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In dairy farming, ensuring the health of each cow and minimizing economic losses requires individual
monitoring, achieved through cow Re-Identification (Re-ID). Computer vision-based Re-ID relies on visually dis-
tinguishing features, such as the distinctive coat patterns of breeds like Holstein.
However, annotating every cow in each farm is cost-prohibitive. Our objective is to develop Re-ID methods
applicable to both labeled and unlabeled farms, accommodating new individuals and diverse environments. Un-
supervised Domain Adaptation (UDA) techniques bridge this gap, transferring knowledge from labeled source
domains to unlabeled target domains, but have only been mainly designed for pedestrian and vehicle Re-ID
applications.
Ourwork introduces Cumulative UnsupervisedMulti-Domain Adaptation (CUMDA) to address challenges of lim-
ited identity diversity and diverse farm appearances. CUMDA accumulates knowledge from all domains, enhanc-
ing specialization in knowndomains and improving generalization to unseen domains. Our contributions include
a CUMDAmethod adapting to multiple unlabeled target domains while preserving source domain performance,
along with extensive cross-dataset experiments on three cattle Re-ID datasets. These experiments demonstrate
significant enhancements in source preservation, target domain specialization, and generalization to unseen
domains.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Traditionally, farmers have shouldered the vital responsibility of
overseeing the health and behavior of their dairy cows. Detecting
early indicators of heat or unusual behavior in these animals is of para-
mount importance, not only to ensure their overall well-being but also
to mitigate potential economic losses. As we transition from manual
monitoring to computer vision-based individual tracking, there arises
the need for precise identification of each cowwithin a farm. This intri-
cate task is commonly referred to as cow Re-Identification (Re-ID). In
this paper, we focus the cow Re-ID on the Holstein breed, notable for
its visually distinctive spot patterns. Besides, we match observations of
the same individual in the short term, i.e. over a defined timeframe dur-
ing which its visual appearance is presumed to remain unchanged.

Historically, Re-ID has been a focal point in image interpretation,
particularly in the context of pedestrian video surveillance Zheng et al.
(2016). The primary objective of Re-ID in this context is to track or
A List, Palaiseau 91120, France.
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retrieve individuals of interest through camera networks with non-
overlapping fields of view. The introduction of supervised learning, fa-
cilitated by deep Convolutional Neural Networks (CNNs) Krizhevsky
et al. (2012), has significantly advanced the performance of supervised
person Re-ID Ye et al. (2021).

The Re-ID paradigmhas expanded beyondpedestrian tracking to en-
compass a broader array of real-world applications, including vehicle
Re-ID for traffic surveillance Khan and Ullah (2019) and animal Re-ID
for monitoring cattle Schneider et al. (2020); Liu et al. (2019a, 2019d,
2019b).

Supervised Re-ID demands the painstaking annotation of datasets. In
the specific context of cow Re-ID, the impracticality and cost of annotat-
ing every cow in each farm necessitate the development of a Re-ID
method capable of generalizing effectively across both labeled and unla-
beled farms. This adaptability is crucial to accommodate the introduc-
tion of new cows into established farms and the deployment of the
technology in novel farm environments. However, Re-ID grapples with
a notable decline in performance when the test image distribution di-
verges from that of the training dataset.

To address these challenges, Unsupervised Domain Adaptation
(UDA) methods have been devised for Re-ID Ge et al. (2019, 2020);
unications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://
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Dubourvieux et al. (2021a). UDA seeks to adapt a model to a domain
of interest by leveraging an annotated dataset from another
domain (the source domain) and unlabeled data from the domain of in-
terest (the target domain). While extensively explored for pedestrian
and vehicle Re-ID, UDA proves particularly relevant in cow Re-ID appli-
cations, given the impracticality of annotating each cow in numerous
farms.

However, the unique constraints and requirements inherent in the
cow Re-ID application have spurred further developments, which
form the core focus of this paper. In cow Re-ID, each farm represents a
distinct domain, characterized by its unique set of individuals, cameras,
and environmental context. Consequently, cross-domain performance
degradation becomes a pertinent issue. Additionally, each domain typi-
cally comprises a limited subset of animals, restricting the generaliza-
tion potential of Re-ID networks trained on individual datasets, as in
conventional UDA.

In pursuit of enhancing the model's discriminatory capabilities
among cows,we propose a novel framework: Cumulative Unsupervised
Multi-Domain Adaptation (CUMDA). CUMDA aims to accumulate Re-ID
knowledge from data collected across multiple farms (diverse do-
mains), enabling superior specialization within known domains and
improved performance when confronted with previously unseen
domains.

To our knowledge, existing UDA Re-ID methods have primarily
focused on multi-domain scenarios with multiple annotated source
domains. No UDA Re-ID approach has been designed specifically for
multiple unlabeled target domains.Moreover, while theDomain Gener-
alization frameworkWang et al. (2021) seeks to createmodels that per-
form well on unseen target domains, it differs from CUMDA. CUMDA
assumes knowledge of all target domains during training and access
to unlabeled data from these domains, with the objective of enhancing
specialization and cross-domain Re-ID performance through knowledge
accumulation. While generalization is not the primary aim, we antici-
pate that a CUMDA model, through the accumulation of knowledge
from diverse target domains, can enhance its generalization to
previously unseen domains.

Furthermore, traditional UDA frameworks often prioritize maximiz-
ing performance on the target domain at the expense of forgetting or
neglecting source domain knowledge Dubourvieux et al. (2021a). In
practice, when new cameras are deployed on a farm, the adaptation of
the Re-ID model to these new devices is desired, while maintaining
high performance on existing ones—a characteristic we term”source
conservation.”

In summary, while existing Re-ID methods may be directly applica-
ble to cattle Re-ID, none of them fully addresses the unique constraints
and practical requirements of cow Re-ID that underscore the choice of
a CUMDA framework over a conventional UDA approach. Driven by
these practical considerations and the need for cross-domain cattle
Re-ID solutions, this paper endeavors to design a cross-domain
model tailored to the distinctive challenges of cattle Re-ID across mul-
tiple farms, an area that has seen limited study. Our aim is to develop
such a method within the framework of CUMDA, emphasizing source
conservation and the accumulation of knowledge from multiple
unsupervised target domains. This paper comprises two primary
contributions:

• A Source-Guided CUMDA method, that can improve cross-
domain re-ID performance, on one or multiple target domains, while
being able to accumulate knowledge from multiple domains and pre-
serve the source performance.

• Extensive cross-dataset experiments for CUMDA re-ID on 2
public cow re-ID datasets and a private one.

2. Related work

This work is at the intersection of two research areas: cattle re-ID
and cross-domain re-ID.
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2.1. Cattle re-ID

Re-ID has been mainly focused on pedestrian and vehicles Ye et al.
(2021). Some work exists for animal re-ID, focusing for instance on
Amur tiger re-ID Liu et al. (2019a); Li et al. (2019a); Liu et al. (2019d).
Nevertheless, Amur tigers have a coat of spots visually very distinct
from cows, as well as the deformations of these spots their movements
specific to their morphology. This leads us to believe that cows have a
sufficiently distinct appearance fromAmur tigers to be considered a dis-
tinct class of interest for re-ID Liu et al. (2019d). That's why he specific-
ity of the appearance of cows has led to specific works Bergamini et al.
(2018); Andrew et al. (2021, 2016, 2017); Gao et al. (2021), studying
it under the frameworks of supervised learning or self-supervised learn-
ing Gao et al. (2021) assuming access to tracklets. However, supervised
learning or self-supervised learning are not suitable for learning com-
bining data from multiple farms, due to the increased annotation cost
for the supervised paradigm or the failure to account for inter-domain
heterogeneities with multiple farm data in the self-supervised frame-
work. To the best of our knowledge, cattle re-ID has therefore never
focused on the cross-domain setting nor the multiple-domain one.

2.2. Cross-domain person and vehicle re-ID via UDA paradigm

Cross-domain re-ID has been extensively studied for people and
vehicle re-ID problems. It can be divided into two main families of
approaches.

Domain-translation approaches were the first ones considered for
cross-domain person re-ID. Among these approaches, image-to-image
translation methods seek to transfer the source images into the target
domain style Wei et al. (2018a); Bak et al. (2018); Deng et al. (2018);
Zhong et al. (2018); Liu et al. (2019c); Huang et al. (2019); Chen et al.
(2019); Li et al. (2019b). They are based on generative models such as
the CycleGAN Zhu et al. (2017). They are constrained during training
to translate images to new style while preserving the identity class.
This allows the identity label to be reused for supervised re-ID learning
from labeled source images with a new target-style. Domain-invariant
feature learning methods Wang et al. (2018); Lin et al. (2018); Chang
et al. (2019b); Li et al. (2018, 2019b); Qi et al. (2019) directly constrain
the feature space of the learned model, e.g. by aligning feature distribu-
tions between domains, with the objective that the re-IDmodel learned
to be discriminative on the source domain, is also discriminative on the
target domain in this domain-invariant space.

Because of limited cross-domain performance of domain-translation
approaches, researchers have been interested in pseudo-labeling ap-
proaches Song et al. (2020); Zhang et al. (2019); Jin et al. (2020);
Tang et al. (2019); Zhai et al. (2020a); Zou et al. (2020); Fu et al.
(2019). They consist in predicting identity labels for images of the target
domain, by clustering features obtained with an initial feature encoder,
generally learned to perform re-ID in a supervised way on the source
domain. Pseudo-label approaches have allowed a clear improvement
of the cross-domain re-ID performance Ge et al. (2019, 2020);
Dubourvieux et al. (2021b, 2022). To achieve even better performance,
techniques have been developed to get better pseudo-labels or make
the framework more robust against noisy labels Chen et al. (2020);
Zhai et al. (2020b); Zhao et al. (2020); Peng et al. (2020); Yu et al.
(2019); Zhong et al. (2019); Luo et al. (2020); Dubourvieux et al.
(2021a).

The approach proposed in this paper is also in line with pseudo-
labeling approaches. Contrary to existing work, this one focuses on a
new class of objects for cross-domain re-ID, the cross-domain cow re-
ID, for which no UDA approach has been considered. Moreover, unlike
existing work in pseudo-labeling for cross-domain person re-ID,
which considers a single target domain scenario, this work tackles a
more challenging, yet practical and more specific to cattle re-ID real-
world requirements, cross-domain problem: Cumulative Unsupervised
Multi-Domain Adaptation (CUMDA). This cross-domain framework
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seeks to leverage the knowledge fromone or several domains of interest
(e.g.: various cattle farms), to improve the cross-domain re-ID perfor-
mance for each domain (each farm), including on the source domain
re-ID ability of the model.

3. Methodology

Lower part: proposed pseudo-labeling method for multi-target
CUMDA re-ID. Black arrows indicate the pseudo-labeling and training
cycle, gray arrows indicate the clustering parameters optimization
steps. It considers a set of n target domains T 1, . . . ,T n and a source do-
main S. For each target, SOURCE CALIBRATION computes an associated

labeled source validation set xS1
val

n o
, …, xSn

val

n o
. After FEATURE EXTRAC-

TION of all source validation and target sets, SOURCE-GUIDED AUTO HP
TUNING computes target-specific optimal hyperparameter (HP) values
λ∗
1, . . . ,λ

∗
n from calibrated source validation sets bymaximizing cluster-

ing quality Q (Sec. 3.4). Target-specific PSEUDO LABELING BY CLUSTER-
ING is then carried out. TRAINING is jointly done on all pseudo-labeled
target sets and on the labeled source domain by minimizing
LSG � CUMDA (Sec. 3.2).

Our goal is to design a CUMDA re-ID method that can improve re-ID
performance on all seen domains. More specifically, it is expected that
this method can:

• specialize for one or multiple target domains to improve perfor-
mance on them;

• ensure good performance on the source domain.
We also expect such a model to generalize well on an unseen new

target domain, as it should accumulate knowledge from multiple do-
mains.

As illustrated in the upper part of Fig. 1, existing pseudo-labeling
methods are designed for UDA re-ID, i.e. to improve re-ID performance
on a single target domain, using only data from this domain. Therefore,
they need to be rethought in order to meet the previously mentioned
objectives of CUMDA re-ID, and to incorporate the use of data frommul-
tiple domains. This section introduces key elements of our CUMDA re-ID
method.

The lower part introduces our CUMDA re-ID method whose compo-
nents will be motivated in this section.

General notations.We consider a set of n target domains of interest
T 1, . . . ,T n,n ∈ N and a source domain S, from which a set of labeled
data S from S, and unlabeled data T1, . . . , Tn from T 1, . . . ,T n (the target
domains) are available.

3.1. Pseudo-labeling by clustering

A feature encoder f θ, θ ∈ Rp, p ∈ N (usually a CNN) is trained on the
labeled source dataset T , by minimizing a re-ID loss function (e.g.: Clas-
sification Loss, Triplet Loss as in Hermans et al. (2017), a combination of
both as in Luo et al. (2019)…) LID θ, Tð Þ, w.r.t θ. Then, a clustering func-
tion Cλ defined by hyperparameters (HP) λ ∈ Rm,m ∈ N is used to pre-
dict pseudo-labels of data samples in each target set, by using the
feature representation of their data. Pseudo-labeled target sets
bT1, . . . , bTn can then be obtained:

∀k ∈ 1,n½ �, bTk ¼ Cλ f θ, Tkð Þ ð1Þ

This step, described by Eq. 1, is called Pseudo-Labeling by Clustering
(PLC). These pseudo-labels will be used to define the loss that super-
vises the learning on the targets.

3.2. Source-guided CUMDA re-ID learning

The objectives of CUMDA re-ID are being able to improve the cross-
domain performance for one or multiple target domains, while being
able to preserve the source re-ID performance. Inspired by the
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source-guided loss function designed by Dubourvieux et al. (2021a)
for single-target domain UDA re-ID, we define a new Source-Guided
loss function extended for CUMDA re-ID. Therefore, f θ is fine-tuned by
minimizing a Source-Guided CUMDA (SG-CUMDA) loss function
LSG � CUMDA which aggregates all the individual re-ID loss functions on
each domain, as follows:

LSG � CUMDA θ, S, T̂1, . . . , T̂n

� �� �
¼ LID θ, Sð Þ þ∑

n

k¼1
LID θ, T̂k

� �
: ð2Þ

3.3. Alleviating the domain gap with domain-specific batch normalization

It is argued that the gap domain can degrade performance
Dubourvieux et al. (2021a). The proposed methodology proposes to
mitigate it at the level of batch normalization layers.

Batch Normalization (batchnorm) is a widely-used technique to ac-
celerate and improve the training of deep neural networks, by reducing
the internal covariate-shift Ioffe and Szegedy (2015). It consists in nor-
malizing the batch after each convolutional or linear layers, using the
batch-wise mean and variance of activations, and learnable affine pa-
rameters that rescale the features into batch-normalized features.

Prior works highlighted the negative impact on training stage when
computing batchnorm statistics with data from different domains
Zajkac et al. (2019). Domain-Specific Batch Normalization (DSBN)
layers have been proposed to be effective for various domain adaptation
problems such as UDA classification Chang et al. (2019a) and UDA re-ID
Dubourvieux et al. (2021a). It consists in using domain-specific
batchnorm affine parameters and computing domain-specific mean
and variance. Other network parameters are still shared and usedwhat-
ever the domain. f θ being implemented by a CNN, DSBN layers are used
after each convolutional and fully-connected layers.

3.4. Improving pseudo-labels with multi-target automatic source-guided
selection of Pseudo-labeling Hyperparameters

Pseudo-labeling UDA approaches are sensitive to the quality of
the proposed labeling, which depends on the good tuning of cluster-
ing hyperparameters λ. In the context of pedestrian and vehicle re-
ID, the ideal λ value called λ∗ has been shown to depend on the target
dataset distribution in the feature space, as well as the target dataset
statistics (e.g. the number of shots per identity) Dubourvieux et al.
(2021b). Most of the works that focus on pedestrian and vehicle
UDA re-ID reuse the same values empirically tuned for a specific
cross-dataset experiment, on all different cross-datasets considered
afterward. It has been shown that this can result in significantly re-
duced performance compared to getting a suitable value
Dubourvieux et al. (2021b).

For realworld cow-re-ID, because the target is unlabeled, it is impos-
sible to build a labeled validation set to tune this value. Besides, usual λ
value used for person re-ID may not translate well to cow re-ID prob-
lem, given the particularities of cow datasets (color distribution, view-
points …). Therefore, we propose to automate the tuning of λ from
the labeled data. To do so, we use the HyperParameters Automated by
Source & Similarities (HyPASS) algorithm Dubourvieux et al. (2021b).
HyPASS was designed and tested for single-target domain pedestrian
and vehicle UDA re-ID. It optimizes clustering hyperparameters from
the labeled data of the source validation dataset. More concretely,

HyPASS estimates by model selection on Cλ, the value λ∗ such as λ� ¼
arg maxλQðCλ; S

valÞ where Q is a clustering quality function and Sval a
labeled validation set from the source data. It is illustrated in Fig. 1 as
source-guided auto HP tuning.

HyPASS-SC for CUMDA: improving the robustness to domain gap.
In this paper, we adapt HyPASS to our cow re-ID CUMDA problem, by
selecting a specific value λk for each target dataset Tk. The PLC defined
by Eq. 1, is redefined as a Domain-specific PLC given by:



Fig. 1.Upper part: pseudo-labelingparadigm for single-target UDA re-ID. Black arrows indicate thepseudo-labeling and training cycle. FEATURE EXTRACTION is carried out for images xT 1
� �

of the target domain T 1 with a feature encoder f θ . PSEUDO LABELING BY CLUSTERING computes pseudo-labels byT 1
n o

on clustered features. TRAINING is done on the pseudo-labeled target

set xT 1 ,byT 1
n o

by minimizing LID.
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∀k ∈ 1,n½ �, bTk ¼ Cλk
f θ, Tkð Þ: ð3Þ

HyPASS functioning relies on domain-gap reduction. In the multi-
target use-case, we propose to achieve it in two ways:

• At the feature level, target-specific DSBN is leveraged to reduce
the domain-gap in the feature space (cf. section 3.3);
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• At the dataset statistics level, a new Source validation Calibration
(SC) approach is proposed.

While cross-dataset statistic gapmay be overlooked for an academic
person and vehicle re-ID such as in Dubourvieux et al. (2021b), it be-
comes crucial in the considered cow re-ID problematic. Indeed, in the
well-known person re-ID datasets, usual statistics discrepancies are



Table 1
Dataset statistics. For Cows2021 Gao et al. (2021) and HolsteinCattle Bhole et al. (2019),
∗indicates that the dataset is extracted from the RGB annotated portion of the complete
dataset, following a 50/50 ID split for Train/Test. There is no overlap between train IDs
and test IDs (cf. Sec. 4.2.6).

Dataset # train
IDs

# train
images

# test
IDs

# query
images

# gallery
images

Cows2021∗ 90 4602 91 855 3213
HolsteinCattle∗ 68 609 68 204 414
CowFisheye 62 6334 16 151 2224
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minimal, with between 21 and 36 shots per ID (e.g. Market1501 Zheng
et al. (2015), DukeMTMC Ristani et al. (2016), personX Sun and Zheng
(2019) and MSMT17 Wei et al. (2018b)). However, that does not hold
true in all cases. Especially in scarcer animal-related re-ID, where the
data may be difficult to acquire, resulting in higher discrepancies in
shots per ID. Moreover, contrary to person or vehicle re-ID applications
in open-world, the number of cows in a farm of interest is generally
known, or can be easily estimated for a cross-domain re-ID applications.
This allows us to design SC for cattle re-ID, which consists in equalizing
the number of shots per ID of the source to match that of the target. SC

generates target-specific source validation sets Svalk from Sval, that reduce
the cross-dataset statistics gap with the corresponding target training
set Tk. SC is represented as Source Calibration on Fig. 1. HyPASS is

then run on Svalk to compute λ∗
k, the optimal hyperparameter value for

clustering on Tk. The combined use of HyPASS and SC will be referred
to as HyPASS-SC in the rest of the paper. Implementation details are
given in Sec. 4.2.7.

4. Experiments

4.1. Datasets

In this paper, we employ three different datasets: Cows2021 Gao
et al. (2021), HolsteinCattleRecognition Bhole et al. (2019) and the pri-
vate dataset CowFisheye. The content of each dataset is illustrated in
Fig. 2.

4.1.1. Cows2021
Cows2021 Gao et al. (2021) is a dataset featuring RGB images and

videos of 186 individuals. The data was acquired from 4 m above the
ground by a pinhole camera pointed downwards.

Image extraction. The imageswere extracted over onemonth of ac-
quisition. The extraction of cow images from the video stream relies on
an oriented bounding-box detector and a tracker. The boxes are
centered around cow torsos, excluding their heads, with all individuals
facing right. For more details on data acquisition, please refer to Gao
et al. (2021).

IDs & samples. In this study, labeled annotations for initial super-
vised training are needed for relevant performance comparisons with
unsupervised UDA. Therefore, only its labeled data is used. A total of
8670 images depicting 181 distinct individuals were extracted, for an
average of 48 shots per identity. More details on image repartition can
be found in Table 1.

Complexity.Despite an acquisition that spreads over onemonth, the
illumination and viewpoint of the cows vary little between acquisitions.
There is little to no occlusion in the images.

4.1.2. HolsteinCattleRecognition
HolsteinCattleRecognition Bhole et al. (2019) is a dataset featuring

RGB and infrared images of 1237 individuals. The data was acquired
by a pinhole camera placed at gound level, 5 m away from the milking
machine it films. For concision, we refer to it as HolsteinCattle in the
rest of the paper.
Fig. 2. Illustration of the content of each dataset. From left to right: Cows2021 Gao et
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Image extraction. The images were extracted over nine days of ac-
quisition. Each of them contains a single cow in the milking machine.
For more details on data acquisition, please refer to Bhole et al. (2019).

IDs & samples. In this study, only the RGB data is used. A total of
1227 images depicting 136 distinct individuals were extracted, for an
average of 9 shots per identity. More details on image repartition can
be found in Table 1.

Complexity. This dataset features partially occluded cattle posi-
tioned differently in the milking machine.

4.1.3. CowFisheye
CowFisheye is a private dataset featuring RGB images of 78 individ-

uals. It was acquired from a single farm from 4 fisheye cameras pointing
downwards, positioned 6 m above the ground. Identities were annoted
manually. This dataset reflects the usual challenging data encountered
in the use case where cows must be identified 24/7 wherever they are
in the farm.

Image extraction. Images were extracted over 6 days of acquisition,
during both day and night. A detector gives images containing the
whole cow body and head, aligned horizontally and facing right.

IDs & samples. Manual selection and annotation of images were
done to ensure a good variability of viewpoints and lighting conditions
for each cow. A total of 8709 images depicting 78 distinct individuals
were extracted for an average of 112 instances per identity.More details
on images repartition can be found in Table 1 and Fig. 3.

Complexity. The CowFisheye dataset complexity reflects the desired
application: re-ID for 24/7monitoring of cows in thewhole camera net-
work.More precisely, the low angle-shot camera configuration required
for coverage of thewhole farm,may introduce significant cow occlusion
by obstacles or other individuals. Distortions inherent to fisheye
cameras are also present. Besides, the acquisition is done in varied illu-
mination conditions, which can cause significant discrepancies in the
appearance of a cow. At night specifically, a near-infrared mode is
activated resulting in black and white pictures. An illustration of the
complexity of the CowFisheye dataset is proposed in Fig. 4.

4.2. Experimental settings

4.2.1. Use case
Our use case is specific to re-ID of animals in multiple farms, with

labeled images from one farm, and one or many unlabeled images
from multiple farms. The objective of our CUMDA re-ID method pre-
sented in Sec. 3 is twofold:
al. (2021), HolsteinCattleRecognition Bhole et al. (2019), CowFisheye (private).



Fig. 3. Number of images per ID in CowFisheye dataset.
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• conservation on the source (labeled) domain;
• specialization on the target (unlabeled) domains.
We also expect better generalization on a newunseen target domain

which would correspond to a new farm in a real world application.
Therefore, for each training, performance on all three datasets is

reported. Throughout the experiments, we evaluate the different com-
ponents of our CUMDA method: source guidance (cf. Sec. 3.2), DSBN
(cf. Sec. 3.3) and HyPASS-SC (cf. Sec. 3.4). Please note that this work
does not aim at optimizing the network architecture or tuning
hyperparameters, it rather proposes an methodology for efficient
CUMDA re-ID by pseudo-labeling.

4.2.2. Framework
In order to introduce some robustness to thepseudo-labels noise, we

use the state-of-the-art framework Mutual Mean Teaching (MMT) Ge
et al. (2019) paired with a Resnet-18 He et al. (2016) backbone
pretrained on ImageNet Deng et al. (2009). The last stride of the
Resnet-18 is set to 1 to increase the feature map resolution. The
DBSCAN clustering algorithm is run on the k-reciprocal encoded fea-
tures with k ¼ 30. DBSCAN parameters nmin and eps are set to nmin ¼
0:4 and eps ¼ 0:6, their usual values Dubourvieux et al. (2021b). Their
values remain constant, except when eps is optimized by HyPASS-SC.
All other unspecified values are set similarly to the original MMT
paper Ge et al. (2019). The work conducted in this paper is however
not limited to MMT and could be applied to any UDA framework.

4.2.3. Data preprocessing
Per domain, mini-batches of size 16 are built with P = 4 identities

and K = 4 shots per identity. CUMDA batches may vary in size as they
are constructed from one mini-batch for the source dataset and one
Fig. 4. Illustration of the complexity of the CowFisheye dataset. Left: varied lighting conditions, C
individual.
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for each target dataset, when applicable. Thus, their size depends on
ndomain, the number of domains used during training. Here, the batch
size is equal to 16� ndomain. Images are resized to 128 � 128 pixels.
Re-ID related data augmentations such as crop and flip are applied dur-
ing the training stage. Random erasing was not applied because it ex-
perimentally decreased the cow re-ID performance.

4.2.4. Initial supervised pre-training
The network is trained during 20 epochs on each on the chosen

source dataset. The learning rate is set to lr ¼ 3:5:10 � 4. Both triplet
and cross-entropy losses are used during the training on source images
Ge et al. (2019).

4.2.5. Domain adaptation
The network is trained during 15 epochs of 200 iterations. This

choice is driven to avoid overfitting on the smaller datasets. The learn-

ing rate is set to lr ¼ 3:5:10�4. Both triplet and cross-entropy losses
are used during the training. Source and target share the same fully con-
nected layer for classification. When using MMT, testing is systemati-
cally done on model number 1 as in real-world applications since
determiningwhichmodel performs best on the target is impossible. In-
deed, the target dataset is not annotated. Concerning the adaptation on
multiple target datasets, when applicable, DSBN is generalized so as to
have one Batch Normalization (BN) per domain. During testing, the
BN of the domain that is most similar in appearance to the tested do-
main is used. More specifically, the test domain BN is used if it has
been computed during training. Otherwise, the BN of CowFisheye is
used when testing on Cows2021 or HolsteinCattle, and the BN of
Cows2021 is used when testing on CowFisheye.
enter: occlusion by objects/cows, Right: varied viewpoints. All pictures represent the same



F. Dubourvieux, G. Lapouge, A. Loesch et al. Artificial Intelligence in Agriculture 10 (2023) 46–60
4.2.6. Testing
Becausemost datasets are extracted from a unique camera, the eval-

uation is done without filtering images from the same camera. The
mean Average Precision (mAP) is reported as evaluation metric. It is
an indicator of the network ability to correctly recall the different
shots in a gallery corresponding to a query individual, and should be
maximized.

For completeness sake, rank-1 is also reported in Appendix A. It indi-
cates the accuracy of the rank-1 proposal for each query individual and
is representative of the retrieval performance. However, rank-1 is sensi-
tive to shortcomings in the dataset that are especially present in the
studied cattle re-id use case (low diversity of images, noise etc.). There-
fore, all in text analysis will be made on mAP as it is more robust and
representative of the performance on the whole dataset.

No re-ranking is applied during testing. The ID splitting for
Cows2021 and HolsteinCattle, is done following the original ascending
numbering. The first half of the identities is taken as train set and the
other half as test set.

4.2.7. HyPASS-SC
HyPASS-SC optimizes the value of DBSCAN hyperparameter eps in

the range 0:35, 0:65½ �, which is the range of acceptable values for
human datasets applications Dubourvieux et al. (2021b). There is an
order of magnitude difference in number of shots per individual be-
tween HolsteinCattle (9) and other datasets (48 and 112). Therefore,
when dealing with HolsteinCattle as target or as source, HyPASS-SC
resp. computes a subsampled or oversampled source validation dataset
resp., so that the number of shots per identity in the source validation
set roughly matches the one of the target, as described in Sec. 3.4. Im-
pact on the performance of shots leveling will be shown in section 5.3.
Random subsampling Cows2021 or CowFisheye is straightforward,
while oversampling HolsteinCattle is done by applying the same data
augmentation than for training. Please note that the source data used
for training is not impacted by this step. In a real-world application,
the number of cows in a farm is known and the number of instances
per identity can be approximated by dividing the number of acquired
images by the estimated number of cows in the exploitation.

5. Results

All results presented below are derived from the experiments de-
tailed in Appendix A. Both mAP and rank-1 metrics are reported in
Tables A.11 - A.16, however, only mAP related results are discussed
below cf. section 4.2.6.

5.1. Effectiveness of our CUMDA, single target

Supervised training & direct transfer. Supervised training results
can be found in Table 2. These results, when training and testing on
the same dataset, give an idea of the complexity of each dataset. From
highest to lowest: CowFisheye, HolsteinCattle and Cows2021.

We also show the cross-domain performance of models supervised
on a source dataset and directly evaluated on the other datasets, with-
out adaptation. The low performance on these datasets demonstrates
the need for domain adaptation. In Table 2, two cross-domain
Table 2
Performance (mAP in % and accuracy in % of the rank-1 closest element in the gallery) of mode
adaptation.

Train Test

Method Source Target Cows2021

mAP

Supervised training Cows2021 None 95.3
Supervised training HolsteinCattle None 29.1
Supervised training CowFisheye None 71.0
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experiments stand out. First, the direct transfer Cows2021!
HolsteinCattle shows the poorest performance on the target domain at
8.0% mAP vs the 81.2% which can be attained if annotations were avail-
able. Second, the direct transfer CowFisheye! Cows2021 shows the
highest performance of all cross-domain experiments, with 71.0% mAP
on the target dataset. These results indicate that the domain gap be-
tween farms greatly influences the network ability to perform on a
new style of images and is higher between HolsteinCattle and the
other datasets than between CowFisheye and Cows2021. Also, the
abundance of information present in CowFisheye with its varied view-
points and occultations helps bridge the gap with other domains as
shown by higher direct transfer scores when pre-training on
CowFisheye.

UDA baseline. In the rest of the paper, wewill refer to domain adap-
tation without source guidance as UDA. Its functioning is illustrated in
the upper part of Fig. 1.We remind the reader that theMMT framework
has been chosen as baseline here Ge et al. (2019) and could be replaced
by any other baseline as shown in Dubourvieux et al. (2021b) and
Dubourvieux et al. (2022).

As shown in Table 3, the performance on the target dataset increases
with ΔmAP values in the range [+1.7 p.p., +55.5 p.p.], meaning a lower
bound for performance variation of +1.7 percentage points (p.p.) and
an upper bound of +55.5 p.p.. This shows that the domain adaptation
is efficient on the target dataset for all presented cases. However, the de-
crease seen in all diagonal elements of Table 3, indicates that the source
dataset is partially forgotten by the network. This effect is drastic with
ΔmAP values in the range [−61.6 p.p.,−11.2 p.p.].

The generalization performance on anunseen dataset is inconsistent
and seems to evolve towards that of a supervised network that is super-
vised on the target dataset. For example, in the case CowFisheye!
HolsteinCattle, the performance of the network on Cows2021 decreases
from 71.0% mAP (cf. Table 2) before UDA to 30.8% mAP after (cf.
Table 3). This performance ressembles the 29.1% mAP performance
seen for a network solely supervised on HolsteinCattle (cf. Table 2). In
conclusion, the UDA approach adapts the network to a single dataset,
without ensuring performance gains on any other dataset.

CUMDA. In the rest of the paper, we will refer to domain adaptation
with source guidance, DSBN and HyPASS-SC as CUMDA. Its functioning
is illustrated in the lower part of Fig. 1. The results with CUMDA are re-
ported in Table 4. The improvements over UDA (cf. Table 3) are multi-
ple.

First, it outperforms the supervised network on source, target and a
third unseen domain in a consistent way. On the source domain, the
performance is equivalent or better, with a þ9:6 p.p. increase in terms
ofmAP for CowFisheye. On the target domain, the performance increase
is drasticwith an averageΔmAP ofþ38:9 p.p.,þ16:5 p.p. andþ7:8 p.p. on
Cows2021, HolsteinCattle and CowFisheye when they are taken as tar-
get domains respectively. Generalization performance on the unseen
domain increases on average of þ14:4 p.p., þ2:7 p.p. and þ3:0 p.p. on
the same datasets.

Second, on the target domain, our proposed CUMDA method
outperforms the UDA. To characterize this, we compute the increment
in performance between Tables 4 and 3. On the source domain, the per-
formance increase is drastic with values as high as 81:1 � 19:6 ¼ þ61:5
p.p. for the cross domain HolsteinCattle! CowFisheye. On the target
ls supervised on a single source dataset and direct transfer on each target dataset without

HolsteinCattle CowFisheye

rank-1 mAP rank-1 mAP rank-1

98.2 8.0 13.7 16.8 45.7
73.1 81.2 91.7 12.7 25.2
95.1 13.6 24.5 50.5 75.5



Table 3
Performance of MMT Ge et al. (2019). mAP (in %), ΔmAP (in p.p.) indicates the difference with initial supervised models (cf Table 2).

Train Test

Method Source Target Cows2021 HolsteinCattle CowFisheye

mAP ΔmAP mAP ΔmAP mAP ΔmAP

UDA Cows2021 HolsteinCattle 39.2 −56.1 12.6 +4.6 9.1 −7.7
UDA Cows2021 CowFisheye 84.1 −11.2 10.8 +2.8 24.3 +7.5

UDA HolsteinCattle Cows2021 84.6 +55.5 25.5 −55.7 16.0 +3.3
UDA HolsteinCattle CowFisheye 54.9 +25.8 19.6 −61.6 14.4 +1.7

UDA CowFisheye Cows2021 88.9 +17.9 8.5 −5.1 19.9 −30.6
UDA CowFisheye HolsteinCattle 30.8 −40.2 22.7 +9.1 14.3 −36.2

Table 4
Performance of our CUMDA method (source guidance, DSBN and HyPASS-SC). mAP (in %), ΔmAP (in p.p.) indicates the difference with initial supervised models (cf Table 2).

Train Test

Method Source Target Cows2021 HolsteinCattle CowFisheye

mAP ΔmAP mAP ΔmAP mAP ΔmAP

CUMDA Cows2021 HolsteinCattle 95.4 +0.1 15.9 +7.9 20.1 +3.3
CUMDA Cows2021 CowFisheye 95.0 −0.3 13.7 +5.7 28.2 +11.4

CUMDA HolsteinCattle Cows2021 87.2 +58.1 80.8 −0.4 15.3 +2.6
CUMDA HolsteinCattle CowFisheye 57.9 +28.8 81.1 −0.1 16.8 +4.1

CUMDA CowFisheye Cows2021 90.6 +19.6 13.3 −0.3 60.1 +9.6
CUMDA CowFisheye HolsteinCattle 70.9 −0.1 38.6 +25.0 60.1 +9.6
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domain, the performance increases consistently with values between
+1.7 p.p. and + 15.9p.p.. Generalization performance on the unseen
domain increases with values between−0.7 p.p. and + 40.1 p.p..

All these results demonstrate the network ability to both remember
the source dataset and leverage information from all domains to
increase performance steadily on all domains. Our CUMDA method
therefore can ensure conservation on the source domain, better special-
ization on each seen domain and better generalization on unseen
domains.

5.2. Ablation study, single target

In section 5.1, we have demonstrated the performance gains
brought by our proposed CUMDA method over direct transfer and
UDA domain adaptation. In this section, the relative importance of all
components of our CUMDAmethod is investigated through an ablation
study. Averaged performance variations with respect to a network su-
pervised on source are reported in Tables 5 - 8. The performance on
source, target and a third domain are computed following the protocol
presented in Appendix A.2. All results are derived from the experiments
detailed in Appendix A, Tables A.11 - A.16. Please be reminded that the
components of our CUMDAmethod refer to the use of source-guidance,
DSBN and HyPASS-SC.

Source guidance.Averaged performancewith source guidance is re-
ported in Table 6.We compare these results to those of UDA, reported in
Table 5.
Table 5
Relative performance of UDA, compared to direct transfer. ΔmAP (in p.p.) indicates the dif-
ference of mAP (in %) with direct transfer (cf. Table 2).

Test

Cows2021 HolsteinCattle CowFisheye

Test set as ΔmAP ΔmAP ΔmAP

Source −33.7 −58.7 −33.4
Target +36.7 +6.9 +4.6
Unseen −7.2 −1.2 −2.2
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Providing the source as labeled data during training increases the
performance drastically on the source dataset. Compared to regular
UDA, the average performance increase is equal to 33:7 � 0:4 ¼ þ33:3
p.p., þ58:1 p.p. and þ42:6 p.p. when considering Cows2021,
HolsteinCattle and CowFisheye as source respectively. However, the
performance on target dataset is approximately unchanged with an av-
erage delta in performance of � 0:1 p.p., � 0:9 p.p. and þ1:1 p.p.. The
model better generalizes thanks to the knowledge of both source and
target domains with an increase of þ21:4 p.p., þ2:3 p.p. and þ5:5 p.p.
on Cows2021, HolsteinCattle and CowFisheye respectively.

In summary, compared to UDA, the source guidance allows the
model to perform similarly on the target while ensuring good conserva-
tion of the source. Benefiting from the information of both source and
target, the model better generalizes to an unseen dataset.

DSBN. In this paper, alleviating the domain gap is achieved with the
use of DSBN. Averaged performancewith source guidance+DSBN is re-
ported in Table 7. We compare these results to those of the source
guided approach, reported in Table 6.

When compared to source-guided UDA, there is significant perfor-
mance increase on the target of 40:2 � 36:6 ¼ þ3:6 p.p., þ4:0 p.p. and
þ2:5 p.p. for Cows2021, HolsteinCattle and CowFisheye respectively.
However, performance on the source dataset slightly decreases with
deltas ofþ0:7 p.p., � 1:8 p.p. and � 1:7 p.p.. Overall, the generalization
to an unseen dataset is unchanged.

In summary, in our experiments, DSBN does not seem to guarantee
better cow re-identification. However, we will see that it is useful by
allowing the use of HyPASS.
Table 6
Relative performance of source-guided UDA, compared to direct transfer.ΔmAP (in p.p.) in-
dicates the difference of mAP (in %) with direct transfer (cf. Table 2).

Test

Cows2021 HolsteinCattle CowFisheye

Test set as ΔmAP ΔmAP ΔmAP

Source −0.4 −0.6 +9.2
Target +36.6 +6.0 +5.7
Unseen +14.2 +1.1 +3.3



Table 7
Relative performance of source-guided + DSBN UDA, compared to direct transfer. ΔmAP

(in p.p.) indicates the difference of mAP (in %) with direct transfer (cf. Table 2).

Test

Cows2021 HolsteinCattle CowFisheye

Test set as ΔmAP ΔmAP ΔmAP

Source +0.3 −2.4 +7.5
Target +40.2 +10.0 +8.2
Unseen +13.0 +3.1 +2.5

Table 8
Relative performance of our single target CUMDA, compared to direct transfer.ΔmAP (in p.
p.) indicates the difference of mAP (in %) with direct transfer (cf. Table 2).

Test

Cows2021 HolsteinCattle CowFisheye

Test set as ΔmAP ΔmAP ΔmAP

Source −0.1 −0.3 +9.6
Target +38.9 +16.5 +7.8
Unseen +14.4 +2.7 +3.0
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HyPASS-SC.
The use of DSBN allows for source-guided selection of pseudo-

labeling hyperparameters, achieved here with HyPASS-SC. Averaged
performance of UDA with source guidance + DSBN + HyPASS-SC =
CUMDA is reported in Table 8. We compare these results to those of
the source-guided + DSBN approach, reported in Table 7.

In comparison with source-guided + DSBN UDA, the performance
on the target domain HolsteinCattle increases of 16:5 � 10:0 ¼ þ6:5
Fig. 5. Evolution of the embedding space on all validation datasets for the cross-domain Holste
color and size. Each point represents an image in the embedding space. Each row corresponds
MMT; s.g.: source guided; CUMDA: Cumulative Unsupervised Multi-Domain Adaptation; s.t.: s
be clustered and well separated from all other clusters. Corresponding ranking visualization is
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p.p.. This may be explained by the significant differences between
HolsteinCattle and other domains, which may result in a significant
shift of the optimal value of clustering parameters. On the Cows2021
dataset, HyPASS-SC seems to perform slightly worse than source-
guided + DSBN with a difference of � 1:3 p.p.. This seems to indicate
that HyPASS-SC may not be optimal in all cases, especially when the
source test set has few images. However, HyPASS-SC retains its usage
by removing the need for user-set parameters. On the source domain,
the performance increases with deltas of � 0:1 � 0:3 ¼ � 0:4 p.p.,
þ2:1 p.p. and þ2:1 p.p.. It even exceeds the performance of source-
guided UDA (cf. Table 6). The generalization performance is increased
of þ1:4 p.p., � 0:4 p.p. and þ0:5 p.p..

In conclusion,wefind thatHyPASS-SC has a positive effect on perfor-
mance on all datasets. Indeed, it ensures good clustering on all targets.
This allows for better source conservation, target specialization and
generalization on an unseen dataset than the other approaches pre-
sented here.

For the cross-domain HolsteinCattle! CowFisheye, a t-SNE visuali-
zation of the effects of domain adaptation, source-guidance and other
components of the CUMDA method on the embedding space, is pro-
posed in Fig. 5. It shows: the decreased performance on source with
UDA, the increased performance on all datasets with source guidance
and the best performances obtained by combining all the components
of our CUMDA method.

CUMDA re-ID with multiple-targets (CowFisheye and Cows2021) is
also illustrated with clear gains on all three datasets. Quantitative
evaluations are presented in Sec. 5.4.

5.3. Benefit of the source calibration in HyPASS-SC

As explained in section 3.4, HyPASS is sensitive to dataset statistics.
More specifically, in our case, to the number of shots per identity of
Cows2021 (48), HolsteinCattle (9) and CowFisheye (112).
inCattle! CowFisheye. Visualization with t-SNE where each identity is assigned a random
to a dataset. Each column corresponds to a method. Acronyms. UDA: UDA baseline with
ingle-target;m.t.: multi-target (with Cows2021). Ideally, points of the same colors should
available in Fig. A.7 in the appendix. Best viewed in color.



Fig. 6. Evolution of the Adjusted Random Index (ARI) of target clustering. Influence of the calibration of source validation set on HyPASS performances. In blue and dashed lines
HolsteinCattle! Cows2021, in red, CowFisheye! HolsteinCattle. Acronyms. h.p.: HyPASS Dubourvieux et al. (2021b); inst. Red.: source instance reduction; inst. Aug.: source instance
augmentation.

Table 9
Relative performance of source-guided + multi-target UDA, compared to direct transfer.
ΔmAP (in p.p.) indicates the difference of mAP (in %) with direct transfer (cf. Table 2).

Test
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To validate the importance of our proposed source validation set cal-
ibration,we compare theperformance of HyPASS-SC andHyPASS on the
cross domainsHolsteinCattle! Cows2021 (oversamplinguse-case) and
CowFisheye! HolsteinCattle (subsampling use-case).

The quality of the clustering is evaluated with the Adjusted Random
Index (ARI) which is a measure of the similarity between two data clus-
terings. It is computed between the target training set labels and the
cluster predictions, using the scikit-learn implementation2. Fig. 6 illus-
trates the evolution of ARIwhen leveling the source and target statistics.
Higher values of ARI indicate a better clustering. Performance is com-
pared at the 3000th iteration.

In the cross-domain HolsteinCattle! Cows2021, an oversampling of
HolsteinCattle from 9 shots/ID to around 90 shots/ID is carried out. As a
result, the ARI doubles, increasing from 0.40without calibration, to 0.83
with it. In terms of mAP, the performance on the target Cows2021 in-
creases from 77.4% without calibration, to 87.2% with it.

In the cross-domain CowFisheye! HolsteinCattle, a subsampling of
CowFisheye from 112 shots/ID to around 9 shots/ID is carried out. The
resulting ARI increase is substantial, evolving from 0.03without calibra-
tion, to 0.23 with it. In terms of mAP, the performance on the target
HolsteinCattle increases from29.3%without calibration, to 38.6%with it.

These results show the importance of source validation set calibra-
tion in the case of datasets with highly different number of shots per
ID, which can be a recurrent issue when dealing with animal datasets.
We kindly remind the reader that the calibration of the source has
been systematically applied on all aforementioned experiments.

5.4. Effectiveness of our CUMDA, multiple targets

One of our goals is to generalize the domain adaptation to multiple
target domains. This use-case reflects real-world needs where, from a
labeled dataset, the model should be adapted to multiple farming ex-
ploitations. Averaged performance of our CUMDA approach (source
guidance, DSBN and HyPASS-SC) is reported in Table 10. It is computed
from the detailed results that can be found in Tables A.11 - A.16 of
Appendix A. We compare these results to those of the source-guided
approach, reported in Table 9.

On the target datasets, our approach outperforms the source-guided
UDA approach with ΔmAP of þ2:8 p.p., þ6:0 p.p. and þ3:7 p.p. for
Cows2021, HolsteinCattle and CowFisheye respectively. Besides, the
2 https://scikit-learn.org/.
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performance on the source dataset is conserved. This demonstrates
the importance of the proposed CUMDAmethodwhen it comes tomul-
tiple datasets application. This performance increase can be explained
by the complementarity of DSBN and HyPASS-SC.

DSBN allows some domain gap alleviation through domain specific
normalization. It also authorizes domains to share the same backbone,
which helps generalization. HyPASS-SC provides optimized clustering
parameters on each target dataset, depending on its statistics. This en-
sures good clustering quality on the target domains, which in turn in-
creases the network performance on all datasets.

5.5. Limitations

In this paper, we have shown significant improvements on unsuper-
vised domain adaptation performance when compared with traditional
pseudo-labelling-based UDAmethods. However, it can be seen that the
performance on a domain when it is unlabeled, taken as a target, re-
mains far from the performance on the same domain when it is labeled,
taken as a source.

This is a peculiarity of the cow re-ID problem. Indeed, color
information usually facilitates the pseudo-labeling in human re-ID and
the performance of unsupervised UDA is close to the performance of su-
pervised training Ge et al. (2019). For cow re-ID, color does not contain
relevant information for pseudo-labeling. Therefore, subtle information
such as shape has to be considered instead. Also, in this paper and cow
re-ID in general, the domain gap existing between the chosen datasets
can be greater than the one usually seen in person re-ID.

In other words, even if the pseudo-labelling hyperparameters are
automatically optimized, the proposed solution is still limited by the
pseudo-labelling strategy itself. Namely, pseudo-labels quality depend
on the the chosen clustering algorithm, and the networks ability to
extract discriminative representations. Detailed discussion on the
influence of pseudo-labelling methods on UDA can be found in
Dubourvieux et al. (2021b).
Cows2021 HolsteinCattle CowFisheye

Test set as ΔmAP ΔmAP ΔmAP

Source −0.3 −1.5 +10.5
Target +36.0 +7.4 +3.8

https://scikit-learn.org/


Table 10
Relative performance of our CUMDA method, compared to direct transfer. ΔmAP (in p.p.)
indicates the difference of mAP (in %) with direct transfer (cf. Table 2).

Test

Cows2021 HolsteinCattle CowFisheye

Test set as ΔmAP ΔmAP ΔmAP

Source 0.0 −0.9 +10.4
Target +38.8 +13.4 +7.5
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6. Conclusion

In this paper, we have proposed a new CUMDA re-IDmethod for ef-
ficient cumulative multi-domain adaptation motivated by practical cat-
tle re-ID constraints and requirements. This work reflects real-world
application needs for a model to perform better on all domains as the
number of farms increase but annotation on them is not necessarily
available. Indeed, it extends domain adaptation to multiple target
domains, with high discrepancies in both target datasets statistics and
domain representations, which are challenges often encountered in
practical applications. The proposed CUMDAmethod consists in: source
guidance, domain gap reduction and an automatic source-guided
hyperparameter selection for clustering based on HyPASS. A source cal-
ibration method to increase HyPASS performance on datasets of great
diversity, usually encountered in farming applications, has indeed
been proposed. We have compared our solution to direct transfer, do-
main adaptation and source-guided domain adaptation. Results show
significant performance improvementswith better source conservation,
d
U
+
+
+
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target specialization and generalization on unseen domains when com-
pared with classical pseudo-labelling-based UDA methods.
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Ablation study detail

Appendix A.1. Visualization of predictions

A visualization of the ranking proposed by the re-identification network is proposed in Fig.A.7. The chosen scenario is the HolsteinCattle!
CowFisheye unsupervised domain adaptation, also represented in the embedding space in Fig. 5.

Appendix A.2. Performance computation detailed

In this paper, Tables 5 - 8 exhibit the variation in performance of the network, for each ablation step. The ΔmAP is computed from detailed results in
Tables A.11 – A.16 under the following protocol. Let us consider a set of n domains D1, …, Dn, and let us test on the domain Di, i ∈ 1, . . . ,nf g.
IfDi is tested as a source, the performance for all cross-domain experimentsDi !Dk, k ∈ 1, . . . ,nf g∖ if g, is compared to the network supervised on
Di. The result is then averaged.
If Di is tested as a target, the performance for all cross-domain experiments Dk !Di, k ∈ 1, . . . ,nf g∖ if g, is compared to the network supervised on
Dk. The result is then averaged.
IfDi is tested as an unseen dataset, the performance for all cross-domain experimentsDk !Dm, k,m ∈ 1, . . . ,nf g∖ if gwith k≠m, is compared to the
networked supervised on Dk. The result is then averaged.
For the sake of clarity, let us detail the computation of the first line and first column of Table 5: testing UDA (MMT) on Cows2021 as a source dataset.
UDA mAP on Cows2021 as a source is equal to 84.1% and 39.2%, for the cross domains Cows2021! CowFisheye (cf. Table A.12) and Cows2021!
HolsteinCattle (cf. Table A.14) respectively. A supervised network on Cows2021 has a mAP of 95.3% on Cows2021 (cf. Table 2). Therefore, the
ΔmAP is equal to 84:1 � 95:3ð Þ þ 39:2 � 95:3ð Þð Þ=2 ¼ � 33:7 p.p..

Appendix A.3. All results

Detailed experimental results are reported in Tables A.11-A.16. Each line corresponds to a differentmethod,+/ � indicates that an element is added/
removed from the line immediately above.
Table A.11

Effects of different domain adaptation strategies on re-ID performances, for cross-domain CowFisheye! HolsteinCattle. ΔmAP (in p.p.) indicates the difference of mAP (in %) with direct
transfer. Rank-1 (in %) is also reported.
Train
 Test
Method
 Source
 Target
 Cows2021
b https://www
HolsteinCattle
.aiherd.io.
CowFisheye
mAP
 ΔmAP
 rank-1
 mAP
 ΔmAP
 rank-1
 mAP
 ΔmAP
 rank-1
irect transfer
 CowFisheye
 None
 71.0
 0
 95.1
 13.6
 0
 24.5
 50.5
 0
 75.5

DA
 CowFisheye
 HolsteinCattle
 30.8
 −40.2
 72.6
 22.7
 +9.1
 38.2
 14.3
 −36.2
 31.1

source guided
 CowFisheye
 HolsteinCattle
 71.5
 +0.5
 93.9
 25.6
 +12.0
 41.7
 59.6
 +9.1
 86.1

DSBN
 CowFisheye
 HolsteinCattle
 72.3
 +1.3
 94.5
 26.8
 +13.2
 42.2
 55.4
 +4.9
 82.1

HyPASS-SC
 CowFisheye
 HolsteinCattle
 70.9
 −0.1
 94.4
 38.6
 +25.0
 61.8
 60.1
 +9.6
 84.1

multi-target
 CowFisheye
 HolsteinCattle
 90.8
 +19.8
 98.2
 34.5
 +20.9
 54.9
 60.9
 +10.4
 85.4
+
Cows2021

HyPASS-SC � DSBN
 CowFisheye
 HolsteinCattle
 89.2
 +18.2
 97.8
 25.3
 +11.7
 44.1
 61.0
 +10.5
 84.8
�
Cows2021

https://www.aiherd.io


Fig. A.7. Visualization of the ranking performance on all validation datasets for the cross-domain HolsteinCattle! CowFisheye. For each query, the top 9 results in the gallery are plotted
from left to right. Pictures framed in green are correct results, and in red, incorrect ones. The animal identity is plotted on top of each image. Each line corresponds to a use-case. Acronyms.
UDA: UDA with MMT; s.g.: source guided; CUMDA: Cumulative Unsupervised Multi-Domain Adaptation; s.t.: single-target; m.t.: multi-target (with Cows2021). Best viewed in color.
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Table A.12

Effects of different domain adaptation strategies on re-ID performances, for cross-domain Cows2021! CowFisheye.ΔmAP (in p.p.) indicates the difference of mAP (in %) with direct trans-
fer. Rank-1 (in %) is also reported.
d
U
+
+
+

d
U
+
+
+

d
U
+
+
+

d
U
+
+
+

Train
 Test
Method
 Source
 Target
 Cows2021
58
HolsteinCattle
 CowFisheye
mAP
 ΔmAP
 rank-1
 mAP
 ΔmAP
 rank-1
 mAP
 ΔmAP
 rank-1
irect transfer
 Cows2021
 None
 95.3
 0
 98.2
 8.0
 0
 13.7
 16.8
 0
 45.7

DA
 Cows2021
 CowFisheye
 84.1
 −11.2
 97.0
 10.8
 +2.8
 15.7
 24.3
 +7.5
 59.6

source guided
 Cows2021
 CowFisheye
 94.9
 −0.4
 98.6
 10.5
 +2.5
 17.2
 26.0
 +9.2
 60.9

DSBN
 Cows2021
 CowFisheye
 95.1
 −0.2
 98.5
 15.1
 +7.1
 21.1
 30.5
 +13.7
 67.5

HyPASS-SC
 Cows2021
 CowFisheye
 95.0
 −0.3
 98.4
 13.7
 +5.7
 23.5
 28.2
 +11.4
 64.9

multi-target
 Cows2021
 CowFisheye
 95.3
 0.0
 98.5
 13.8
 +5.8
 24.0
 27.2
 +10.4
 66.2
+
HolsteinCattle

HyPASS-SC � DSBN
 Cows2021
 CowFisheye
 95.0
 −0.3
 98.4
 11.1
 +3.1
 17.6
 22.3
 +5.5
 57.0
�
HolsteinCattle
Table A.13

Effects of different domain adaptation strategies on re-ID performances, for cross-domain HolsteinCattle! CowFisheye. ΔmAP (in p.p.) indicates the difference of mAP (in %) with direct
transfer. Rank-1 (in %) is also reported.
Train
 Test
Method
 Source
 Target
 Cows2021
 HolsteinCattle
 CowFisheye
mAP
 ΔmAP
 rank-1
 mAP
 ΔmAP
 rank-1
 mAP
 ΔmAP
 rank-1
irect transfer
 HolsteinCattle
 None
 29.1
 0
 73.1
 81.2
 0
 91.7
 12.7
 0
 25.2

DA
 HolsteinCattle
 CowFisheye
 54.9
 +25.8
 90.6
 19.6
 −61.6
 31.9
 14.4
 +1.7
 37.7

source guided
 HolsteinCattle
 CowFisheye
 57.0
 +27.9
 90.5
 81.7
 +0.5
 92.6
 14.8
 +2.1
 39.1

DSBN
 HolsteinCattle
 CowFisheye
 53.8
 +24.7
 87.6
 78.9
 −2.3
 89.2
 15.4
 +2.7
 46.4

HyPASS-SC
 HolsteinCattle
 CowFisheye
 57.9
 +28.8
 90.8
 81.1
 −0.1
 92.2
 16.8
 +4.1
 47.0

multi-target
 HolsteinCattle
 CowFisheye
 86.8
 +57.7
 97.2
 80.3
 −0.9
 90.7
 17.2
 +4.5
 55.6
+
Cows2021

HyPASS-SC � DSBN
 HolsteinCattle
 CowFisheye
 82.8
 +53.7
 96.6
 79.7
 −1.5
 90.7
 14.7
 +2.0
 43.0
�
Cows2021
Table A.14

Effects of different domain adaptation strategies on re-ID performances, for cross-domain Cows2021! HolsteinCattle. ΔmAP (in p.p.) indicates the difference of mAP (in %) with direct
transfer. Rank-1 (in %) is also reported.
Train
 Test
Method
 Source
 Target
 Cows2021
 HolsteinCattle
 CowFisheye
mAP
 ΔmAP
 rank-1
 mAP
 ΔmAP
 rank-1
 mAP
 ΔmAP
 rank-1
irect transfer
 Cows2021
 None
 95.3
 0
 98.2
 8.0
 0
 13.7
 16.8
 0
 45.7

DA
 Cows2021
 HolsteinCattle
 39.2
 −56.1
 81.5
 12.6
 +4.6
 24.0
 9.1
 −7.7
 12.6

source guided
 Cows2021
 HolsteinCattle
 94.8
 −0.5
 98.1
 7.9
 −0.1
 18.6
 18.9
 +2.1
 53.0

DSBN
 Cows2021
 HolsteinCattle
 96.0
 +0.7
 98.4
 14.7
 +6.7
 26.0
 19.3
 +2.5
 51.7

HyPASS-SC
 Cows2021
 HolsteinCattle
 95.4
 +0.1
 98.6
 15.9
 +7.9
 26.5
 20.1
 +3.3
 55.6

multi-target
 Cows2021
 CowFisheye
 95.3
 0.0
 98.5
 13.8
 +5.8
 24.0
 27.2
 +10.4
 66.2
+
HolsteinCattle

HyPASS-SC � DSBN
 Cows2021
 CowFisheye
 95.0
 −0.3
 98.4
 11.1
 +3.1
 17.6
 22.3
 +5.5
 57.0
�
HolsteinCattle
Table A.15

Effects of different domain adaptation strategies on re-ID performances, for cross-domain CowFisheye! Cows2021.ΔmAP (in p.p.) indicates the difference of mAP (in %) with direct trans-
fer. Rank-1 (in %) is also reported.
Train
 Test
Method
 Source
 Target
 Cows2021
 HolsteinCattle
 CowFisheye
mAP
 ΔmAP
 rank-1
 mAP
 ΔmAP
 rank-1
 mAP
 ΔmAP
 rank-1
irect transfer
 CowFisheye
 None
 71.0
 0
 95.1
 13.6
 0
 24.5
 50.5
 0
 75.5

DA
 CowFisheye
 Cows2021
 88.9
 +17.9
 97.8
 8.5
 −5.1
 14.2
 19.9
 −30.6
 52.3

source guided
 CowFisheye
 Cows2021
 89.9
 +18.9
 97.8
 13.2
 −0.4
 23.5
 59.8
 +9.3
 82.1

DSBN
 CowFisheye
 Cows2021
 91.5
 +20.5
 98.4
 12.7
 −0.9
 22.1
 60.6
 +10.1
 88.1

HyPASS-SC
 CowFisheye
 Cows2021
 90.6
 +19.6
 98.0
 13.3
 −0.3
 21.1
 60.1
 +9.6
 88.1

multi-target
 CowFisheye
 HolsteinCattle
 90.8
 +19.8
 98.2
 34.5
 +20.9
 54.9
 60.9
 +10.4
 85.4
+
Cows2021

HyPASS-SC � DSBN
 CowFisheye
 HolsteinCattle
 89.2
 +18.2
 97.8
 25.3
 +11.7
 44.1
 61.0
 +10.5
 84.8
�
Cows2021



F. Dubourvieux, G. Lapouge, A. Loesch et al. Artificial Intelligence in Agriculture 10 (2023) 46–60
Table A.16

Effects of different domain adaptation strategies on re-ID performances, for cross-domain HolsteinCattle! Cows2021. ΔmAP (in p.p.) indicates the difference of mAP (in %) with direct
transfer. Rank-1 (in %) is also reported.
d
U
+
+
+

Train
 Test
Method
 Source
 Target
 Cows2021
59
HolsteinCattle
 CowFisheye
mAP
 ΔmAP
 rank-1
 mAP
 ΔmAP
 rank-1
 mAP
 ΔmAP
 rank-1
irect transfer
 HolsteinCattle
 None
 29.1
 0
 73.1
 81.2
 0
 91.7
 12.7
 0
 25.2

DA
 HolsteinCattle
 Cows2021
 84.6
 +55.5
 96.1
 25.5
 −55.7
 37.3
 16.0
 +3.3
 52.3

source guided
 HolsteinCattle
 Cows2021
 83.4
 +54.3
 97.1
 79.4
 −1.8
 89.2
 17.1
 +4.4
 49.0

DSBN
 HolsteinCattle
 Cows2021
 89.0
 +59.9
 98.4
 78.8
 −2.4
 87.3
 15.2
 +2.5
 47.7

HyPASS-SC
 HolsteinCattle
 Cows2021
 87.2
 +58.1
 97.3
 80.8
 −0.4
 90.7
 15.3
 +2.6
 49.0

multi-target
 HolsteinCattle
 CowFisheye
 86.8
 +57.7
 97.2
 80.3
 −0.9
 90.7
 17.2
 +4.5
 55.6
+
Cows2021

HyPASS-SC � DSBN
 HolsteinCattle
 CowFisheye
 82.8
 +53.7
 96.6
 79.7
 −1.5
 90.7
 14.7
 +2.0
 43.0
�
Cows2021
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