that suddenly fails is
not satisfactory and may cause severe issues depending on the application. It also carries a
risk to the scientific community since it makes the design of SLAM methods biased towards
minimizing the ATE RMSE, regardless of early SLAM failures.

In practice, how can we compare fairly runs with (ATE RMSE=1mm, TR=10%) to (ATE
RMSE=1cm, TR=100%)? ATE RMSE is misleading when there are drops in Tracking Rate.
One has to compare both at the same time or use the USM. Misleading ATE RMSE/TR
typically appear when using the Full Masks baseline. This baseline masks everything that
might move, so when the solution is not to mask (Fig. 12), it crashes. As the ATE RMSE
is computed only on tracked frames, there are less chances for errors compared to a full-
sequence run: this means that the ATE RMSE of a run that crashes early is likely lower than
one that does not. An extreme case is a crash after the second frame: ATE RMSE would be
nearly zero. Thus, it seems important to propose a metric that unifies both ATE RMSE and
Tracking Rate.

[8] proposed to use a Area Under Curve approach to take failures into consideration but
does not balance ATE RMSE and Tracking Rate into a continuous value, which is necessary
to compare different degrees of failure. [2] recently proposed the Penalized ATE RMSE
that allows the comparison of different methods in terms of ATE RMSE, which is fixed to a
maximal value when the Tracking Rate ρ is below a threshold ρc:

Penalized ATE RMSE =

{
max(L).(1+ τ), if ρ < ρc.

ATE RMSE, otherwise.
(5)

Where τ is an arbitrary penalization factor and max(L) is the highest ATE RMSE over all
the compared methods with a Tracking Rate over ρc. While going in the proposed direction
of metric unification, this metric suffers from several drawbacks. Firstly, it depends on two
hyperparameters (τ and ρc) that are arbitrarily fixed. More critically, the resulting value
depends on the set of methods that is considered. Hence, for the scientific community, the
values may be different from one paper to another, making comparison over time difficult.

To address these issues, we propose the Unified SLAM Metric (USM). Let us consider
a method that has an ATE RMSE α and a Tracking Rate ρ . We define the function β

parametrized by a real ρc as:

β (α,ρ;ρc) =

{
+∞, if ρ < ρc.

α, otherwise.
(6)

It seems similar to the Penalized ATE RMSE but has one hyperparameter less and, most
importantly, avoids any dependence to other methods to get a score. However, in this form
β has a major drawback since it attributes a value to the methods that have a Tracking Rate
below the threshold ρc. Moreover, the fact that this value is infinite makes it difficult to
compare methods or to compute an average over several sequences.

Instead, we propose to consider exp(−β (α,ρ;ρc)). As e−β ∼ 1+β around zero, the re-
sulting metric is quasi linear for small values of ATE RMSE. Inspired by the mAPIoU=.50:0.05:.96

defined by the COCO challenge [5] to evaluate object detection, we also propose to integrate

Citation
Citation
{Yang, Cui, Bârsan, Urtasun, and Wang} 2021

Citation
Citation
{Bojko, Dupont, Tamaazousti, and Leprotect unhbox voidb@x protect penalty @M {}Borgne} 2021

Citation
Citation
{Lin, Maire, Belongie, Hays, Perona, Ramanan, Doll{á}r, and Zitnick} 2014

8 BOJKO ET AL.: SELF-IMPROVING SLAM IN DYNAMIC ENVIRONMENTS

over all possible values of ρc, resulting into a remarkably simple expression for our Unified
SLAM Metric ς :

ς(α,ρ) =
∫ 1

0
e−β (α,ρ;ρc)dρc = ρe−α (7)

For a perfect Tracking Rate and a small ATE RMSE, we have ς(α,ρ)∼ 1−α , making
it consistent with the usual metric used in the SLAM literature. However, when the system
fails, the score is penalized proportionally to the Tracking Rate, making the general behavior
of the metric correspond to user expectations. However, if one wants to have a different
balance between ATE RMSE and Tracking Rate in the final score, it is possible to introduce
an hyperparameter λ to control it, resulting into:

ςλ (α,ρ) = ρe−λα (8)

λ balances ATE RMSE (i.e., α) and Tracking Rate (i.e., ρ), and ensures dimensional
consistency. If ρ = 100% and α ≪ 1

λ
, then ςλ ∼ 1−λα , which is consistent with the usual

ATE RMSE metric. If the system fails early (low Tracking Rate), the score is penalized
correspondingly. Thus, the general behavior of our metric corresponds to user expectations.
We report some scores for several couples α,ρ and λ in Tab. 1.

A practical way to ensure ATE ≪ 1
λ

while balancing ATE RMSE/TR is to set λ =
0.1

Avg. dataset ATE RMSE .

α ρ ς ςλ=5 ςλ=10
1 cm 100% 0.99 0.95 0.90
2 cm 100% 0.98 0.90 0.82
3 cm 100% 0.97 0.86 0.74
4 cm 100% 0.96 0.81 0.67
5 cm 100% 0.95 0.77 0.61

10 cm 100% 0.90 0.61 0.37
20 cm 100% 0.82 0.37 0.14
50 cm 100% 0.61 0.08 0.01
1 m 100% 0.36 0.01 0.00
1 cm 90% 0.89 0.86 0.81
1 cm 80% 0.79 0.76 0.72
1 cm 50% 0.50 0.48 0.45
2 cm 90% 0.88 0.81 0.74
2 cm 80% 0.78 0.72 0.65
2 cm 50% 0.49 0.45 0.41

Table 1: Example of score resulting score with the Unified SLAM Metric ς for several values
of ATE RMSE α and Tracking Rate ρ . We also port ς5 and ςλ=10 that propose a smaller
relative importance of low Tracking Rates. Note: α is in meter in Eq. (8).

BOJKO ET AL.: SELF-IMPROVING SLAM IN DYNAMIC ENVIRONMENTS 9

2 Pseudocode
The pseudocode below presents the core steps of our approach.

Hyperparameters: semantic_slam(), slam_metric(), train_split, block sizes
(k0, k1), n_samples, n_past_frames↪→

Compute annotations (i.e., optimal masks)
def binary_tree_sampler():

u,v = solve_characteristic_equations(n, k0, k1)
path = []; i=0
while i < n:

if random(0,1) < u(i)/(u(i)+v(i)):
path += [0]; i+= k0

else:
path += [1]; i+= k1

return path

best_masks = []

for sequence in train_split:
R = 0; mask_set = [binary_tree_sampler() for n in range(n_samples)]

for mx in mask_set:
for my in mask_set:

sx = slam_metric(semantic_slam(sequence, m1))
sy = slam_metric(semantic_slam(sequence, m2))
R += (sy-sx)*(my-mx)

final_masks = binarize_with_thresholds(normalize(R))
best_masks += [argmax(final_masks, slam_metric)]

Train network
First compute the PCA of features from all frames of all sequences
pca_model = compute_pca(resnet50_features(train_seqs))
train_input = []; train_annotations = []

We do the following for every sequence (length n) in train_split.
for sequence, annotation in zip(train_split, best_masks):

Prepare training dataset by creating subsequences. We train the model
to infer the correct masking decision for the last frame of the
subsequence, a.k.a. the "current frame" at runtime.

↪→

↪→

for i in range(n_past_frames, n):
train_input += [pick_random_frames(n_past_frames, sequence[0:i])] +

sequence[i]↪→

train_annotations += annotation[i]

Train
spatial_representation = lambda x: pca_model(resnet50_features(x))
model = lambda x: lstm_encoder_decoder(spatial_representation(x))
model_trained = train(model, train_input, train_annotations)
return model_trained

Simplified pseudocode of the proposed Self-supervised Temporal Masking approach.

10 BOJKO ET AL.: SELF-IMPROVING SLAM IN DYNAMIC ENVIRONMENTS

3 Datasets

3.1 Privacy and licensing information

The TUM RGB-D dataset [7] is protected by the Creative Commons 4.0 Attribution License
(CC BY 4.0). There are no specific privacy statements but the people appearing in the se-
quences are clearly willingly recorded.

The KITTI odometry dataset is protected by the Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 License (CC BY-NC-SA 3.0). The official page1 specifies that they protected
the privacy of people that are involved with the dataset.

The ConsInv dataset is planned for release under similar terms.

3.2 ConsInv Dataset

The ConsInv dataset is made if three subsets: ConsInv-Indoors, ConsInv-Outdoors and
ConsInv-Extra, the first two with train/val/test splits. ConsInv-Indoors is designed for single-
class experiments on SLAM robustness (at most one object moves in a sequence). ConsInv-
Outdoors dataset is designed for multiclass experiments (several objects may move at the
same time). ConsInv-Extra includes sequences with the same objects as ConsInv-Indoors
but in different environments. We include calibration and raw data, including unused IMU
data.

We compute the ground truth using ORB-SLAM 2 [6] without early stopping in stereo
mode, which forces frequent bundle adjustments, and with all dynamic objects of the same
class masked once any of them moves (we manually annotate the delay). We verified that no
excessive masking or motion consensus inversion affected the computation.

Fig. 6 and Tab. 2 illustrate the ConsInv-Indoors dataset. Fig. 7 and Tab. 3 illustrate the
ConsInv-Outdoors dataset. Fig. 8 illustrate the ConsInv-Extra dataset (nine sequences in a
living room and nine in a meeting room0.

The ConsInv dataset is split in ConsInv-Indoors, ConsInv-Outdoors and ConsInv-Extra,
the first two with train/val/test splits. ConsInv-Indoors is designed for single-class experi-
ments on SLAM robustness (at most one object moves in a sequence). ConsInv-Outdoors
dataset is designed for multiclass experiments (several objects may move at the same time).
ConsInv-Extra includes sequences with the same objects as ConsInv-Indoors but in different
environments. We include calibration and raw data, including unused IMU data.

3.2.1 ConsInv-Indoors Dataset.

We built the ConsInv-Indoors dataset (72 seqs: 36 train, 15 val, 21 test; details in supp.
mats), made of the subsets ConsInv-Indoors-Dynamic (52 seqs) and ConsInv-Indoors-Static
(20 seqs). They include objects moving indoors. We made ConsInv-Indoors-Static to test
false starts, i.e., incorrect initializations that occur when the camera is static, and the SLAM
uses features on moving objects to initialize. Performance is measured in % of prevented
false starts. We made ConsInv-Indoors-Dynamic to evaluate SLAM robustness to motion
consensus inversions and failures due to excessive masking.

1http://www.cvlibs.net/datasets/kitti/

Citation
Citation
{Sturm, Engelhard, Endres, Burgard, and Cremers} 2012

Citation
Citation
{Mur-Artal and Tardós} 2017

BOJKO ET AL.: SELF-IMPROVING SLAM IN DYNAMIC ENVIRONMENTS 11

Figure 6: ConsInv-Indoors dataset. It includes three dynamic ob-
jects.

Subset Train Val Test
Dynamic 28 12 12

Static 8 3 9
36 15 21

Table 2: Number
of sequences of the
ConsInv-Indoors
dataset. The camera
is mobile in the
ConsInv-Indoors-
Dynamic subset and
fixed in ConsInv-
Indoors-Static.

3.2.2 ConsInv-Outdoors Dataset.

We built ConsInv-Outdoors to evaluate SLAM robustness in real outdoor settings. It includes
69 seqs. (44 train, 10 val, 15 test) with cars and pedestrians2. They move in some sequences
and not in others, sometimes at the same time but not always. Therefore, all-or-nothing
strategies (masking all objects or none) are likely to perform poorly.

Figure 7: ConsInv-Outdoors dataset. It includes sequences with ve-
hicles and pedestrians.

Train Val Test
44 10 15

Table 3: Number
of sequences of the
ConsInv-Outdoors
dataset.

3.2.3 ConsInv-Extra Dataset.

We made two sets of nine difficult sequences with the dynamic objects of the ConsInv-
Indoors dataset, respectively in a meeting room and in a living room.

Figure 8: Context of ConsInv-Indoors (office, left) and contexts of ConsInv-Extra: meeting
room (mid) and living room (right).

2People appearing in the dataset gave their consent for recording and dataset publication. License and privacy
info are in the Github repository.

12 BOJKO ET AL.: SELF-IMPROVING SLAM IN DYNAMIC ENVIRONMENTS

4 Experiments

4.1 Setup: Spatial Representation Computation

Figure 9: Process to compute spatial representations using ResNet50.

Spatial representation. We use ResNet-50 [3] (TensorFlow 2, pretrained on ImageNet)
to compute frame features. We do not fine-tune it. For every frame, we collect the output
of each of the 17 convolutional blocks of ResNet-50. For each block, we average-pool-
2D its output into size (4,4, .), flatten and apply Principal Component Analysis (computed
per block on the training sequences). It results in a feature vector of length about 100 to
1000 per convolutional block, which we concatenate, resulting in the input frame’s spatial
representation.

Note on the accuracy of temporal masks. The accuracy metric of temporal masks
inference is misleading as masking solutions are not unique. An inferred temporal mask
could be different from the label yet perform equally SLAM-wise. Accuracy could be low
for the same SLAM result; low temporal mask accuracy does not imply low SLAM perfor-
mance. However, there is still a positive correlation between high accuracy and high SLAM
performance, which makes early stopping using accuracy possible. But since we are ulti-
mately interested in SLAM performance, mask accuracy is at best unneeded, and at worse
misleading, to rely on temporal mask accuracy.

4.2 Interpretation of Inferred Masks
4.2.1 Quantitative interpretation

We showed in the main paper than full supervision – i.e., learning expert manual frame-wise
annotations – has a lower performance than self-supervision in addition to the annotation
cost. Hence, to better understand why, we directly used manual frame-wise annotations in
the SLAM, without any learning.

Tab. 4 shows that manual annotations directly input in the SLAM outperforms our method
in almost all cases. This means that although our method is better than the state of the art,
it can still be further improved. Manual gives a new threshold to reach in future works,
threshold that can be achieved with better masking decisions.

There are several likely reasons that explain the difference between full supervision (i.e.,
learned manual annotations) and the direct use of manual annotations. Manual annotations
may rely on extremely subtle details to detect motion, like tiny objects reflections on car

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

BOJKO ET AL.: SELF-IMPROVING SLAM IN DYNAMIC ENVIRONMENTS 13

Mode Dataset Metric Manual annotations
(No learning) Ours

RGB-D TUM RGB-D
ATE RMSE (m) ↓ 0.019 0.019
Tracking Rate ↑ 96% 96%

USM ↑ 0.80 0.80

Stereo KITTI
ATE RMSE (m) ↓ 2.53 2.51
Tracking Rate ↑ 100% 100%

USM ↑ 0.81 0.81
Stereo ConsInv-Outdoors USM ↑ 0.93 0.88
Mono ConsInv-Indoors-Dynamic USM ↑ 0.83 0.75
Mono ConsInv-Extra-MeetingRoom USM ↑ 0.74 0.67
Mono ConsInv-Extra-LivingRoom USM ↑ 0.82 0.74

Mono ConsInv-Indoors-Static
Prevented
false starts ↑ 100% 100%

Table 4: Comparison between our self-supervised approach and manual annotations from a
SLAM expert, used directly without learning. All scores are medians over the dataset. For
ATE RMSE, lower is better (↓). For Tracking Rate / USM / Prevented false starts, higher is
better (↑). We reuse use the model trained on ConsInv-Indoors when evaluating our method
on ConsInv-Extra, in order to evaluate how it performs in new contexts.

windows or shadows. Such cues are exceedingly difficult to learn for a neural network –
training could require hundreds of sequences, if not more. Another reason is that manual
annotations may not be consistent: for instance, if masking an object has no effect on SLAM
performance, the annotator might mask it inconsistently in different sequences. Lack of data
due to the complexity of label interpretation combined with label inconsistency explains why
full supervision performs poorly and further highlights the value of self-supervision.

4.2.2 Qualitative interpretation

Fig. 10 to Fig. 13 show qualitative different results on ConsInv-Outdoors in terms of mask-
ing, comparing No masks (never masking objects), Full masks (always masking objects),
Manual annotations with no learning and temporal masks inferred with our method, Self-
supervision. We can observe the following:

1. Manual annotations follow the "mask the bare minimum" approach while self-supervision
follows the "mask unless we are sure it is safe" approach.

2. In easy sequences (Fig. 13), where masking has no effect, our approach still prefers to
mask objects

3. In hard sequences where excessive masking negatively affects performance (Fig. 10,
Fig. 11), our approach masks cars for some time at the start before concluding that "it
is not necessary anymore". Fig. 10 shows a difficult case where excessively masking
objects leads to SLAM failure.

4. In difficult sequences were objects cause motion consensus inversion (Fig. 12), our
approach always masks objects.

5. Our model has, to a certain extent, situational awareness. It learned that a person +
car = car is not moving, i.e., masking cars is not necessary when a person is on them

14 BOJKO ET AL.: SELF-IMPROVING SLAM IN DYNAMIC ENVIRONMENTS

/ very close to them. Likewise, it learned that masking cars is sometimes necessary
when a car has moved in past frames and not necessarily in the last one. This shows
that we do not depend on instantaneous motion detection, and this non-dependence is
necessary to solve the motion detection deadlock as explained in the Introduction of
the main paper.

6. Masking people is almost always necessary.

Figure 10: Masking result on a difficult sequence with moving people and static cars. Our
approach masks people all the time and almost never cars, making the inferred annotation
and the manual annotation very similar. Blue segments indicate masked frames, per class.
Red segments indicate tracking failure due to excessive masking.

The general conclusion is that objects are masked when they are likely to move, which is
a context-dependent definition our model learns. In our experiments, it means an object that
is currently moving, an object that was previously seen moving in the current sequence (e.g.,
a car), or an object known that is often moving (e.g., people).

BOJKO ET AL.: SELF-IMPROVING SLAM IN DYNAMIC ENVIRONMENTS 15

Figure 11: Masking result on a sequence where both people and cars are static. Our approach
is more prudent towards masking, but correctly stops masking when needed. Blue segments
indicate masked frames, per class.

Figure 12: Masking result on a difficult sequence with moving cars and no people. Our
approach says to mask both people and cars all the time out of caution. Blue segments
indicate masked frames, per class. Arrows indicate motion direction.

16 BOJKO ET AL.: SELF-IMPROVING SLAM IN DYNAMIC ENVIRONMENTS

Figure 13: Masking result on an easy sequence with moving cars and no people. Our ap-
proach says to mask both people and cars all the time out of caution. Masking objects has
no effect in this sequence since the vast majority of features is on the background. Blue
segments indicate masked frames, per class.

BOJKO ET AL.: SELF-IMPROVING SLAM IN DYNAMIC ENVIRONMENTS 17

4.3 Comparison between annotation methods
We manually create weak annotations and full annotations and compare in Tab. 5 the perfor-
mance of full supervision (using the manual expert annotations on train+val), weak super-
vision and self-supervision on the ConsInv-Indoors-Dynamic subset, ConsInv-Outdoors (in
multiclass mode) and TUM RGB-D dataset. For the ConsInv-Indoors-Dyn. subset (17 train
seqs. per object class), the performance of self-supervision is slightly higher. For the TUM
RGB-D and ConsInv-Outdoors datasets (resp. 7 and 13 train seqs./class), self-supervision
is by far the best approach, followed by weak, then full supervision. Thus, full supervision
(i.e., manual frame-wise annotations) and weak supervision (i.e., manual sequence-wise an-
notations) require more training sequences than self-supervision (i.e., automatic frame-wise
annotations).

A first conclusion is that self and weak supervision modes tend to reach the performance
of self-supervision with enough data. Additionally, frame-wise manual annotations (i.e., full
supervision) are surprisingly the most difficult to learn. This is likely because the person
annotating sequences relies on cues that are too subtle (e.g., reflections on a car, landmarks
that are on the border of the image) for the temporal masking network to learn. Humans
tend to over-estimate the learning ability of neural networks, and for this reason machine-
generated labels – in a way, closer to the limitations of a computer system – are easier to
learn.

The overall conclusion is that self-supervision leads to the best results in addition to
removing the need for manual annotations, so we use this method in the rest of the paper.

Dataset Full supervision Weak supervision Self-supervision
ConsInv-Indoors-Dynamic 0.72 0.68 0.75

ConsInv-Outdoors 0.74 0.80 0.88
TUM RGB-D 0.69 0.70 0.80

Table 5: Comparison of supervision modes. Avg. USM on ConsInv/TUM RGB-D.

4.4 Degraded mask quality tests
Segmentation masks can be inaccurate, which may affect the automatic annotations and thus
the training. To measure the robustness of our method to this problem, we degraded the
quality of the segmentation masks during the annotation process by randomly eroding or
dilating every mask by 10px. Tab. 6 shows that our method still has superior performance,
albeit slightly lower than before.

Baselines Ours
No masks Full masks Self-sup. Self-sup. (degraded)

0.57 0.71 0.75 0.73
Table 6: Average USM on ConsInv-Indoors-Dynamic to evaluate the robustness to degraded
semantic masks.

4.5 Data requirement for training
This section compiles results from the main experiments to estimate how much data is needed
to actually train a temporal masking network. The key elements are dataset complexity

18 BOJKO ET AL.: SELF-IMPROVING SLAM IN DYNAMIC ENVIRONMENTS

Baselines Ours
No masks Full masks Self-sup. Self-sup. (degraded)

56% 100% 100% 100%
Table 7: Rate of prevented false starts on ConsInv-Indoors-Static including a degraded mask
approach.

– which represents how much the environment/objects change across the dataset and the
variety/difficulty of object motion – and dataset size. Of the previously evaluated datasets,
TUM RGB-D is the easiest (constant environment, simple object motion), KITTI is easy
(similar urban environment, simple object motion), ConsInv-Indoors is hard (same indoors
environment, difficult object motions) and ConsInv-Outdoors is very hard (different outdoor
environments, difficult object motions). Tab. 8 shows a qualitative appreciation of dataset
complexity and size of the datasets previously evaluated.

Dataset Dataset
complexity

Dataset
size

TUM RGB-D + +
KITTI + ++

ConsInv-Indoors ++ +++
ConsInv-Outdoors +++ +++

Table 8: Dataset complexity (variety of environment and object motion) and size of the
evaluated datasets.

Empirically, for state-of-the-art performance using self-supervision, we need dataset
complexity ≤ dataset size. Quantitatively, ≈ 10 sequences made of 1000 images per dy-
namic object class is a good starting point for self-supervision.

4.6 Computation time analysis.
We measured the average time to process a frame on a GTX 1080 Ti GPU once all networks
are loaded. We consider full resolution as 1280x720. Results are in Tab. 9. Depending on
image resolution, the total time varies from 43ms (23Hz) to 82ms (12Hz), making real-time
possible as most of the computation is offloaded to the GPU

Mask inference (DeepLabv3+) 12ms (30% res) or 30ms (60% res)
Image encoding (ResNet50) 22ms (50% res) or 43ms (100% res)

Feature processing (pooling + PCA) 4ms
Masking decision inference 5ms

Total inference time 43ms (23Hz) to 82ms (12Hz)
Table 9: Average inference time on a GTX 1080 Ti, per frame. Full res. is 1280x720.

4.7 Sampling computational tractability.
We give the size of the temporal mask space E in Tab. 10 depending on the number of
images n and the minimal block sizes k0,k1. The table shows that with block sizes that
match real motions (≈1s to start or stop moving, i.e., less than 50 images), the problem
becomes intractable after a few seconds of video (at 30Hz). This proves the value of our
uniform sampling method since exhaustive exploration of E is computationally intractable.

BOJKO ET AL.: SELF-IMPROVING SLAM IN DYNAMIC ENVIRONMENTS 19

k Size of E(k0,k1,n)

1
|E|= 2n ≈ 100.3010n

n = 1 30 100 500 1000 10000
|E|= 2 1.07×109 1.26×1030 3.27×10150 1.07×10301 1.99×103010

25
|E| ≈ 0.616×1.1005(n−25) ≈ 0.616×100.04158(n−25)

n = 1 30 100 500 1000 10000
|E|= 0 2 808 3.53×1019 2.18×1040 3.67×10414

50
|E| ≈ 0.534×1.0593(n−50) ≈ 0.534×100.0250(n−50)

n = 1 30 100 500 1000 10000
|E|= 0 0 4 9.84×1010 3.24×1023 6.57×10248

Table 10: Approximate size estimation of E(k0,k1,n) with block size k := k0 = k1. The
table includes approximate solutions for different sequence lengths n but numerical results
were computed with the full solution. It is computationally intractable to fully explore the
temporal mask space E if the masked video is longer than a few seconds (at 30Hz).

4.8 Hyperparameter tuning

4.8.1 Choice of dataset annotation methods

In addition to methods used in the main experiments: manual frame-level annotations (for
fully supervised training), manual sequence-level annotations (for weakly supervised train-
ing) and automatically computed frame-level annotations, i.e., Max TM (for self-supervised
training), we can consider two other annotation methods: Min TM and Best Random. TM
means Temporal Masking. Max TM refers to the fact that, given temporal masks with the
same performance, the automatic annotation method prefers the one masking as many frames
as possible (Sec. 1.4.3).

Min TM is the same as Max TM except for the very last step of the sampled temporal
mask aggregation: if we obtain several masks that are equivalent in terms of performance,
we choose the one that masks the least frames instead of the most. This results in masks that
are sparse, masking only the bare minimum of frames to reach max SLAM performance.
Best Random, on the other hand, consists in completely removing the aggregation step and
directly picking the sample that has the best overall score.

We evaluated all annotation methods using the proposed neural network architecture.
We used the train split of the ConsInv-Indoors-Dynamic subset for training and evaluated
the results on the val split of ConsInv-Indoors-Dynamic.

Tab. 11 shows that the automatic annotation method Max TM is the overall best, hence
we choose it as our main method in the paper. A possible interpretation is that Min TM masks
are too sparse, so the training is very difficult. Best Random masks have no overarching rule
(e.g., to mask as little/as much as possible), thus they have no easily identifiable pattern and
are very difficult to learn. Overall, automatic methods work better with the Single LSTM
architecture.

Between manual and weak annotations, the weak ones perform slightly better, which is
a remarkable result given that they cost much less. Another notable result is the fact that
manual annotations do not have top performance after learning: the cause is the human
bias inherent to manual annotations. A human might use tiny clues like the reflection on a
car’s window to judge if an object is moving – such clues are exceedingly difficult for the
network to learn; additionally, human judgement may be inconsistent, unlike our automatic
annotation that always follow the same rules.

20 BOJKO ET AL.: SELF-IMPROVING SLAM IN DYNAMIC ENVIRONMENTS

Automatic annotations Manual annotations

Best Random Min TM Self-supervision
(Max TM) Weak annotations Full annotations

0.69 0.68 0.77 0.72 0.71
Table 11: Comparison between different annotation methods on the the val split of the
ConsInv-Indoors-Dynamic subset.

4.8.2 Automatic annotation parameters

The main parameters of automatic dataset annotation are the minimum block size k0,k1 and
the number of samples n. Our goal is to compute masks that focus on the key segments of the
sequence as much as possible while maximizing SLAM performance. The Min TM method
is more practical to evaluate this quality than Max TM as it minimizes the ratio of masked
frames: a lower masking ratio at equal performance indicates that the temporal masks fit the
sequence better (less useless masking). As the difference between both methods is only at
the very last step of mask aggregation, we expect the chosen parameters to also be a good fit
for the Max TM method.

We test the annotations directly in the SLAM, without learning them. We first tuned k0
and k1 by maximizing the USM. Tab. 12 show that k0 = k1 = 25 maximize the USM with
USM = 0.91. Then we tuned n by minimizing the Masking Rate, i.e., the ratio of masked
frames within a sequence. Tab. 13 shows that n = 200 is a good compromise as the mask-
ing rate stagnates from n = 200 onwards and its USMn=200 = 0.88 remains above all other
configurations of k0/k1. Finally, both Tab. 12 and Tab. 13 show that the proposed automatic
annotation methods (Min TM / Max TM) are robust to the choice of k0/k1/n (without consid-
ering training).

k0 k1 USM
1 1 0,88
1 10 0,88
1 25 0,89
1 50 0,88

10 1 0,88
10 10 0,88
10 25 0,88
10 50 0,88
25 1 0,87
25 10 0,88
25 25 0,91
25 50 0,87
50 1 0,87
50 10 0,87
50 25 0,87
50 50 0,87

Table 12: Tuning of k0 and k1.

n USM Masking Rate
50 0,91 0,06
100 0,88 0,05
150 0,89 0,06
200 0,88 0,04
250 0,89 0,04
300 0,89 0,04

Table 13: Tuning of n.

BOJKO ET AL.: SELF-IMPROVING SLAM IN DYNAMIC ENVIRONMENTS 21

References
[1] Richard Austin and Richard Guy. Binary sequences without isolated ones. In Tfte Fi-

bonacci Quarterly 16.1 (1978):84-86; MR 57 nb. 5778; Zbl, 1978.

[2] Adrian Bojko, Romain Dupont, Mohamed Tamaazousti, and Hervé Le Borgne. Learning
to segment dynamic objects using slam outliers. In 25th International Conference on
Pattern Recognition (ICPR), 2021.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[4] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-CNN. In IEEE
International Conference on Computer Vision (ICCV), 2017.

[5] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects in
context. In Computer Vision, 2014.

[6] R. Mur-Artal and J. D. Tardós. ORB-SLAM2: An open-source SLAM system for
monocular, stereo, and RGB-d cameras. IEEE Transactions on Robotics, 2017.

[7] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel Cremers.
A benchmark for the evaluation of RGB-d SLAM systems. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2012.

[8] Anqi Joyce Yang, Can Cui, Ioan Andrei Bârsan, Raquel Urtasun, and Shenlong Wang.
Asynchronous multi-view slam. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), pages 5669–5676, 2021. doi: 10.1109/ICRA48506.2021.
9561481.

