
HAL Id: cea-04488713
https://cea.hal.science/cea-04488713

Submitted on 4 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Byzantine Auditable Atomic Register with Optimal
Resilience

Antonella del Pozzo, Alessia Milani, Alexandre Rapetti

To cite this version:
Antonella del Pozzo, Alessia Milani, Alexandre Rapetti. Byzantine Auditable Atomic Register with
Optimal Resilience. 41st International Symposium on Reliable Distributed Systems (SRDS), Sep 2022,
Vienna, Austria. pp.121-132, �10.1109/SRDS55811.2022.00020�. �cea-04488713�

https://cea.hal.science/cea-04488713
https://hal.archives-ouvertes.fr

ar
X

iv
:2

30
9.

10
66

4v
1

 [
cs

.D
C

]
 1

9
Se

p
20

23
1

Preliminaries paper: Byzantine Tolerant Strong

Auditable Atomic Register
Antonella Del Pozzo Université Paris-Saclay, CEA, List,

F-91120, Palaiseau, France

antonella.delpozzo@cea.fr

Antoine Lavandier Université Paris-Saclay, CEA, List,

F-91120, Palaiseau, France

antoine.lavandier@cea.fr

Alexandre Rapetti Aix-Marseille University,

Université Paris-Saclay, CEA, List,

F-91120, Palaiseau, France

alexandre.rapetti@cea.fr

Abstract

An auditable register extends the classical register with an audit operation that returns information on the read operations
performed on the register. In this paper, we study Byzantine resilient auditable register implementations in an asynchronous
message-passing system. Existing solutions implement the auditable register on top of at least 4f+1 servers, where at most
f can be Byzantine. We show that 4f+1 servers are necessary to implement auditability without communication between
servers, or implement does not implement strong auditability when relaxing the constraint on the servers’ communication,
letting them interact with each other. In this setting, it exists a solution using 3f+1 servers to implement a simple auditable
atomic register. In this work, we implement strong auditable register using 3f+1 servers with server to server communication,
this result reinforced that with communication between servers, auditability (event strong auditability) does not come with
an additional cost in terms of the number of servers.

I. INTRODUCTION

Outsourcing storage capabilities to third-party distributed storage are commons practices for both private and professional

users. This helps to circumvent local space limitations, dependability, and accessibility problems. However, this opens to

problems such as users that have to trust the distributed storage provider on data integrity, retrievability, and privacy. As

emphasized by the relentless attacks on servers storing data [1] and by the recent worldwide advent of data protection

regulations [2]–[4].

In this work, we address the problem of bringing auditability in a distributed storage system, i.e., the capability of

detecting who has read the stored data. We consider a set of servers implementing the distributed storage and a set of

clients (users) accessing it through read and write operations. Auditability implies the ability to report all the read operations

performed by clients. Nevertheless, without reporting any client that did not read. Let us note that once a reader accesses

a value, it can disclose it directly without being auditable. For that reason, auditability does not encompass this kind of

behavior.

A. Related work.

Most of the results of this work have already been published in [5]. In this article, we propose a new algorithm that

implements a Strong Auditable Atomic Register (with completeness and strong accuracy) using 3f+1 servers, while in [5],

the solution provides only an auditable atomic register (with completeness and accuracy).

B. Our Contribution

Our contributions are the following:

• A new algorithm implementing a strong auditable atomic register with 3f + 1 servers.

• An experimentation in rust using Zenoh [6] of this algorithm.

Paper organization. The paper is organized as follows. Section II defines the system model. Section III formalizes the

auditable register abstraction and properties. Section IV gives a lower bound on the number of servers to implement an

auditable register. Section V presents an optimal resilient algorithm implementing the Auditable Atomic Register and gives

the proof of its correctness. Section VI presents an approach to consider multiples writer, tolerating byzantine failure, in

a special context where all correct writers aims to write the same value.

http://arxiv.org/abs/2309.10664v1

2

II. SYSTEM MODEL

We consider an asynchronous message-passing distributed system composed of a finite set of sequential processes. Each

process has a unique ID and is equipped with a cryptographic primitive Σ to sign the messages it sends. We assume that

signatures are not forgeable. A process can be either a client or a server. We consider an arbitrary number of clients and

n servers that implement a distributed register. The writer is a special client that owns the register and is the only one

allowed to write on it. The other clients are the readers, who can read the register’s content. In the following, we denote

the readers as pr1 , pr2 , . . . , the writer (and auditor) of the register as pw and the servers as s1, ..., sn.

A. Failure model

We consider that all correct processes follow the same protocol A. A process that executes any algorithm A′ 6= A is

considered Byzantine. The writer can only fail by crashing. At most f servers and any number of readers can be Byzantine.

However, we consider that any Byzantine faulty reader does not cooperate with other faulty processes.

B. Communication primitives

The writer broadcasts messages to servers using a reliable broadcast primitive [7]. The broadcast is done by invoking

the broadcast primitive and the delivery of a broadcast message is notified by the event deliver. This primitive

provides the following guarantees: Validity: If a correct process deliver a message m from a correct process pi, then

pi broadcast m; Integrity: No correct process deliver a message more than once; No-duplicity: No two correct

processes deliver distinct messages from pi; Termination-1: If the sender pi is correct, all the correct processes

eventually deliver its message; Termination-2: If a correct process deliver a message from pi (possibly faulty) then

all the correct processes eventually brb-deliver a message from pi.

Processes can communicate with each other using a perfect point to point communication abstraction. Processes send

messages by invoking the send primitive and the reception of a message is notified by the event receive. This abstraction

provides the following guarantees: Reliable delivery: If a correct process pi sends a message m to a correct process pj ,

then pj eventually delivers m; Integrity: No correct process receive a message more than once; No creation: If some

process pi receives a message m with sender pj , then m was previously sent to pi by process pj .

III. SINGLE-WRITER/MULTI-READER ATOMIC AUDITABLE REGISTER

In this work we define a Single-Writer/Multi-Reader auditable atomic register, that can be transposed to the multi-

writer multi-reader case [8]. In the following we first recall the atomic register specification and later we extend it with

auditability.

A register R is a shared object that provides the processes with two operations, R.write(v) and R.read(). The first

allows to assign a value v to the register, while the second allows the invoking process to obtain the value of the register

R. Being the register a shared object, it can be concurrently accessed by processes and each operation is modeled by two

events, an invocation and a response event.

We consider a single-writer/multi-reader atomic register, that can be written by a predetermined process, the writer, and

read by any processes, the readers. Intuitively, atomicity provides the illusion that all the read and write operations appear

as if they have been executed sequentially.

The interaction between the processes and the register is modeled by a sequence of invocation and reply events, called

a history H . Without loss of generality, we assume that no two events occur at the same time. An operation is said to be

complete in a history H , if H contains both the invocation and the matching response for this operation. If the matching

response is missing, the operation is said to be pending.

A history is sequential if each operation invocation is followed by the matching response. For a given history H we

denote complete(H) the history obtained starting from H by appending zero or more responses to pending invocations

and discarding the remaining pending invocations.

A history H is atomic if there is a sequential history π that contains all operations in complete(H) such that:

1) Each read ∈ π returns the value of the most recent preceding write, if there is one, and otherwise returns the initial

value.
2) If the response of an operation Op1 occurs in complete(H), before the invocation of operation Op2, then Op1 appears

before Op2 in π

Moreover, a history H is wait-free if every operation invoked by a correct process has a matching response. All the

histories generated on Atomic Register are atomic and wait-free.

We now define the auditable atomic register extending the atomic register with the audit() operation and defining its

semantics. Let us recall that only the writer can perform that operation. The audit() operation invocation is auditReq(R),
and its response is auditRep(R,Eaudit), with Eaudit the list of couples process-value (p, v) reported by the audit

operation.

3

As shown in [9], it is not possible to implement an audit operation in the presence of Byzantine servers, if a single

server stores a full copy of the value. Informally, a Byzantine reader could contact only the Byzantine servers, getting the

value without leaving any trace to be detected.

A possible solution to this issue, as presented in [10], is to combine secret sharing for secrecy [11] and information

dispersal for space efficiency [12]. When writing a value v, the writer does not send the whole value to each server,

but generates a random key K and encrypts v with it. Then, for space efficiency, the writer uses information dispersal

techniques to convert the encrypted value in n parts, v1, v2, . . . , vn, of size
|v|
τ

(τ is the number of parts needed to reconstruct

the value). Finally, the writer uses secret sharing techniques to convert the key K in n shares, sh1, sh2, . . . shn, such

that the share shi is encrypted with the public key of the server si. At this point, the writer can send to the servers

(v1, sh1), . . . , (vn, shn). Each server stores only its block and decrypted share. The secret sharing scheme assures that

(1) any τ shares are enough for a reader to reconstruct the key K , and so the value, (2) that less than τ shares give no

information on the secret. Those techniques use fingerprints to tolerate alterations by faulty processes and allow reading

processes to know when they collect τ valid blocks to reconstruct the value.

For sake of simplicity in the presentation of our solution, we avoid the details of the secret sharing scheme implementation.

We consider that for any value v, the writer constructs a set of blocks {bi = (vi, shi)}i∈[1,n], such that a block bi can

only be decrypted by a server si. Any τ blocks are necessary and sufficient to reconstruct and read the value v.

We use the notion of effectively read, introduced in [13]. This notion captures the capability of a process to collect

those τ blocks to reconstruct a value regardless it returns it or not i.e., the corresponding response event may not appear

in the history.

We consider the execution E, obtained by adding to the history H the communication events: send, receive, broadcast

and deliver.
Effectively read: A value v ∈ V is effectively read by a reader pr in a given execution E if and only if ∃ the invocation

of a write(v) operation ∈ E and receive(bvj) events for τ different blocks.

We can now define the auditability property as the conjunction of the completeness property and the accuracy property.

• Completeness [13] : For every value v written into the register, every process p that has effectively read v, before

the invocation of an audit operation op in H , p is reported by op to have read v.

• Strong Accuracy: A correct process p, that never effectively read the value v, will not be reported by any audit

operation to have read v.

The completeness property assures that if a reader p succeeds in obtaining a value v before the invocation of the audit

operation, then the Eaudit list will contain the couple (p, v). The strong accuracy property assures that if a correct reader

p never effectively read v, then the Eaudit list will never contain the couple (p, v).
In this paper, we propose an optimal resilient solution of the Single-Writer Multi-Reader Strong Auditable Atomic

Register.

In the following, we denote the read() (resp. the write() and audit()) operation to the register as Opri (resp. Opwi

and Opai
).

IV. IMPOSSIBILITY RESULTS

In this section, we first recall an impossibility result from [13] that provides a necessary condition on the number of

blocks τ to have auditability, that we extend in our system model. Finally, we show that without communication between

servers, it is impossible to implement an auditable register with less than 4f + 1 processes. Hereafter, the impossibility

result presented in [13] with the complete proof in our system model.

Theorem 1: Let τ be the number of blocks necessary to recover a value written into the register R. In presence of f

Byzantine servers, it is impossible to provide completeness if τ < 2f + 1.

Proof Let c be a Byzantine client. To read a value from the register, c needs to collect τ blocks. In the following, we

show that, if τ < 2f + 1, a client c can read a value v and 〈c, v〉 is not returned by any audit operation. Consider the

execution where c, during the execution of read operation Op, obtains the τ blocks from f Byzantine servers denoted S1,

τ − 2f correct servers denoted S2 and f other correct servers denoted S3. The remaining n− τ correct servers, denoted

S4, have no information about Op.

An audit operation that starts after Op returns cannot wait for more than n−f responses from the servers. It is possible

that those responses are the ones from S1 ∪ S2 ∪ S4. S1 being the Byzantine, do not report Op. Processes in S4 have

no information about the read operation of c. Then there are only the τ − 2f servers of S2 that report process c. Since

τ < 2f + 1, there is no server that can report process c to have read v.

�

Intuitively, the value of τ has to be sufficiently big to (i) impede f Byzantine servers from collaborating and reconstructing

the value and (ii) to force a reader when reading to contact sufficiently many correct servers to be auditable for that

operation. Thus, the number of blocks τ also corresponds to the number of servers that must be contacted to read. Without

loss of generality, in the following we consider that each server stores at most one block for each value written.

4

We prove that in the absence of server to server communication and with up to f Byzantine servers, if the writer can

crash then implementing an auditable register that ensures completeness requires at least 4f + 1 servers. Our result is

proved for a safe register as defined in [14] (which is weaker than an atomic one). This result does not depend on the

communication reliability.

We consider an auditable safe register, which is a safe register extended with the audit operation as defined in section

III. A safe register ensures that if there is no write operation concurrent with a read operation Op, Op returns the last

value written in the register.

Theorem 2: No algorithm P implements an auditable safe register in an asynchronous system with n < 4f + 1 servers

if the writer can crash and there is no server to server communication.

Proof Let us proceed by contradiction, assuming that P exists. In particular, we consider the case of n = 4f .

Consider an execution where the writer pw completes a write operation Opw, and after Opw returns, a correct reader

pr invokes a read operation Opr which completes. Let v1 be the value written by Opw, since P exists, then Opr returns

v1. Otherwise, we violate the safety property of the register.

As P ensures the liveness property and that there are f Byzantine processes, we have that pw cannot wait for more than

n−f = 3f acknowledgments from servers before completing Opw, i.e., pw cannot wait for more than 2f acknowledgments

from correct servers before terminating.

Let us separate servers in three groups, S1, S2 and S3 with |S1| = 2f , |S2| = f and |S3| = f . Servers in S1 and S2

are correct, while servers in S3 are Byzantine.

Let pw crash after Opw terminates but before any servers in S2 receive their block for v1. Since servers do not

communicate with each other and that pw crashed, we can consider that no server in S2 ever receives the blocks for v1.

Then only 2f correct servers, the ones in S1 have a block for v1. Since we cannot rely on Byzantine servers and each

server stores at most one block, pr can collect at most 2f blocks for v1. According to our hypothesis, P respect the safe

semantic. Thus, pr is able to read the value by collecting only 2f different blocks. However, according to Theorem 1,

doing so P does not provide completeness, which is a contradiction.

�

V. SOLUTION SPECIFICATION

We provide an algorithm that implements a Single-Writer/Multi-Reader strong auditable wait-free atomic register.

According to the impossibility result given by Theorem 1, the writer uses information dispersal techniques, with τ =
2f +1. Our solution requires 3f +1 servers, which is optimal resilient [15]. According to the impossibility result given by

Theorem 2, we consider server to server communication, more in particular, we consider that the writer communicates with

servers using a reliable broadcast abstraction. However, this nullifies the effect of using information dispersal techniques

to prevent Byzantine servers from accessing the value. Indeed, all the servers would deliver the n blocks and then could

reconstruct the value. To address this issue, the writer encrypts each block with the public key of the corresponding server,

such that only the i− th server can decrypt the i− th block with its private key.

A. Description of the algorithm

Messages have the following syntax: 〈TAG, payload〉. TAG represent the type of messages and payload is the content

of the messages.

Variables at writer side:

- ts is an integer which represents the timestamp associate to the value being written (or lastly written) into the register.

- b1, . . . , bn are the blocks related to the value being written (or lastly written) into the register. It is such that the block

in bi is encrypted with the public key of the server si.

Variables at reader side:

All the following variables (except n seq) are reset at each new read operation invocation.

- n seq is an integer which represents the sequence number of the read operation of the reader pr. This value is incremented

at each read invocation.

- Collected blocks is an array of n sets of tuple (block, timestamp). The i− th position stores all the blocks associated

with their timestamps, received from server si in response to V AL REQ messages (if any).

- Collected ts is an array of n lists of integers. In each position i, it stores the list of all the timestamp received from

server si in response to TS REQ messages (if any).

- min ts is an integer of the smallest timestamp stored in Collected ts that is greater than 2f + 1 timestamps in

Collected ts.

Variables at audit side:

- Collected log is an n dimension array that stores in each position i the log received from server si in response to

AUDIT messages (if any). This variable is reinitialized at each audit invocation.

- Epr ,ts is a list that stores the proof attesting that the reader pr have read the value associated with timestamp ts.

- EA Is a list that stores all the tuples process-timestamp, of all the read operation detected by the audit operation. This

variable is reinitialized at each audit invocation.

5

Variables at server side si:

- reg ts is an integer, which is the current timestamp at si. This value is used to prevent the reader to read an old value.

- val is a list of tuple (block, timestamp) storing all the block receive by server si.

- Log is a list of tuples reader ID, timestamp, signed either by the reader itself or by the writer. Those tuples are used as

a proof that the reader effectively read.

- Pending reads is a list of tuples, reader ID, n seq, that identifies all the pending read operations.

Functions: - GenerateBlocks(v). This function, invoked by the writer pw, takes as input v, the value to write. Using

information dispersal techniques, it returns an array of n encrypted blocks [b1, . . . , bn], one per server. The block bi is

encrypted with the public key of the server si. Furthermore, to reconstruct the couple value-timestamp from the blocks,

any combination of at least τ = 2f + 1 blocks are required, without what no information about v can be retrieved.

- decrypt(bvi). This function, invoked by server si, takes as input the i − th encrypted block, and using the private key

of si, it decrypts the corresponding block and returns it.

- GetValue(Collected blocks) This function, invoked by the readers, takes as input Collected blocks, an array of n lists

of tuples blocks, timestamp. It returns a value if there are across the n lists, τ different blocks corresponding to that value

and bottom otherwise. If multiple values can be returned, then the function returns the one with the highest timestamp

associated.

The write operation (Fig 1 and Fig 3). At the beginning of the write operation, the writer increase its timestamp and

generates n blocks, one for each server, with the i− th block encrypted with the public key of server si. Then the writer

broadcast a WRITE message to all servers that contains the timestamp and all the blocks. Once a correct server si
receives a WRITE messages, si add the timestamp and the decrypted i− th block to val. Then si updates its timestamp

in reg ts. Finally, the server acknowledge the writer in an WRITE ACK . Once the writer receives n− f ACKs from

different servers, it terminates.

The read operation. (Fig 2 and Fig 3) The read operation takes place in several phases. Foremost, the reader starts

by increasing its sequence number. This sequence number is included in each message the reader sends, such that only

response from servers with the same sequence number are considered.

In the first phase, the reader sends TS REQ to message to all servers. When a correct server si receives such message,

it sends its timestamp reg ts to the reader. After collecting n− f timestamp from different servers, the reader begins the

next phase.

In the second phase, the reader sends the V AL REQ message that contains min ts, to all servers. Timestamp min ts

is a timestamp received in a TS RESP message, such that it is greater than or equal to 2f+1 other timestamps received.

If there are more than one that respect this condition, then the reader selects the smallest timestamp that satisfies such

condition (cf. line 15 figure 2). When a correct server si receives a V AL REQ message, then if the timestamp in reg ts

is greater than or equal to min ts receives in the V AL REQ message, then si sends back min ts in a V AL RESP

message. If reg ts is smaller than min ts, si waits to receive such timestamp. When the reader have collected f + 1
min ts it starts the next phase.

In the third phase the reader sends a BLOCK REQ message to all servers with the timestamp collected f + 1 at the

preceding phases. When a correct server si receive such messages, it sends back the corresponding block. If it has not

yet such block, it waits to receive it. When the reader receive n− f responses, it returns.

The audit operation ((Fig 1 and Fig 3)). Such operation is similar as the one describe in [13]. When a process pa performed

an Audit operation, it sends an AUDIT REQ messages to all server. When a server receives an AUDIT REQ messages,

it sends back to pa an AUDIT RESP with its log. Then pa stores in Epr
all occurrence of pr in the different logs it

receives. If a process pr occurs more than t times in Epr
, then it is added in the response EA of the audit operation.

B. The algorithm

C. Proof

In the following, we prove that Algorithms in section V-B solves the Auditable Atomic Register problem. We first

show that it satisfies the atomicity property, then that it satisfies wait-freedom and finally the completeness and accuracy

property.

In this section we use the following notation. Given an operation Opx, x ∈ {r, w, a}, we denote tstart(x) the operation

invocation time instant and as tend(x) as the response time. For each couple of operations Opx and Opy (x 6= y), we say

that Opx succeeds Opy if and only if tstart(Opx) > tend(Opy). For conciseness, when x is a write or read operation, we

refer to the timestamp associated to a value written by a write operation or returned by a read operation as Opx.ts. Let

us recall that, Opr.ts it is not related to n seq, which is the sequence number associated to that read operation.

1) Atomicity Proof: According to line 3 figure 3 the following observation holds :

Observation 1: A correct server si updates reg ts with a new timestamp, only if this timestamp is greater than the

previous one stored in reg ts. Hence, timestamps stored at correct servers increase monotonically

Lemma 1: Let Opw be a write operation with timestamp ts. After Opw returns the value of reg ts is greater than or

equal to ts in at least f + 1 correct servers.

6

Algorithm 1 Pseudo-code of the write and audit operations at writer pw.

Initialization

ts← 0
bi ←⊥ ∀i ∈ [1, n]
Acks[i]←⊥, ∀i ∈ [1, n]

1: Write(v){
2: ts← ts+ 1
3: [b1, . . . , bn]← GenerateBlocks(v)
4: broadcast(WRITE, ts, [b1, . . . , bn]) to all servers

5: wait until |{x : Acks[x] = ts}| ≥ n− f

6: return

}

7: upon receive (WRITE ACK, t) from server si
8: if (ts = t) { Acks[i]← t}

9: Audit(){
Collected log[i]← ∅, ∀i ∈ [1, n]

10: for i ∈ [1, n] send(AUDIT REQ) to server si

11: wait until |{i : Collected log[i] 6= ∅}| ≥ n− f

12: for all(pr, ts, n seq) ∈
⋃

i∈[1,n] Collected log[i]
13: for 1 ≤ k ≤ n if (pr, ts, n seq)σpr

∈ Collected log[k] ∧(pr, ts, n seq)σpr
6∈ EA

14: then EA ← EA ∪ (pr, ts, n seq)σpr

15: return EA

}
16: upon receive (AUDIT RESP,Log) from server si
17: if Log = ∅ then { Collected log[i]←⊥ }
18: else Collected log[i]← Log

Proof Opw terminates when the condition at line 5 of figure 1 is evaluated to true. Hence, Opw terminates only if the

writer received (WRITE ACK, ts), from at least 2f +1 different servers. A correct server, sends (WRITE ACK, ts)
(line 4 of figure 3) to the writer, if it receives (WRITE, ts,−,−,−) from the writer and after the execution of line 3

in Figure 3 Since there are at most f of the 3f + 1 servers are Byzantine, once the write operation completes, the writer

has received at least f + 1 (WRITE ACK, ts) from correct servers. Observation 1 concludes the proof.

�

Lemma 2: Let Opr be a complete read operation and let ts the timestamp corresponding to the value it returns. At any

time after Opr returns the value of reg ts is greater than or equal to ts in at least f + 1 correct servers.

Proof Since Opr terminates, it has satisfied the condition validBlocks(ts) (line 9 figure 2). For this condition to be

true, the reader must have received 2f +1 different valid blocks for timestamp ts, piggybacked by V AL REP messages

(lines 18 figure 2) sent by different servers. A correct server sends such messages, only after it has reg ts ≥ ts (lines 11

and 3). Since there are at most f Byzantine servers, and by observation 1, the claims follow.

�

Lemma 3: Let Opw be a complete write operation with timestamp ts and let Opr be a complete read operation by a

correct process pr associated to a timestamp ts′. If Opr succeeds Opw in real-time order then ts′ ≥ ts

Proof Since Opr returns a value associated to timestamp ts′, the condition notOld(ts′) (line 9 figure 2) is satisfied. In

the following, we show that notOld(ts′) true implies that ts′ ≥ ts.

Let us consider that notOld(ts′) is true. As Collected ts is reinitialized at the beginning of each new read operation,

notOld(ts′) is true, if all timestamps receives from at least 2f + 1 different servers piggybacked by V AL RESP (line

18 figure 2) or TS RESP (line 18 figure 2) messages are smaller than or equal to ts′. According to Lemma 1, as Opw
terminates, the content of reg ts is greater than or to equal ts in at least f+1 correct servers. So, during Opr, in response

to (V AL REQ, n seq) (line 13 figure 3), the reader can collect at most 2f = n− (n − 2f) messages for a timestamp

smaller than ts. Thus, notOld() always remain false for any timestamp smaller than ts, and since notOld(ts′) is true,

ts′ ≥ ts.

�

7

Algorithm 2 Pseudo-code of the read operation at reader pr.

Definitions:

validBlocks(ts) , GetValue(Collected blocks) = (v, ts)
notOld(ts) , |{i : min(Collected ts[i]) ≤ ts}| ≥ 2f + 1

Initialization :

n seq ← 0
Collected blocks[i]← (⊥,⊥), ∀i ∈ [1, n]
Collected ts[i]← ∅, ∀i ∈ [1, n]
min ts←⊥

1: Read(){
2: n seq ← n seq + 1
3: Collected blocks[i]← (⊥,⊥), ∀i ∈ [1, n]
4: Collected ts[i]← ∅, ∀i ∈ [1, n]
5: min ts←⊥
6: for i ∈ [1, n] send(TS REQ, n seq) to server si

7: wait until (|{ts ∈ Collected ts : ts = min ts}| ≥ f + 1)
8: for i ∈ [1, n] send(BLOCK REQ, (pr,min ts, n seq)σpr

) to server si

9: wait until (validBlocks(ts) ∧ notOld(ts))
10: return GetV alue(Collected blocks)

11: upon receive (TS RESP,ts,num) from server si
12: if (num = n seq)

13: Collected ts[i]← Collected ts[i] ∪ ts

14: if (|x : Collected ts[x] 6=⊥}| ≥ n− f

15: min ts← min({ts ∈ Collected ts | notOld(ts)})
16: for i ∈ [1, n] send (V AL REQ,min ts, n seq) to server si

17: upon receive (V AL RESP, ts, num) from server si
18: if (num = n seq) {Collected ts[i]← Collected ts[i] ∪ ts}

19: upon receive (BLOCK RESP, bi, ts, num) from server si
20: if (num = n seq)

21: Collected blocks[i]← (bi, ts)

Lemma 4: If a complete read operation Opr, invoked by a correct process pr, returns a value corresponding to a

timestamp ts > 0, then it exists a write operation Opw, with timestamp ts, that starts before Opr terminates.

Proof Since Opr terminates, it has satisfied the condition validBlocks(ts) (line 9 of Figure 2). Thus, the reader received

2f + 1 distinct valid blocks for timestamp ts, piggybacked by BLOCK RESP messages (lines 10 and of Figure 2)

sent by distinct servers. As all the variables are reinitialized at the beginning of a read operation, and as there are at most

f Byzantine servers, at least f + 1 correct servers sent a block to pr during the execution of Opr. A correct server s

sends a block corresponding to a timestamp ts > 0 only after it has received the corresponding WRITE message from

the writer; thus, after the invocation of a write operation Opw for timestamp ts. It follows that Opw began before Opr
completes.

�

Lemma 5: Let Opr be a complete read operation invoked by a correct process pr, and let Opr′ be a complete read

operation invoked by a correct process p′r (pr and p′r may be the same process). Let ts and ts′ be the timestamps associated

with Opr and Opr′ respectively. If Opr′ succeeds Opr in real-time order then ts′ ≥ ts.

Proof The proof follows the same approach as the proof of Lemma 3.

Let ts′ be Opr′ .ts and let ts be Opr.ts. As Opr′ returns a value associated to a timestamp ts′, the conditions

validBlocks(ts′) and notOld(ts′) are true for timestamp ts (line 9 figure 2). In the following, we show that if condition

notOld(ts′) implies that ts′ ≥ ts.

Let us consider that notOld(ts′) is true. As Collected ts is reinitialized at the beginning of each new read operation,

notOld(ts′) is true, if all timestamps receives from at least 2f + 1 different servers piggybacked by V AL RESP (line

8

Algorithm 3 Pseudo-code at server si.

Initialization

reg tsi ← 0
vali ← ∅
Log ← ∅
Reads tempi ← ∅

// Write Protocol Messages ⊲ Pseudo code for server i

1: upon receive (WRITE, ts, [b1, . . . , bn]) from writer pw
2: vali ← vali ∪ (bi, ts)
3: if reg tsi < ts {reg tsi ← ts}

4: send WRITE ACK to pw

// Read Protocol Messages

5: upon receive (TS REQ, n seq) from reader pr
6: send(TS RESP, reg ts, n seq))

7: upon receive (V AL REQ, ts, n seq) from reader pr
8: wait for (reg ts ≥ ts)
9: send(VAL RESP, ts, n seq) to pr

10: upon receive (BLOCK REQ, (pr, ts, n seq)σ(pr)) from reader pr
11: wait for reg ts ≥ ts

12: Log ← Log ∪ (pr, ts, n seq)σ(pr)

13: send(BLOCK RESP, val[ts], n seq) to pr

// Audit protocol Messages

14: upon receive (AUDIT REQ) from owner pR of R

15: send(AUDIT RESP ,Log) to pR

18 figure 2) or TS RESP (line 18 figure 2) messages are smaller than or equal to ts′. According to Lemma 2, as Opr
returns for timestamp ts, then at server side, the content of reg ts is greater than or to equal ts in at least f + 1 correct

servers. So the reader can collect at most 2f = n − (n − 2f) timestamps smaller than ts. Thus, notOld always remain

false for any timestamp smaller than ts, hence ts′ ≥ ts.

�

Lemma 6: Let Opr be a complete read operation with timestamp ts and let Opw be a complete write operation by pw
associated to a timestamp ts′. If Opw succeeds Opr in real-time order then ts′ ≥ ts

Proof We proceed considering first the case in which ts > 0 and then the case in which ts = 0. From Lemma 4, if ts > 0
then it exists Opw′ with timestamp ts that starts before the end of Opr. Considering that, there is a unique writer and that

its execution is sequential, then Opw′ terminates before Opw starts. As timestamps growth monotonically (Observation

1), ts′ > ts.

Consider now the case ts = 0. As timestamps grow monotonically (Observation 1), and the initial value of the timestamp

is 0 (line 0 of Figure 1) then all write operations have their timestamp greater than 0. In particular this is true for Opw,

such that ts′ > ts, which concludes the proof. �

Let E be any execution of our algorithm and let H be the corresponding history. We construct complete(H) by removing

all the invocations of the read operations that have no matching response and by completing a pending write(v) operation

if there is a complete read operation that returns v. Observe that only the last write operation of the writer can be pending.

Then, we explicitly construct a sequential history π containing all the operations in complete(H). First we put in π all

the write operations according to the order in which they occur in H , because write operations are executed sequentially

by the unique writer, this sequence is well-defined. Also this order is consistent with that of the timestamps associated

with the values written.

Next, we add the read operations one by one, in the order of their response in H . A read operation that returns a value

with timestamp ts is placed immediately before the write that follows in π the write operation associated to ts (or at the

end if this write does not exist). By construction of π every read operation returns the value of the last preceding write

in π. It remains to prove that π preservers the real-time order of non-overlapping operations.

9

Theorem 3: Let Op1 and Op2 be two operations in H . If Op1 ends before the invocation of Op2 then Op1 precedes

Op2 in π.

Proof

Since π is consistent with the order of timestamps, we have to show that the claim is true for all operations with

different timestamps.

There are four possible scenarios: Op1 and Op2 are respectively a write and a read operation, then the claim holds by

Lemma 3. Op1 and Op2 are two reads operations, then the claim holds by Lemma 5. Op1 and Op2 are respectively a

read and a write operation, then the claim holds by Lemma 6. If Op1 and Op2 are two write operations the claim holds

by the Observation 1.

�

2) Liveness Proof:

Lemma 7: If pw is correct (if the writer don’t crash), then each write operation invoked by pw eventually terminates.

Proof The write operation has the following structure. The writer broadcasts a WRITE message to all servers (line 4

of Figure 1) and waits n− f ACKs (line 5 of Figure 1) from different servers before terminate.

Since pw is correct, the channel communications properties assure that all correct servers deliver the message WRITE

broadcast by pw. Considering that: (i) servers do not apply any condition to send back WRITE ACK messages (line

4 of Figure 3), and that (ii) at most f servers can be faulty, pw always receives the n− f WRITE ACK replies from

correct servers necessary to stop waiting, which concludes the proof.

�

Lemma 8: Let Opw be a complete write operation that writes v with timestamp ts. If a correct server s updates reg ts

with ts, then all correct servers eventually adds the block corresponding to v in val.

Proof Let us recall that a correct server updates reg ts with ts only upon receiving a WRITE message (line 1 figure 3).

When a server updates reg ts with ts, it also add to val (line 2 figure 3) the associate block it receives in the WRITE

message from the writer (line 1 figure 3). As there is a reliable broadcast between the writer and servers, eventually all

correct servers receive the WRITE message and updates val with their block associate to ts.

�

Lemma 9: When a correct reader pr receives the response to TS REQ from all correct servers, in at least one correct

server reg ts ≥ min ts.

Proof By contradiction, assume that in all correct servers reg ts < min ts.

Then, in response to TS REQ messages, all correct servers send their reg ts, all inferior to min ts. We note tsMax

the greatest timestamp receives by pr from correct servers. Then, it exists in Collected ts 2f + 1 timestamp ≤ tsMax.

By assumption, tsMax < min ts, which is in contradiction with the condition line 15.

�

Lemma 10: A read operation Opr invoked by a correct process pr always terminates.

Proof First, observe that if pr satisfies the conditions at line 9 figure 2, pr terminates. Then, let us show by construction

that those conditions are necessarily satisfied.

A correct reader pr starts the read operation, after it reinitialized all the variables. Then, pr sends a TS REQ messages

to all the servers. Consider the moment pr receives the response from the 2f +1 correct servers, and sends a V AL REQ

message to all the servers for timestamp min ts. Notice that according to Lemma 9 at least one correct server has set

reg ts to min ts. As at least one correct server set reg ts to min ts, then from the reliable broadcast, eventually all

servers will set reg ts to min ts. Then, the reader will eventually receive the 2f +1 response from correct servers such

that the condition line 7 is satisfied.

Then the reader sends BLOCK REQ messages for timestamp min ts to all servers. As at least one correct server

set reg ts to min ts, from Lemma 8, eventually all correct servers have in val the block associate with timestamp

min ts. Then, in response to BLOCK REQ, all correct servers can send their block corresponding to timestamp ts

and the condition validBlocks is satisfied, such that the reader can return for the value-timestamp pair corresponding to

timestamp ts.

�

3) Auditability:

Lemma 11: Algorithm presented figure 1 to 3 solves the completeness property

Proof For a reader pr to returns for a valid value v with timestamp ts, then pr receives at least τ messages from different

servers (line 9 figure 2) with the block corresponding to v. A correct server sends a block with associate timestamp ts

to a reader pr (line 13, figure 3), only after it adds to its log the reader pr associate with timestamp ts, line 12 figure 3.

10

Thus, if a correct server s sends a block with associate timestamp ts to a reader pr, s stores pr ID associate with ts in its

log. If τ ≥ 2f + 1, since there is at most f Byzantine, in the worst case, at least τ − f ≥ f + 1 correct servers, denoted

PC , records Opr in their logs.

Let Opa be an audit operation, invoked by a process pa, that starts after pr returns. So when Opa starts, pr is in PC’s

log. Then, pa waits 2f + 1 responses (line 11 figure 1) after sending AUDIT request (line 10 figure 1) to servers. As

there is at most f Byzantine servers, pa gets the responses from at least f + 1 (n− 2f) correct servers. In particular, pa
get at least one response from a server in PC . Finally, with t ≤ τ − 2f = 1, pr and is reported by Opa to have read the

value associate to timestamp ts.

�

Lemma 12: Algorithm presented figure 1 to 3 solves the completeness (with collusion) property

Proof For a reader pr to returns for a valid value v with timestamp ts, then pr receives at least τ messages from different

servers (line 9 figure 2) with the block corresponding to v. Notice that if pr is faulty, it can also receive those blocks not

directly from the servers but for some other faulty process in B. However, those other faulty process at some point must

have receives those blocks from the servers.

A correct server sends a block with associate timestamp ts to a reader p′r (line 13, figure 3), only after it adds to its

log the reader p′r associate with timestamp ts (line 12 figure 3). Thus, if a correct server s sends a block with associate

timestamp ts to a reader p′r, s stores p′r ID associate with ts in its log. If τ ≥ 2f +1, since there is at most f Byzantine,

in the worst case, at least τ − f ≥ f +1 correct servers, denoted PC , records in their logs directly the reader pr, or if pr
is faulty, some faulty process in B.

Let Opa be an audit operation, invoked by a process pa, that starts after pr returns. So when Opa starts, pr is in PC’s

log. Then, pa waits 2f + 1 responses (line 11 figure 1) after sending AUDIT request (line 10 figure 1) to servers. As

there is at most f Byzantine servers, pa gets the responses from at least f + 1 (n− 2f) correct servers. In particular, pa
get at least one response from a server in PC . Finally, with t ≤ τ − 2f = 1, if pr is correct, pr is reported by Opa to

have read the value associate to timestamp ts, otherwise some faulty process in B are.

�

Lemma 13: Algorithm presented figure 1 to 3 with t ≥ 1 solves the strong accuracy property

Proof We have to prove that a correct reader pr that never invoked a read operation cannot be reported by an audit

operation. With t = 1, a reader pr is reported by an audit operation if one server respond to the AUDIT message with a

correct record of pr in its log. Thanks to the use of signature, a false record cannot be created by a Byzantine server. The

signature used to attest the validity of a record are of two kind. If a correct server add pr in its log before responding to

V AL REQ messages (line 12, figure 3), then it uses the reader signature. So for a process to have a valid record to pr in

its log, the process pr must have sent V AL REQ messages to some servers, i.e. pr must have invoked a read operation.

�

Theorem 4: Algorithm presented figure 1 to 3 with n = 3f + 1, τ = 2f + 1 and t = 1 solves the strong auditability

property

Proof Directly from Lemma 13 and Lemma 11 with t = 1 and τ = 2f + 1.

�

VI. VALID READS USING MULTIPLE WRITERS

In this section we explore the guarantees obtained by switching from a single writer than can crash to multiples writers,

with some byzantines.

We consider Nw ≥ 2∗fw+1 writers are trying to write au unique value v in an auditable distributed register. We present a

protocol for the writers that is compatible with any write operation that completes in a single round like the one presented

in V.

1 Writers perform the secret sharing in a deterministic way1.

2 Writers send to each server its share.

3 Servers wait until they receive the same share from fw + 1 distinct writers before accepting it.

Using this setup, the following properties arise :

Theorem 5: Correct servers only accept valid shares.

Proof A correct server waits until collecting fw + 1 copy of the same share before committing it to its storage. Because

at most fw writers can be byzantines, at least one correct writer communicated the share to our server and as such, the

share is necessarily correct. �

1This can be achieved by using v to seed a PRNG that the writers then use to perform the secret sharing

11

Theorem 6: If one correct server accepts a share then,

empheventually, every correct server will accept their share.

Proof From the previous theorem we know that the accepted share is valid. From this we know that the writers are in

the process of sending shares to every server. Because there are more than fw + 1 correct writers and we are operating

in an eventually consistent network, eventually, every server will receive fw + 1 times their share and thus every correct

server will eventually accept their share. �

With this, we basically reduced the writing process to one with a single correct writer. We therefore removed the need for

protocols to be crash-tolerant, while keeping every other property they might have. In particular, this means that reader

of distributed registers implementing the above write sequence know that values that they read from the register must

originate from correct writers by construction, hence the name Valid Reads.

REFERENCES

[1] I. T. R. Center, “At mid-year, u.s. data breaches increase at record pace,” in In ITRC, 2018.
[2] General Data Protection Regulation. Regulation (EU) 2016/679 https://gdpr-info.eu/.
[3] California Consumer Privacy Act. State of California Department of Justice https://oag.ca.gov/privacy/ccpa.
[4] Personal Information Protection Law of the People’s Republic of China. 30th meeting of the Standing Committee of the 13th National People’s

Congress of the People’s Republic of China on August 20.
[5] A. Del Pozzo, A. Milani, and A. Rapetti, “Byzantine auditable atomic register with optimal resilience,” in 2022 41st International Symposium on

Reliable Distributed Systems (SRDS). IEEE, 2022, pp. 121–132.
[6] F. Desbiens, “zenoh,” in Building Enterprise IoT Solutions with Eclipse IoT Technologies: An Open Source Approach to Edge Computing. Springer,

2022, pp. 155–185.
[7] G. Bracha and S. Toueg, “Asynchronous consensus and broadcast protocols,” Journal of the ACM (JACM), vol. 32, no. 4, pp. 824–840, 1985.
[8] C. Cachin, R. Guerraoui, and L. Rodrigues, Introduction to reliable and secure distributed programming. Springer Science & Business Media,

2011.
[9] V. V. Cogo and A. Bessani, “Brief Announcement: Auditable Register Emulations,” in 35th International Symposium on Distributed Computing

(DISC 2021), ser. Leibniz International Proceedings in Informatics (LIPIcs), S. Gilbert, Ed., vol. 209. Dagstuhl, Germany: Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2021, pp. 53:1–53:4. [Online]. Available: https://drops.dagstuhl.de/opus/volltexte/2021/14855

[10] H. Krawczyk, “Secret sharing made short,” in Annual international cryptology conference. Springer, 1993, pp. 136–146.
[11] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22, no. 11, pp. 612–613, 1979.
[12] M. O. Rabin, “Efficient dispersal of information for security, load balancing, and fault tolerance,” Journal of the ACM (JACM), vol. 36, no. 2, pp.

335–348, 1989.
[13] V. V. Cogo and A. Bessani, “Auditable register emulations,” arXiv preprint arXiv:1905.08637, 2019.
[14] L. Lamport, “On interprocess communication,” Distributed computing, vol. 1, no. 2, pp. 86–101, 1986.
[15] J.-P. Martin, L. Alvisi, and M. Dahlin, “Minimal byzantine storage,” in International Symposium on Distributed Computing. Springer, 2002, pp.

311–325.

https://gdpr-info.eu/
https://oag.ca.gov/privacy/ccpa
https://drops.dagstuhl.de/opus/volltexte/2021/14855

	Introduction
	Related work.
	Our Contribution

	System Model
	Failure model
	Communication primitives

	Single-Writer/Multi-Reader Atomic Auditable Register
	Impossibility results
	Solution specification
	Description of the algorithm
	The algorithm
	Proof
	Atomicity Proof
	Liveness Proof
	Auditability

	Valid reads using multiple writers
	References

