
HAL Id: cea-04487892
https://cea.hal.science/cea-04487892v1

Submitted on 4 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Multi-Surface Acoustic Wave Sensor platform for the
Detection and Identification of Toxic Gases

Mariem Ben Hadj Abdallah, Christine Mer, Jean-Philippe Poli, Franck
Badets, Edwin Friedmann, Venceslass Rat, Thierry Laroche, Samuel Saada

To cite this version:
Mariem Ben Hadj Abdallah, Christine Mer, Jean-Philippe Poli, Franck Badets, Edwin Friedmann, et
al.. A Multi-Surface Acoustic Wave Sensor platform for the Detection and Identification of Toxic
Gases. 2023 IEEE SENSORS, Oct 2023, Vienna (AUSTRIA), Austria. pp.1–4, �10.1109/SEN-
SORS56945.2023.10324973�. �cea-04487892�

https://cea.hal.science/cea-04487892v1
https://hal.archives-ouvertes.fr


A Multi-Surface Acoustic Wave Sensor platform for
the Detection and Identification of Toxic Gases

Mariem Slimani∗, Christine Mer-Calfati∗, Jean-Philippe Poli∗, Franck Badets†,
Edwin Friedman∗, Venceslass Rat†, Samuel Saada∗ and Thierry Laroche‡

∗Universite Paris-Saclay, CEA, List, F-91120, Palaiseau, France, {name.surname}@cea.fr.
†University Grenoble Alpes, CEA, LETI, F-38054 Grenoble, France, {name.surname}@cea.fr.
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Abstract—In this paper, we present a platform based on a
modular approach coupled with powerful algorithms for accu-
rate detection and identification of chemical compounds. The
system relies on multi-SAW (surface Acoustic Wave) sensors that
are functionalized differently, resulting in multi-responses that
collectively constitute the fingerprint of the chemical compound.
A prototype has been developed and the overall system, including
the design of SAW module, the acquisition system, learning
algorithms and online recognition of various compounds, has
been tested and validated. The results showed a reliable and
accurate system with a perfect score of 100% recognition of
DMMP.

Index Terms—Saw sensors, chemical sensors, toxic gases de-
tection, recognition algorithms.

I. INTRODUCTION

Detecting and identifying toxic gases is a critical concern
for a wide range of applications including public safety,
environmental monitoring, and industrial processes. Surface
Acoustic Wave (SAW) devices have emerged as a promis-
ing technology for toxic gas detection due to their compact
size, cost-effectiveness, high sensitivity, and rapid response
times [1] [2]. The sensitivity of a SAW sensor refers to its
ability to detect and quantify specific molecules even at low
concentrations. A proper design of the SAW device including
operating frequency selection, Interdigital Transducers (IDTs)
configuration, quality factor optimization can further enhance
its sensitivity and its selectivity [3]. The selectivity is the sec-
ond key factor characterizing the SAW sensor’s performance
refering to its ability to discriminate the target analyte from
potential interferents or cross-reactive substances. It relies on
the selection of the sensing layer that can selectively interacts
with the target analyte. Mass loading effects can compromise
the selectivity of SAW sensors by introducing interference
from non-target molecules. This is particularly significant in
scenarios involving complex gas mixtures or environments
where multiple gases coexist [4]. To overcome this limitation,
several strategies have been proposed in the literature. One
approach involves designing an optimized sensing layer using
materials that minimize non-specific adsorption or exhibit
higher affinity for the target analyte [5] [6]. Another approach
relies on what is called “e-nose”, where an array of sensors
with different chemical affinities are used to generate a unique
chemical signature of the gas identified by appropriate signal
processing algorithms and pattern recognition techniques [7].

In this study, we introduce a muti-SAW sensor platform that
offers both high selectivity and sensitivity. Our platform is
built upon a modular design concept, combining four distinct
modules, each featuring unique chemical functionalizations.
Within each module, multiple SAW resonators operating at a
high frequency of 427 MHz are employed. An FPGA-based
acquisition system has been implemented enabling real-time
data acquisition and transmission through UART interface to
the user. The acquired data is subjected to multi-parametric
analysis techniques and machine learning algorithms for ac-
curate recognition and classification of the gas nature. In this
paper, we describe a bottom-up presentation of the platform.

II. DESIGN OF MULTI-SAW MODULE

A. SAW device

A SAW device is composed of a piezoelectric material on
which two interdigitated transducers (IDTs) are deposited at
opposite ends of a cavity covered with a sensing layer. The
IDTs allow the conversion of electrical signal into acoustic
wave that propagates along the surface of the piezoelectric
substrate. The cavity is designed to be resonant at a specific
frequency. When gas molecules interact with the sensing layer,
the propagation of the acoustic wave is disturbed inducing a
shift in the frequency of the measured electrical signal.
The sensing layer of a SAW device is a key element that
influences its selectivity and sensitivity. There have been rapid
developments for suitable sensing materials to improve sensing
performance of SAW devices [8] [9]. In this paper, we
used a new sensing layer, proposed in [10], involving the
use of diamond nanoparticles deposited on the piezoelectric
substrate. This approach offers a great versatility in terms
of functionalization due to the diversity of carbon chemistry,
resulting in a diamond layer that can be easily modified to suit
specific detection requirements.

B. Multi-SAW module

A multi-SAW module in quartz was fabricated. It consists of
8 aligned measurement SAWs, with 4 on the left and 4 on the
right, as well as two SAWs located at the top of the module, as
shown in Fig. 1(a). These laters are non-functionalized SAWs
and serve as reference oscillators, while the remaining eight
SAWs are functionalized, acting as gas sensors. The sensing
and reference SAWs are designed to exhibit a resonance



Fig. 1. (a) Multi-SAW module, (b) resonance frequency.

frequency offset of approximately 1.5 MHz. The resonance
frequency is determined by considering the maximum value
of the magnitude of parameter S12, as depicted in Fig. 1(b).
The quality factor (Q-factor) is determined at resonance by
considering the slope of the phase of parameter S12 at that
point. The designed modules have a high quality factor around
10,000. Four modules were functionalized through a process
involving the deposition of a thin film of diamond nanoparti-
cles (approximately 20 nm) using deep coating [10]. Subse-
quently, they were plasma-fixed through Microwave Chemical
Vapor Deposition (MCVD) and further functionalized using
various methods, including immersion and plasma treatments
with three different surface terminations: -OH, COOH, and
-CH3.

III. MULTI-SENSING PLATFORM

The developed multi-sensing platform is shown in Fig. 2. It
consists of a mainboard capable of accommodating 4 daughter
boards. Each daughter board is designed to integrate ten
oscillators each associated to one of the ten SAW devices on
the multi-SAW module shown in paragraph II-B. The system
measures the frequency difference between the reference and
the sensing oscillators.

Fig. 2. Multi-sensing platform.

Note that within the same module, only one sensing SAW
device and one reference SAW device are activated simultane-
ously. An FPGA-based acquisition system is implemented to

Fig. 3. Saw oscillator architecture.

control the oscillations of the SAW devices and enable simulta-
neous measurement of the four signals from the four daughter
boards. Different functionalizations were incorporated on the
multi-SAW modules of each daughter board to obtain distinct
responses (i.e., different frequency shifts) to a specific gas. The
measured responses form a unique fingerprint of the target
gas, which can be leveraged by AI algorithms for accurate
gas recognition. In the following subsections, we provide a
detailed description of the key parts of the developed multi-
sensing platform including the design of the oscillator, the
implementation of the acquisition system and the software
framework.

A. SAW oscillator

Usually, resonator oscillators are implemented using one-
transistor topology like Colpitts, Pierce or Hartley oscillators.
Nevertheless, the rather high motional resistance and the rather
high parasitics capacitance of the SAW resonator prevent the
use of this kind of architectures. Instead, a classical feedback
oscillator has been chosen where the SAW resonator is placed
in series with an amplifier and a phase shifter circuit as
depicted in Fig. 3. The amplifier has to provide enough
gain to counteract the worst case 23 dB loss of the SAW
resonator and the attenuation of the phase shifter. In order
to get sufficient headroom a 40 dB gain amplifier has been
designed using two Infineon BGA614 bipolar amplifiers in
series. This amplifier brings a 20 dB fixed gain in a tiny
package similar to discrete bipolar transistor package. This
helps in compacting the oscillator design and minimizing
both inductive and capacitive parasitics of the oscillator wires.
The phase shifter is basically a LC high pass filter whose
components values are set in order to bring the necessary
phase shift to satisfy Barkhausen criteria, following a similar
methodology as described in [11]. A daughter board has been
designed to integrate ten oscillators, connected to each SAW
device, generating an output signal at the desired specific
frequency and ensuring sustained oscillation within the SAW
device. As mentioned earlier, only one sensing oscillator and
one reference oscillator are activated at a time. The ”sel”
signals are generated by the FPGA to control the activation
of each oscillator. The difference of frequencies between the



sensing oscillator and the reference one is obtained using a
mixer and a low pass filter. The resulting signal pass then
through a comparator to obtain a signal with CMOS compliant
levels allowing seamless utilization by the FPGA.

B. Implementation of acquisition system

The acquisition system was implemented using a com-
mercial board equipped with a Xilinx Zynq FPGA, which
combines an Arm processor and an FPGA. This architecture
enables parallel communication with all daughter boards: the
control signals allow simultaneous activation of the corre-
sponding SAW sensors on the four daughter boards and the
four square wave signals, generated from the comparator
output on each daughter board, are simultaneously sent back
to the FPGA where reciprocal counters were implemented to
accurately measure their frequencies. The measured signals are
then transmitted via a UART connection upon user demand.
Additionally, the implemented architecture provides access to
valuable information stored in a dedicated EEPROM memory
on each individual daughter board. This information could
enhance the performance and effectiveness of recognition
algorithms.

Note that the sensing oscillators within the same board
are sequentially activated one after another. Moreover, the
oscillators demonstrate a latency period for startup and
shutdown. These time delays must be carefully considered,
both for accurate frequency calculation and for the proper
activation of the SAW devices. Firstly, the frequency
measurements should be performed during a stable oscillation
period to ensure reliable results. Secondly, it is essential to
ensure that the SAW oscillators are not simultaneously active
since they share the same output. Therefore, it is necessary
to wait for one oscillator to completely shut down before
activating the next one.

C. Software

We divide the software into two parts. On the one hand, the
embedded software is in charge of the communication with
a client, regarding a dedicated protocol. This communication
protocol allows operations such as reading the array of sensors,
configuring the sensors, or asking for information about the
cards plugged onto the mother board.

On the other hand, the client software has been thought
as a wizard. First, the user is invited to collect data into a
database and to label them. The data is then the input of
the next part, where the user is able to chose different pre-
processing, different features to extract and different machine
learning models to train. The training is achieved regarding
a validation technique, among cross-validation, leave-one-out
validation, etc. It is also possible to search for the optimal
hyperparameters. At that time, only a grid search can be used.
Once a workflow is constituted, it can be compared with other
workflows or tested on a validation set. The client software
then displays a window with all the main metrics for model
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Fig. 4. Confusion matrix of the experiments.

performances. Finally, a workflow can be loaded and exploited
in real-time to recognize gases.

In [12], the authors describe a usual worflow as consisting
of preprocessing steps, feature extraction, dimension reduc-
tion and a classifier (machine learning). They also present
an extensive benchmark of the most useful algorithms in
each category. Since then, new features have been introduced
specifically for SAW array of sensors [13] and explainable
artificial intelligence has been applied to such sensors [14].

IV. RESULTS AND DISCUSSIONS

For the qualification tests of the prototype, a set of four
compounds was utilized in liquid form and securely placed
in pillboxes. A pump upstream of the system draws the
vapors routed to the sensor modules. The tested gases included
DMMP (a sarin simulant), as well as water, ethanol and shower
gel, strategically chosen as interferents to assess the system’s
selectivity. The results are given in Fig. 4 as a confusion
matrix over 80 acquisitions with a fuzzy classifier as suggested
in [14].

V. CONCLUSIONS

This scientific paper presents the development and qualifica-
tion of a multiplexed surface acoustic wave (SAW) sensor sys-
tem for gas detection. The system incorporates functionalized
modules with multiple SAW sensors, allowing for enhanced
sensitivity and selectivity. The prototype was tested using
various compounds, including a sarin simulant (DMMP), as
well as interferents such as water, ethanol, and shower gel. The
collected sensor responses were processed using specialized
software tools for feature extraction, dimensionality reduction,
and model development. The qualification tests demonstrated
the system’s robustness, achieving 100% recognition rate for
DMMP even in the presence of interferents. Further analysis
using fuzzy logic will provide additional insights into sensor
drift and optimization of surface functionalization for im-
proved gas detection performance. Moreover, ongoing research



is exploring alternative surface functionalization methods such
as polymers or chromogenic materials, allowing the explo-
ration of novel materials and their potential applications in
various domains.
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