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ABSTRACT

End-to-end reinforcement learning on images showed significant progress in the recent years. Data-
based approach leverage data augmentation and domain randomization while representation learn-
ing methods use auxiliary losses to learn task-relevant features. Yet, reinforcement still struggles
in visually diverse environments full of distractions and spurious noise. In this work, we tackle the
problem of robust visual control at its core and present VIBR (View-Invariant Bellman Residuals),
a method that combines multi-view training and invariant prediction to reduce out-of-distribution
(OOD) generalization gap for RL based visuomotor control. Our model-free approach improve
baselines performances without the need of additional representation learning objectives and with
limited additional computational cost. We show that VIBR outperforms existing methods on com-
plex visuo-motor control environment with high visual perturbation. Our approach achieves state-of
the-art results on the Distracting Control Suite benchmark, a challenging benchmark still not solved
by current methods, where we evaluate the robustness to a number of visual perturbators, as well as
OOD generalization and extrapolation capabilities.

1 INTRODUCTION

Learning policies that are invariant to visual distractions is crucial for the usage of reinforcement learning for real-
world visuomotor control problems. The visual variance of the real world is practically unbounded and the distribution
of possible events has an extremely heavy tail. For example, end-to-end autonomous driving struggles with the never-
ending list of edge cases sparsely present in the data. Although there is real progress in visual generalization in robotic
manipulation for example, we are quite far from reaching human levels of robustness.

Data augmentation is extensively used for building inductive biases in pure computer vision tasks, such as image classi-
fication. One can not imagine reaching state-of-the-art performance on usual benchmarks without using a careful com-
bination of transformation on images. In particular, pretraining representations with teacher-student self-supervised
objectives is a popular and successful method. Such architecture usually enforces invariance of representations to
different augmentations of the same image. As such, multiple works take inspiration from success in computer vision
and build methods to learn visual invariances for control and reinforcement learning (Yarats et al., 2020).

In the case of classification, invariance of representations is a reasonably efficient optimization strategy, as classifying
images from pretrained representations is relatively straightforward and only require linear probing in most cases.
Because classifying the content of an image is a semantically high level task, the class label is resilient to a lot of
intense visual transformation of the image. Features such as exact position, relative organization and textures of entities
in the image are usually not predictive of the class label. Data augmentation for implicit invariance is straightforward
to apply in these cases and computer vision pipelines fully take advantage of this fact.

In the case of control, however, finding a meaningful and useful policy from a given state representation is multiple
orders of magnitude more complex than assigning a class token. Small visual changes in images might necessitate
very different action decisions, which means policies must be sensitive to high-frequency variations in images. This
goes against principles of data augmentation in computer vision tasks like classification where invariances holds for
very aggressive augmentations. The problem gets worse when policies are implemented with deep neural networks,
which are known to learn over low-frequency components of the data (Rahaman et al., 2019). This directly suggests
that any representational approximation error will directly impact the upper-bound performance of the policy. The
problem is slightly mitigated with discrete action which theoretically allow partial mode collapse of observations in
the latent space, but continuous control represents a serious challenge.
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Figure 1: Evaluation metrics at the end of training aggregated over all 5 curriculum benchmarks and 6 tasks of the
Distracting Control Suite, 21 episodes and 4 seeds each. See section 4 for details.

From this observation, we present View-Invariant Bellman Residuals (VIBR) for robust visuomotor control under
visual distractions. Importantly, our approach does not require a representation learning self-supervised loss and
directly performs invariant prediction, which we show is a relaxed constraint that enables better optimization and
performances. We show that VIBR is able to efficiently train an agent with visual generalization capabilities without
losing on convergence speed and asymptotic performance on the original task. In particular, we derive a view-invariant
temporal-difference loss combining multi-view empiricial risk minimization with variance regularization. We show
that view-invariant prediction can serve as a powerful inductive bias for learning robust policies and value functions
with reinforcement learning, even under intense perturbations. Our main contributions are:

• a novel methodology for robust visuomotor control based on temporal-difference learning on images using
invariant prediction principles

• empirical results on the Distracting Control Suite benchmark (Stone et al., 2021) with state-of-the-art results
on raw training performance (Figure 1) and out-of-distribution (OOD) generalization under the hardest setting
of dynamic distractions

• a fair comparison with competitive baselines of invariant representation learning for RL

• an analysis of the influence of inter-view variance regularization in learning dynamics

2 CONTEXT AND PROBLEM SETTING

We first details the context and notations, then position ourselves compared to representation learning and introduce
the tools of risk minimization.

2.1 VALUE-BASED REINFORCEMENT LEARNING

Markov Decision Process and RL: We define the Markov Decision ProcessM = ⟨S,A, P,R, γ⟩ where S is the
set of states, A the set of actions, P : S ×A → S the transition probability function, R : S ×A× S → R the reward
function and γ a discounting factor for discriminating between short-term and long-term rewards. We also define the
transition tuple containing state, action, reward and next state as T = (s, a, r, s+) where a ∼ π, s+ ∼ Pπ(s+|s) is the
successor state of s and r ∼ R(s, a, s+) the reward. In this setting, reinforcement learning aims to maximize the total
reward received by the agent. Mathematically, it corresponds to finding a policy π that maximizes the (discounted)
expected return ET∼π,Pπ [

∑∞
t=0 γ

trt].

Bellman operator and Bellman error: Value-based algorithms for control estimate the (state-action) value function
Qπ which is defined for every state st: Qπ(st, at) = Eπ

[∑+∞
k=0 γ

krk+t+1

]
with rk+t+1 = R(st, at, s+). We will

use the notation Q(s, π) = Ea∼π [Q(s, a)] for simplicity. This connects the state value function to the state-action
value function: V π(s) = Q(s, π). We can define the Bellman evaluation operator T π:

T πQπ(s, a) = r(s, a) + γEs+∼Pπ(s+|s)Q(s+, π) (1)

We define the Bellman error and Bellman residuals:

(BπQ)(s, a) = Qπ(s, a)− T πQπ(s, a) (2)

LBR = ET

[
||(BπQ)(s, a)||2

]
(3)
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2.2 OBSERVATIONS AND REPRESENTATIONS

Observer: We assume the Block-MDP setting as defined by Du et al. (2019).
Definition 2.1. BlockMDP A block MDP is the tupleM§ = ⟨S,A,O, P, x,R, γ⟩ which is an extension of the MDP
defined above whereO is an observation space (potentially much bigger than S) and x : S → O is a ”context-emission
function” or observer.

The observer x is responsible for generating observation for each state of the system but is most of the time unknown.
We equip the Block MDP with the following assumption:
Assumption 2.1. Block structure Each observation o uniquely determines its generating state s. That is, the obser-
vation space O can be partitioned into disjoint blocks Os, each containing the support of the conditional distribution
x(·|s) (Du et al., 2019).

This ensures that for a given BMDPMx, the corresponding observer x is well-defined and injective and guarantees
non-ambiguity of observations This assumption gives us the Markov property and makesMx a proper MDP on which
we can work and use all the existing results of RL.

We now have a constructive method to define multiple views or observations of a single state. All it requires is to sample
multiple observers but otherwise keeping other elements of the MDP constant. Given a list of observers

[
x1, ..., xK

]
,

we have a list of MDPs [Mx1 , ...,MxK ] to train on. Importantly, each of these MDP share the same reward function,
dynamics and state and action space and thus encode the same exact task. If the environments are run in parrallel, this
provides extremely rich information to extract invariance to observers, as the hidden state at each step is equal over all
environments. Finding optimal policies is then only a matter of information retrieval from observations and should be
theoretically possible with any view.

Representation learning: Numerous works take a different view to robustness on visual variations and focus on
guiding the parameters of the value network with the help of auxiliary tasks (Jaderberg et al., 2017; Bellemare et al.,
2019; Dabney et al., 2021). In this context, the approximated value function can be decomposed with a representation
network ϕ and a linear layer w: Qπ

θ (s, a) = ϕ(s, a) · w1.

Representation learning aims to learn ϕ with some auxiliary objectives to better condition the space of value functions
to accelerate learning and/or improve generalization. With online reinforcement learning, the agent is trained on both
RL and (self-supervised) representation learning objectives at the same time: Ltot = Laux(ϕ) + LRL(ϕ,w) where
Laux is the (self-supervised) representation loss and LRL is the RL loss.

2.3 MULTI-DOMAIN TRAINING

We are interested in training value functions that are robust to out-of-distribution domain shifts for robust visual
control. Given K domains Dk, we can define the empirical risk associated to each domain as the expectation of a loss
function l on this domain: R(Dk; θ) = EX∼Dk [l(X; θ)] where X is the training data containing individual samples
and θ is the parameters of the model being trained. A simple approach is to perform Empirical Risk Minimization
(ERM), i.e. averaging risks on training domains:

θ∗ ∈ min
∑

k

|Dk|R(Dk; θ) (4)

This approach doesn’t guarantee transfer under OOD conditions. Given different domains
[
D1, ...DK

]
, it is possible

to minimize the ERM objective by overfitting on one particular domain Dk while not optimizing a lot over other
domains, let alone unknown domains. To prevent that, it is possible to use constraint optimization to force equality of
training risks across domains:

min
θ

∑

k

|Dk|R(Dk; θ) s.t. ∀(k, l) ∈ [1...K]× [1...K] R(Dk; θ) = R(Dl; θ) (5)

The constraint of perfect equality of risk is equivalent to enforcing variance of risks to zero:

min
θ

∑

k

|Dk|R(Dk; θ) s.t. Var(R(Dk; θ)) = 0 (6)

1Note that we could arbitrarily choose the representation layer to be earlier than the penultimate layer and the linear layer would
become a shallow non-linear network, but this will not change our argument
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This hard constraint can then be relaxed with a soft convex penalty facilitating optimization, leading to the V-REx
approach (Krueger et al., 2021):

min
θ

∑

k

|Dk|R(Dk; θ) + βVar(R(Dk; θ)) (7)

3 LEARNING VIEW-INVARIANT VALUE FUNCTIONS

3.1 INVARIANT REPRESENTATION LEARNING AND MINIMAL CONSTRAINTS

Before introducing our VIBR approach, we will clearly formalize our objective and see how it is different from the
representation learning approach.
Definition 3.1. View-invariant functions A real-valued function f : O → R is said to be view-invariant if it is
invariant to any observer transformation (or ”observation”) on the state space. Formally, for all state s in S and
observers (x, x′) in X (the set of all possible observers), we have:

f(x(s)) = f(x′(s))

Thanks to assumption 2.1, states can be uniquely recovered from their observations and we simplify the definition
with a functional equation f(x) = f(x′) with no ambiguity. We will use this notation further for clarity of writing.

Let’s consider the family of realizable value functions parametrized by neural networks:

QΘ = {Qπ
θ : O ×A → R s.t. ∀o ∈ O, a ∈ A, Qπ

θ (o, a) = T πQπ
θ (o, a)} (8)

By definition, these value function have a Bellman error (Eq. 2) of zero and exactly fullfil Bellman equation. This
value functions evaluates real policies in the given MDP with no approximation error. We will relax this assumption
further in the discussion.
Definition 3.2. View-invariant value functions The set of view-invariant value functions is the subset of realizable
value functions that are view-invariant.

Qinv
Θ =

{
Qπ

θ ⊂ QΘ s.t. ∀(x, x′) ∈ X, Qπ,Mx

θ = Q
π,Mx′
θ

}
(9)

This is exactly what we are looking for: such value functions would completely ignore spurious visual details intro-
duced by observers and only extract the true hidden state from the observation.

However, many work engage with this problem with a more constrained approach by learning implicit invariant rep-
resentations:
Definition 3.3. Representation-invariant value functions This is the set of realizable value functions with view-
invariant intermediary representations:

Qinv
Φ,w = {Qπ

θ := ϕ · w s.t. ∀(x, x′) ∈ X, ϕ(x) = ϕ(x′)} (10)

with ϕ and w defined in section 2.2.

Minimal representation constraints: We immediately have the following inclusion: Qinv
Φ,w ⊂ Qinv

Θ . Indeed, if
ϕ(x) = ϕ(x′), then ϕ(x) · w = ϕ(x′) · w, which proves the inclusion. The inverse is not true: invariance of rep-
resentations is a stricter condition on the function than invariance of value prediction on two aspects. First, if we
consider the natural assumption of neural networks with finite capacity, then invariant representations imply that ϕ has
less parameter available to both satisfy the constraint and provide good features for the last layer w to perform value
estimation. Secondly, from an optimization perspective, estimating a scalar value is easier than a full latent vector rep-
resentation. Representation learning is akin to model learning and world models can be more complex functions than
actual optimal policies (and their value functions) because you need to learn the entire dynamics of the environment
which might not be necessary to predict acurate values and learn good policies.

Optimizability of representation learning: Let’s now remove the hypothesis of perfect approximation and suppose
we have a non-zero Bellman error (or stricly positive Bellman residuals). By constraining the representation with
an auxiliary objective, the network must now solve two tasks at once: producing view-invariant representation and
giving accurate representations for value estimation. In theory, having a perfectly view-invariant representation is
enough to guarantee view-invariant value function. However, in practice models capacities are finite, gradients are

4
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Figure 2: (a): Loss landscape of VIBR in observation space. Given two observers xk, xl that define training domains
inO, VIBR uses V-REx to control the ID (interpolation) and OOD (extrapolation) risks (b): Toy Experiment of VIBR
loss landscape in parameter space Red points are individual local minima of each training domains (3). Green star
is individual minimum of the testing domain (held-out). Blue square is the global minimum of ERM over training
domains. White triangle is the global minimum of V-REx over training domains. See Appendix E and Section 4.1
for details.

approximated through sampling and loss are never minimized to zero. The network will operate a trade-off between RL
and representation objective if they are not aligned enough. Moreover, representation errors might compound with RL
errors and put an upper bound on the maximally achievable performance. If the learning objective is particularly noisy
and hard to optimize, the approximation error of representation learning might become prohibitive of any progress
on the RL objective. This problem might be less sensitive if we only seek view invariance instead of representation
invariance. We empirically demonstrate this intuition in the experiment section.

3.2 VIEW-INVARIANT BELLMAN RESIDUALS

Our goal is to solve these limitations by finding a better optimization objective to learn a view-invariant value function.
Following our discussion, we relax the invariant representation assumption and place ourselves instead in a purely
invariant prediction setting. We wish to attain invariant prediction in an end-to-end manner, which would let the model
learn only to use necessary and sufficient information to solve the task, without intermediate step.

We first begin by observing the following property:

Proposition 3.1. Suppose Qπ
θ a parametrized value function. Qπ

θ ∈ Qinv
Θ if and only if:

∀(x, x′) ∈ X, s ∈ S, a ∈ A Qπ
θ (x(s), a) = T πQπ

θ (x
′(s), a)

The proof is immediate by noticing that for Qπ
θ ∈ Qinv

Θ , the following equalities hold:

∀(x, x′) ∈ X, s ∈ S, a ∈ A Qπ
θ (x(s), a) = Qπ

θ (x
′(s), a) = T πQπ

θ (x
′(s), a)

Because this property holds regardless of the observer, this directly gives us a single unified objective that optimizes
both for value convergence and view-invariance:

θ∗ = min
θ

E(x,x′)∈XE(s,a) [Q
π
θ (x(s), a)− T πQπ

θ (x
′(s), a)] = min

θ
E(x,x′)∈X [BπQθ(x, x

′)] (11)

The second equality simply defines the notation BπQθ(x, x
′). For better optimization, we replace the Bellman error

with the Bellman residuals:
LBR(k, l) := ∥BπQθ(x

k, xl)∥2 (12)

with
[
x1, ...xK

]
a set of sampled observers that will allow us to extract multiple views from the same scene. We then

perform empirical Bellman residuals minimization and approximate the expectation of equation 11 with an empirical
average using sampled observers:

Ê [LBR(k, l)] =
1

K2

∑

k,l

LBR(k, l) (13)

5
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In order to improve out-of-distribution generalization, we finally add a soft convex penalty with variance, following
the V-REx approach. The final objective becomes:

LVIBR = Ê(k,l) [LBR(k, l)] + βV̂ar(LBR(k, l))

where V̂ar(LBR(k, l)) =
1

K2

∑

k,l

(
LBR(k, l)− Ê [LBR(k, l)]

)2 (14)

The detailed usage of VIBR in conjunction with Q-learning is described in algorithm 1.

Algorithm 1 View-Invariant Bellman Residuals for Q-learning

1: Initialize Network parameters θ, K observers
[
x1, ..., xK

]
, replay buffer B, variance reg. hyperparam β

2: for episode = 1,M do
3: for timestep = 1, T do
4: Get the views from observers: ∀k ∈ [1,K] okt = xk(st)

5: Choose action with ensembling at = argmaxa
1
K

∑K
k=1 Q

π
θ (o

k
t , a)

6: Add transition Tt = (
[
o1:Kt

]
, at, rt,

[
o1:Kt+1

]
) to replay buffer

7: Sample a batch of transitions Ti ∼ B
8: Compute observer-pairwise Bellman residuals

∀(k, l) ∈ [1,K]2 LBR(k, l) = ETi

[
|BπQθ(Ti)|2

]

9: Compute VIBR loss:
LVIBR = Ê [LBR(k, l)] + βV̂ar(LBR(k, l))

10: Update Q-network parameters θ ← θ − α∇θLVIBR

11: (Optional) update target parameters θ̄ ← τθ + (1− τ)θ̄
12: end for
13: end for

4 EXPERIMENTS

4.1 VARIANCE REDUCTION TOY EXPERIMENT

We empirically validate our assumptions of better generalization with a small toy experiment by visualizing the loss
landscape of a 2-parameter model. We simulate training VIBR with different observers by creating four distincts local
minima with contiguous valleys, corresponding to three different training domains (minimum at red dots) and one
testing domain (minimum at green star) by analogy. On Figure 2b left, we show the joint loss landscape of these
four domains. All four domains have different minimum and local curvature to simulate asymmetry in optimization
difficulty. The goal is to train the model to perform well on the unseen test domain. We compare what the loss
landscape would be with β = 0 or β > 0 using VIBR in Figure 2b center and right. The first case is equivalent to ERM
over training domains. We suppose that we have equal sampling of data points for each domain, hence equal weight.
This makes the global minimum of ERM attracted to the bottom/left training domain (red dot at 1,1 coordinates) which
has a big impact on the ERM loss. Intuitively, this illustrates overfitting to one particular domain in the case of using a
simple empirical average over training observers with VIBR(β = 0). The second case corresponds with regularizing
the inter-domain variance of risks with V-REx. The global minimum is now much closer to the top right section, which
ensures the loss is also minimized on this domain. The bottom left section is now repulsive to avoid overfitting and
only converging to parameter values with approximate equality of risks across domains. The minimum is now situated
outside of the convex hull of training domains, which enables generalization by risk extrapolation as demonstrated in
Krueger et al. (2021).

4.2 ROBUST CONTINUOUS CONTROL ON DISTRACTING CONTROL SUITE

We now evaluate VIBR on a set of tasks from the Distracting Control Suite benchmark (Stone et al., 2021). We
measure training efficiency, robustness to distractions and out-of-distribution generalization capacities. We showcase
aggregated and detailed results per task and evaluation metrics, as well as detailed ablations and discussion on different
components of the loss.
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Figure 3: (a): Evaluation score (IQM and Generalization Gap) of VIBR and baselines over all 5 evaluation domains.
Vertical bars are bootstrapped CI. (b): Effect of training curriculum on generalization.

Baselines We use VIBR on top of Soft-Actor Critic (Haarnoja et al., 2018) for continuous control in the DCS
environment. Our implementation follows DrQ (Yarats et al., 2020) and we compare ourselves with 4 other baselines
learning view-invariant representations:

• DBC (Zhang et al., 2021a): a metric-based self-supervised learning objective that only keep task-relevant
features in the representation

• SPR (Schwarzer et al., 2021): a self-supervised next latent state prediction auxiliary task

• CURL (Laskin et al., 2020a): a contrastive learning objective inspired from computer vision

• Feature-Matching: a simple baseline where we match encoder outputs between different views

• DrQ (Yarats et al., 2020): a model-free baseline with no representation learning auxiliary loss

We detail each loss in Appendix D. For each experience, we train 4 random seeds for over 500k steps of gradient
descent with Adam optimizer. We use the SAC implementation of ACME (Hoffman et al., 2020) in Jax (Bradbury
et al., 2018) for faster training.

Training and Evaluation. With DCS, we create a curriculum of 5 evaluation domains with progressive difficulty
ranging from the vanilla environment with no distractor (CO) to intense dynamic visual perturbations (C4) such as
random camera movements, color randomization and extreme background randomization. Evaluation domains dis-
tributions are purposefully nested inside each other, to properly evaluate for in-distribution and out-of-distribution
generalization: C0 ⊂ C1 ⊂ C2 ⊂ C3 ⊂ C4. Details about the implementation of the curriculum can be found
in Appendix G. By construction, VIBR requires multiple observers to work. We choose K = 2 observers to limit
compute intensity, although the method can be applied with more. We show that results are already very strong with
two observers. VIBR is trained with an observer in C0 and an observer in C2. Importantly, all baselines are trained
with the same data as VIBR, with access to both C0 and C2 at every timestep. Specifically, the baselines use their
online-target architectures to pass each view through a different branch of the network, in the spirit of VIBR or more
broadly self-supervised learning methodologies in computer vision. More details about implementation can be found
in Appendix F.

We evaluate methods every 50k steps and at the end of training and accumulate the return over each episode. Episodic
return are normalized to 1. We systematically use the rlliable library (Agarwal et al., 2021b) to evaluate our models,
using stratified bootstrap over seeds and/or tasks on the benchmark to provide robust evaluation metrics. In particular,
we use the inter-quartile mean (IQM) as a robust replacement to the mean while being more sample efficient than the
median. We also use define a generalization gap metric:

G(Ci) = 1− IQM(Ci)

IQM(C0)
(15)

This measures allows us to measure the drop in performance purely caused by domain shift uncorrelated from potential
sub-optimal training. To properly test for generalization, evaluation environments use a different dataset of videos for
the background even when training and evaluation have the same distraction difficulty. As such, we specifically refer
to training domains as C1*, C2* and C3* to mark the point.

7
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4.2.1 EVALUATION RESULTS ON DISTRACTING CONTROL

Aggregated performance In Figure 1, we aggregate IQM and generalization gap across C1 · · · C4 and show the
results for VIBR as well as the baselines described in 4.2. VIBR improves IQM by 65 % and reduces generalization
gap by 54 % over the best performing baseline DBC. While CURL, SPR and DBC performed similarly, FM is the
only representation learning baselines to completely fail the task. Although the pretext task is quite similar the other
pretext tasks, FM lacks a projector network in its teacher-student architecture which is known to help performance by
preventing the pretext task from directly optimizing on the encoder (Grill et al., 2020; Chen et al., 2020; Bardes et al.,
2022) and alleviating gradient conflicts. Yet, neither of the representation learning baselines reach the performance of
VIBR which has less parameters and a simpler objective. We hypothesize that gradient conflicts between the auxiliary
and RL task might explain the drop in performance. We empirically validate this hypothesis in Figure 5a where we
plot the whole distribution of cosine similarity between the auxiliary loss and the RL loss during training. Overall, all
four methods show weak gradient alignment with the RL objective. We notice however a positive correlation between
IQM/generalization gap performance and average cosine similarity. Methods like DBC and SPR which rank higher
also show non-zero average cosine-similarity during training. On the other hand, CURL and FM showcase Gaussian
distribution centered around zero. Interestingly, DrQ is already a simple yet very strong baseline. This reflects that on
hard optimization problems with many distractions like DCS (and arguably the real world), purely data-based end-to-
end methods with carefully selected objective might be more efficient than intermediate methodological improvements
on representation learning.
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Figure 4: Evaluation score over
ablations and variations of VIBR.
Shaded areas are bootstrapped CI.

Detailed Results on the Evaluation Curriculum Figure 3a show the com-
parison of VIBR with the baselines in details across all evaluation domains. All
methods were trained using C0* and C2* as defined above. VIBR and all base-
lines have the same performance on C0 (without perturbations, identical to one
of the training domain), which shows that aggregated score differences cannot be
explained by difficulties with learning the control policy in a clean setting. Rep-
resentation learning methods (except FM) show slight improvement of general-
ization over DrQ with a better IQM and generalization gap on C2 and C3. How-
ever, none of the baseline is able to achieve a statistically significant progress on
C4, the most challenging benchmark. VIBR improves IQM and generalization
gap on all benchmarks from C1 to C4, while keeping competitive performance
on C0. Not only did it learn good control policies, which we evaluate with C0,
but it also developed interpolation and extrapolation capacities with a large in-
crease both in-distribution (C1 and C2) and out-of-distribution domains (C3 and
C4).

In-distribution vs Out-of-distribution Generalization Next, we evaluate in
Figure 3b how does VIBR distributes model capacity and extrapolates across do-
mains when training benchmarks are in the form C0+Ck∗ with k ∈ [1, 3]. This
allows us to modulate which benchmark are in the interpolation or extrapolation
regime in O (as depicted in orange and blue respectively in Figure 2a).

We observe a flattening of the performance curve as we transition from C1∗ to
C3∗ as the secondary training domain. VIBR(C2*) shows improved IQM over
VIBR(C1*) on C2,C3 and C4, as well as significant decrease in generalization
gap on all generalization benchmarks. Overall, this translates into a pure in-
crease of aggregated performance which means the model is able to distribute better its capacity over the image space
while still functioning well in no-distraction regions. VIBR(C3*) however loses IQM over VIBR(C2*) in all but C4
which largely flattens the IQM over domains but keeps significantly decreasing the generalization gap on C3 and C4.
This demonstrates that although VIBR(C3*) is seeing optimization difficulties (drop in C0 performance), training with
more visual diversity (C3*) still keeps on improving OOD generalization (C4). Training on harder domains helps gen-
eralization to harder benchmarks as expected, but reduce overall performance: the network capacity and training time
remained constant while the training task became harder.

Impact of Multi-View Training We compare VIBR with tuned β with an ablation where β = 0. This recovers
the setting of ERM if we consider cross-domain terms of the form LBR(k, l) with k ̸= l as each a single training
pseudo-domain. Figure 4 show that these terms already have a big impact on performance compared to the DrQ
baselines, which simply performs crop-resize augmentation with both actor and critic losses averaged over the two
real training domains (C0 and C2). We also compare with Minmax, a variant of our objective that performs robust
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Figure 5: (a): Cosine similarity between RL and auxiliary task during training of representation learninig baselines.
(b): Distribution and lower Pareto frontier of VIBR loss components during training over 4 seeds. (c): Evolution of
empirical inter-observer variance loss during training.

optimization instead of risk invariance by minimzing the worst-case risk over all Bellman residuals instead of the
average: θ ∈ argminθ max(k,l) LBR(k, l). This variant almost matches the performance of VIBR but remains slightly
below. Krueger et al. (2021) proved the connection between V-REx and robust optimization and showed that V-REx
has slightly better gradients, which can explain the small yet existing performance gap in our experiment.

Influence of the Risk Extrapolation Term We first investigate how does the variance regularization term
weighted by β influences learning dynamics and help generalization. During training, we save the pair(
Ê [LBR(k, l)] , V̂ ar [LBR(k, l)]

)
for every batch and plot them in Figure 5b. We compare training with β > 0

and β = 0 on Walker Walk aggregated on 4 seeds. As visible by the lower Pareto frontier and the marginals, the
regularizer has the intended effect described in section 3.2: a positive β shifts the overall distribution towards lower
V̂ ar [LBR(k, l)] during training. Consequently, the marginal Ê [LBR(k, l)] is more uniform and less concentrated
around lower values when β > O. This means that the model effectively perform a trade-off between bias on some of
the views/observers in order to keep the variance low. When we plot the distribution of V̂ ar [LBR(k, l)] across time
steps (Figure 5c), we notice that most of the regularization is impactful at the beginning of training but does not affect
asymptotic convergence. This mechanism is particularly helpful as deep reinforcement learning networks are known
to suffer from early overfitting preventing them from reaching higher performance in the long run (Nikishin et al.,
2022). In our case, early overfitting happens on the training domain C0* which is indicated by excellent performance
of all baselines on C0 even when generalization fails.

Additional Results We study the β hyperparamter by measuring IQM as a function of β for all 6 environments of
the DCS (Figure 6). Notably, all environments approximately converge to a zero variance of IQM between evaluation
domains. We notice that difference in environment dynamics influence the choice for optimal β. Note that we did
not change the default action repeat hyperparameter of DCS. This makes Cartpole Swingup an extremely difficult
task with an action repeat of 8 while having dynamic distractions in the background and explains the surprisingly low
performance despite the simple mechanics. Further detailed results can be found in Appendix H and I, as well as an
ablation study of the loss components in Appendix J showing the importance of using all pairwise bellman residuals
in VIBR.

5 RELATED WORKS

Robust Visual RL Although not studied in this work, data augmentation is an efficient and easy to implement
method to regularize models and increase generalization performance. Some methods study which type of data aug-
mentation is better suited for RL: random shifts (Yarats et al., 2020; 2021; Laskin et al., 2020b), data mixing and
convolutions (Wang et al., 2020; Zhang & Guo, 2021; Zhou et al., 2020) or masking (Lee et al., 2020; Seo et al., 2023;
Xiao et al., 2022). A more efficient method for robust RL is using domain randomization. Hansen & Wang (2021);
Stone et al. (2021); Grigsby & Qi (2020) modify the original Deepmind Control Suite (Tassa et al., 2018) to include
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visual distractions, Xing et al. (2021); Zhu et al. (2020); Ahmed et al. (2020) involve robotic tasks and and causality.
Akkaya et al. (2019) dynamically adapts domain randomization intensity and Ren et al. (2020) use an adversarial
objective. Other works use parallel environments with different randomizations (Ren et al., 2020; Li et al., 2021; Zhao
& Hospedales, 2021; James et al., 2019; Zhang et al., 2020).

Invariant Representation Learning is another approach to ensure good generalization across visual perturbations.
Zhang et al. (2021a); Agarwal et al. (2021a); Bertran et al. (2022) uses behavioural metric learning. Other works
relate invariant prediction (Peters et al., 2016; Arjovsky et al., 2019), robust optimization and causal inference to
isolate causal feature sets and keep only task-relevant features , (Zhang et al., 2020; Sonar et al., 2021). Multiple work
use the Block-MDP setting to learn invariant representations (Zhang et al., 2021b;a; Agarwal et al., 2021a; Bertran
et al., 2022; Efroni et al., 2021). Other works focus on model learning: Lu et al. (2020) combines data augmentation
with counterfactuals to learn a structured causal model with an adversarial objective, while Wang et al. (2022) learn
noise-invariant world-models. Li et al. (2021) also uses an adversarial objective combined with gradient reversal to
learn a representation robust to interventions. Mozifian et al. (2020) apply bisimulation and risk extrapolation (Krueger
et al., 2021) on robotics. We differ from this line of work as VIBR does not need any auxiliary representation learning
loss.

6 DISCUSSION AND CONCLUSION

Our method has the obvious limitation of requiring multiple views during training. However, we emphasize that
our multi-view assumption is only necessary during the learning phase and not at inference time. This becomes
particularly advantageous in Sim2Real settings, where simulating multiple points of view is cost-effective, whereas
providing multiple viewpoints at inference may be sometimes more challenging. Simulations can be used to intervene
on the visual aspects of the environment without necessitating additional views for real-world inference.

However, as there is a limited number of simulated benchmarks specifically designed for multi-view training setups
in image-based reinforcement learning, it is both plausible and practical to use multiple views at inference time in
many real-life scenarios using multiple cameras. This is an affordable and prevalent practice in robotics platforms
and autonomous vehicles, which often employ multiple sensors and cameras to address redundancies and potential
occlusions.

While the baselines do not require this assumption, limiting the training setup to a single frame or view of the scene
can therefore be unnecessarily restrictive and may not reflect actual practical use cases. The main objective of this
paper is to serve as a proof-of-concept for the efficient utilization of existing multi-view training setups, such as those
already found in the robotics domain.

Therefore, assuming multiple view availability, we presented VIBR (View-Invariant Bellman Residuals), a method that
combines multi-view training and invariant prediction to reduce out-of-distribution (OOD) generalization gap for RL
based visuomotor control. We demonstrated strong generalization results on the Distracting Control Suite benchmark
and to our knowledge, VIBR is the first method to provide non-trivial performance on the hardest setting of DCS (C4).
We also provided an analysis of the learning dynamics of VIBR which helped us explain its competitive performance
compared to representation learning methods. Further work include finding appropriate architectures for multi-view
training, scaling the model and data size to tackle more complex visuomotor control challenges, automatic tuning of
β with (meta-)learning or heuristics and leveraging pretrained generative models to sample observers without having
access to a simulation or multiple cameras.
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A IMPACT OF β ON VIBR GRADIENT NORM

We show here that a strictly positive β value for the VIBR loss helps during training by preventing overfitting towards
a deep single domain minimum and encouraging convergence to moderate local minima, thus helping extrapolation.
Let X = LBR(k, l). The gradients of VIBR loss can be written:

∇LVIBR = Ê [∇X] + β∇ ˆV ar(X)

= Ê [∇X] + β∇
(
Ê
[
X2

]
− Ê [X]

2
)

= Ê [∇X] + βÊ [2X∇X]− 2βÊ [∇X] Ê [X]

= Ê
[
∇X + 2β

(
X∇X − Ê [X]∇X

)]

= Ê
[
∇X

(
1 + 2β

(
X − Ê [X]

))]

This proves that gradients of VIBR are completely aligned with TD-learning gradient when looking at a sample in
particular, but only change the norm of the gradient based on the sign of

(
X − Ê [X]

)
. As a result, for a given (k, l)

pair of observers:

• if LBR(k, l) < Ê [LBR] (overfitting to one observer pair (xk, xl), then the weight of this update is reduced

∥∇LVIBR(x
k, xl)∥ < ∥∇LBR(k, l)∥

• ifLBR(k, l) > Ê [LBR] (underfitting to one observer pair (xk, xl), then the weight of this update is increased

∥∇LVIBR(x
k, xl)∥ > ∥∇LBR(k, l)∥

This mechanism discourages overfitting to deep minimum and actively promotes converging towards ”hard-to-
optimize” regions. An example of such region is a domain that is located very far from the overfitting domain: ensuring
good performance on it would be difficult as shown in Figure 2b. Because OOD domains minima are more likely to
be located far from obvious minimum where overfitting is frequent, the variance regularization term encourages fitting
to domains that might be closer to OOD, which helps generalization.

B β HYPERPARAMETER STUDY
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Figure 6: Study of the impact of β on generalization and invariance. Shaded areas are bootstrapped CI.
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C CONTINUOUS CONTROL WITH VIBR

SAC Soft Actor-Critic (Haarnoja et al., 2018) extends Q-learning to continuous control with an entropy maximizing
actor-critic algorithm. The policy loss is defined as follow:

Jπ(ϕ) = Est∼D
[
Eat∼πϕ

[α log (πϕ (at | st))−Qθ (st,at)]
]
= Est∼D [Lπ(st)]

As in DQN, the temporal-difference loss also minimizes Bellman residuals to learn the action-value function but
with a different target: it has an additional entropy regularization term and sample the target action according to the
soft-policy. at+1 ∼ πϕ(st):

Qtarget = rt + γ (Qθ̄(st+1,at+1)− α log πϕ (at+1 | s+1))

where α is a temperature parameter controlling exploration and is either fixed or trainable.

DrQ (Yarats et al., 2020) is an extension of SAC that largely improves visual RL performance on continuous control
tasks. It achieves such results with random shift data augmentation, averaging the Q-target over K image transforma-
tions and averaging the Q-function itself over M image transformations.

D REPRESENTATION LEARNING FOR RL

We use VIBR on top of Soft-Actor Critic (Haarnoja et al., 2018) for continuous control in the DCS environment. Our
implementation follows DrQ (Yarats et al., 2020) and we compare ourselves with 4 other baselines learning view-
invariant representations:

DBC (Zhang et al., 2021a) learns invariant representations using bisimulation metrics. It learns to put 2 distincts
embedding of states at a fixed pre-computed pseudo-distance depending on behavioral similarity and optimizes the
following loss function for the encoder ϕ:

J(ϕ) =
(
∥zi − zj∥1 − |ri − rj | − γW2

(
P̂ (· | zi,ai) , P̂ (· | zj ,aj)

))2

(16)

where zi = ϕ (si) , zj = ϕ (sj) , r are rewards, z denotes ϕ(s) with stop gradients, W2 denotes the earth-mover or
2-Wasserstein distance (which has a closed form for Gaussian distributions), and P̂ is a dynamics model with Gaussian
distribution output.

SPR (Schwarzer et al., 2021) learn time predictive representations of images by predicting multiple latent vectors
into the future with a siamese architecture inspired from Grill et al. (2020). This method has a projection network and
a cosine similarity loss.

LSPR
θ (st:t+K , at:t+K) = −

K∑

k=1

(
ỹt+k

∥ỹt+k∥2

)⊤ (
ŷt+k

∥ŷt+k∥2

)
(17)

CURL is a natural extension of Chen et al. (2020) to RL where the teacher-student architecture (with a projection
network) match two different views of the same observation (originally with data augmentation) with a InfoNCE loss
of the form:

LCURL = log
exp

(
qTWk+

)

exp (qTWk+) +
∑K−1

i=0 exp (qTWki)
(18)

FM(Feature-Matching) is a very simple representation learning baselines adapted to our case, where we directly
match representations of two observations from the same state given by two observers xk and xl. The loss (MSE)
directly optimizes the encoder without projection network.

LFM = ∥ϕ(xk(s))− ϕ(xl(s))∥2 (19)

For fairness of comparison, all baselines have access to the same training data as VIBR, and might freely benefit from
having multiple observers the same way as VIBR does. We maximize their performance by matching two views from
different observers in each baseline’s respective loss using the two-branch teacher-student architecture.
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E LOSS LANDSCAPE TOY EXPERIMENT

We create the plots of Figure 2b by creating a pseudo loss landscape of a 2d neural network with the following bivariate
function:

f(x, y, a, b, c, d) =

(
x− a

c

)2

+

(
y − b

c

)2

+ d (20)

We implement the four domains by plotting 4 variation of f along the range of parameters with the following values
for a, b, c and d:

• Bottom-left D1: a = b = c = 1 d = 0

• Bottom-right D2: a = 2 b = 1 c = 0.75 d = 0.25

• Top-left D3: a = 1 b = 2 c = 0.75 d = 0.25

• Top-right D4: a = 2 b = 2 c = 0.5 d = 0.4

This parameters allows us to control the width and depth of each valley, which helps us simulate different training
landscapes with different optimization difficulties. We apply tanh before plotting for better visualization. The plot on
the left is obtained by taking minDi f(x, y,Di) for all x, y. This is a practical way of visualizing all 4 domains at the
same time, but does not reflect a single optimization objective. The middle plot is obtained with: ÊDi

[
f(x, y,Di)

]
for all x, y. This corresponds to ERM if we suppose that the cardinality of each domain is equal. Finally, we obtain
the plot on the right with ÊDi

[
f(x, y,Di)

]
+ βV̂ ar

(
f(x, y,Di)

)
for all x, y. This effectively corresponds to V-Rex

in Krueger et al. (2021) and our variance regularization term of VIBR.

F IMPLEMENTATION DETAILS

Each experience in the paper is run on 4 different seeds for reproducibility. We base our VIBR implementation
of the SAC implementation in ACME2 (Hoffman et al., 2020) in Jax (Bradbury et al., 2018), but modify it to fit
DrQ architecture. Both policy and Q-network are implemented with convolutional stack followed by a MLP. The
policy and Q-network only share weights of the convolution stack to compute lower-dimensional visual features. The
convolutional stack (or ”encoder) is composed of 4 convolutional layers with 32 filters and 3 × 3 kernel sizes. Stride
is 2 for the first convolutional layer then 1 for the rest. Outputs features are flattened and put through a linear layer to
reach a final dimension of 50. Layer normalization and tanh activation is applied to the features before passing them
to actor or critic’s MLP. Encoder layers are initialized with delta orthogonal initialization, while all linear layers used
Lecun uniform initialization. All networks use ReLU activations units. Trainig is done with the Adam optimizer, and
all hyperparameters used are described in table 1. We optimize β with hyperparameter search over

[
10−3, · · · , 50

]
and find a value that maximizes IQM and transfer for each environment. Values are listed in the hyperparameter table.

We use the github3 implementation of the Distracting Control suite and modify it to create our training and evaluation
curriculum.

2https://github.com/deepmind/acme
3https://github.com/geyang/gym-distracting-control
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Table 1: Hyperparameters

Hyperparameter Value

Replay buffer size 100000
Initial collection steps 25000
Optimizer Adam
Actor learning rate 3e-4
Critic learning rate 3e-4
Weight decay 0
Initial temperature α 0.1
Temperature learning rate 3e-4
Batch size 128
τ EMA 5e-3
Actor hidden layers [512, 512]
Critic hidden layers [512, 512]
Frame stacking 3
Action repeat 8 if Cartpole; 2 if Finger, Walker; 4 otherwise
VIBR variance penalty β 5 if Walker; 0.1 if Ball in Cup; 1 otherwise

G DISTRACTING CONTROL SUITE

We use Distracting Control Suite (Stone et al., 2021) for our experiments. DCS is a variant of the Deepmind Control
Suite where visual distractions are dynamically added to the rendered observations. The perturbations consists in the
following non-exclusive dimension of variations:

• color randomization of physical bodies
• background randomization with a dataset of videos
• random camera wobbling around a fixed point

Distractions are dynamic, temporally consistent and continuous. Colors of bodies are continuously changing at each
time step. The background is displaying frame by frame a randomly selected video from the DAVIS dataset, which
is played forward then backward to avoid discontinuities. The camera’s orientation is rotating with a random angle at
each step while keeping the agent in the field of view. We define our curriculum as follows:

• C0: No visual perturbation, original DM Control environment
• C1: Dynamic background changes with a dataset of 2 videos and random body colorization with an intensity

parameter α of 0.1
• C2: Dynamic background changes with a dataset of 4 videos, random body colorization and random camera

wobbling with an intensity parameter α of 0.1
• C3: Dynamic background changes with a dataset of 8 videos, random body colorization and random camera

wobbling with an intensity parameter α of 0.2
• C4: Dynamic background changes with a dataset of 50 videos, random body colorization and random camera

wobbling with an intensity parameter α of 0.3

Training and evaluation curriculums have the same definition, except that training domains use a separate video dataset
than evaluation domains to properly evaluate generalization both in-distribution and out-of-distribution. All models
are consistently trained with both C0 and either C1, C2 or C3. Main results are obtained with C0 and C2. This allows
us to easily define 2 observers x0 and x2 where x0(S) ∈ C0 and x2(S) ∈ C2. Using these two observers, we produce
2 different view each on its own domain at each time step. We provide image samples of each environment for each
domain of the curriculum in Figure ??

H SAMPLE EFFICIENCY CURVES
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C4

Ball in cup
Catch 

Cartpole
Swingup

Cheetah
Run

Finger
Spin

Reacher
Easy

Walker
Walk

C0 C1 C2 C3

Figure 7: Distracting Control Suite tasks and evaluation benchmarks used in the paper.
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Figure 8: Evaluation sample efficiency curves on C0. Line IQM and shaded area bootstrapped CI.
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Figure 9: Evaluation sample efficiency curves on C1. Line IQM and shaded area bootstrapped CI.
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Figure 10: Evaluation sample efficiency curves on C2. Line IQM and shaded area bootstrapped CI.
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Figure 11: Evaluation sample efficiency curves on C3. Line IQM and shaded area bootstrapped CI.
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Figure 12: Evaluation sample efficiency curves on C4. Line IQM and shaded area bootstrapped CI.
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I IQM AND GENERALIZATION GAP PER ENVIRONMENT PER BENCHMARK
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Figure 13: IQM per environment per evaluation domain compared to baselines. Trained on C2*. Vertical bars are
bootstrapped CI.
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Figure 14: Generalization Gap per environment per evaluation domain compared to baselines. Trained on C2*. Verti-
cal bars are bootstrapped CI.
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Figure 15: IQM per environment per evaluation domain while changing training domain. Vertical bars are bootstrapped
CI.
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Figure 16: Generalization Gap per environment per evaluation domain while changing training domain. Vertical bars
are bootstrapped CI.

J ABLATIONS

We perform ablations on the Ê [LBR(k, l)] term from the VIBR loss and show that all Bellman residuals terms are
necessary for good performance. To perform the ablation, we disabled risk extrapolation by fixing β to 0. Training is
done on the C2* on the Walker Walk environment for 4 seeds.
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Figure 17: IQM and bootstrapped CI of ablations on C0
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Figure 18: IQM and bootstrapped CI of ablations on C1
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Figure 19: IQM and bootstrapped CI of ablations on C2
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Figure 20: IQM and bootstrapped CI of ablations on C3
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Figure 21: IQM and bootstrapped CI of ablations on C4
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