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Abstract—Safety-critical applications require well-defined and
documented timing behavior. These requirements shape the
design and implementation of a timing analyzer based on a formal
Instruction-Set Architecture (ISA) semantics and formal micro-
architecture models. In this paper we present the key elements
of such a timing analyzer and how to systematically combine
the formal components to address timing properties such as
evaluating memory interferences. We also report preliminary
experiments of memory interference analysis of multi-threaded
applications in the context of multicore architectures.

Index Terms—formal methods, timing analysis, multicores.

I. INTRODUCTION

The design, implementation and verification of embedded
real-time applications are subject to careful considerations
of both functional and non-functional nature. Addressing the
latter requires accurate knowledge of the underlying execution
platform since a non-functional evaluation aims to determine
bounds on computational resources. Of particular interest is
the execution time which, for certain types of embedded
applications (i.e. deemed safety-critical), is approached with
a worst-case mindset. The worst-case execution time (WCET)
analysis computes safe upper bounds on the execution paths
of an input application on a given execution platform.

There are two complementary approaches to derive WCET
bounds, using static analysis [1] and using end-to-end mea-
surements [4]. Both approaches produce (desirably safe and
accurate) timing bounds. A static timing analysis computes
a bound under all possible program executions, using an
over-approximation of the program behavior (i.e. the set of
executions). A measurement-based timing analysis computes
a bound under a set of actual program executions, using an
under-approximation of the program behavior. Thus, it should
be beneficial to combine the program coverage brought by a
static timing analysis with the accuracy of a measurement-
based one, into a timing analyzer which could mitigate these
trade-offs. One such timing analyzer could be designed over a
formal instruction set architecture (ISA) semantics and formal
micro-architecture models (e.g. for pipelines, caches).

The main motivation behind these design decisions (e.g.
having a formal ISA as a good starting point) comes from
the aforementioned observations, that of reasoning about pro-
gram executions. By definition, a formal language semantics
encodes all the possible executions, of any program written
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in the particular language. In case of a timing analyzer, the
program at hand is at binary-level and the formal semantics
of interest is that of the ISA. The fact that the infrastructure
of a timing analyzer is formal implies the availability of
interpreters, state space exploration tools or even the possi-
bility to certify the timing bounds. A formal ISA semantics
could strengthen, through concrete interpretations, the over-
approximation bounds which are computed by a static timing
analysis. Also, a formal ISA semantics could be used to ex-
trapolate, through symbolic state space exploration, the under-
approximation bounds which are computed by a measurement-
based timing analysis. A similar argumentation stands for
formal micro-architecture models: the available interpreters
and state-space explorers are de-facto cycle-accurate (up to
modeling) micro-architecture tool support.

In this paper we present preliminary results on how to
engineer such a timing analysis tool and how to apply it to
evaluate the memory interferences. First, we briefly present
the components: the formal ISA semantics (i.e. a proprietary
ISA [5] is under development) in Section II-A followed by
formal micro-architecture models, in Section II-B with a focus
on a prefetch buffer (PFB). Next, we present how to integrate
these formal models into a memory interference analysis, in
Section III. The design of specialized analyses is systematic,
from the concrete semantics of ISA and respectively the
concrete/abstract semantics of the micro-architectures.

II. FORMAL INFRASTRUCTURE

A. ISA Semantics Model - SISA

Our formal ISA defines, for each instruction, two func-
tions: decode and execute. The decoding semantics of
an instruction i is a mapping between the instruction rep-
resentation (i.e. mnemonic, operands) to its bit encoding:
decode : i ↔ bits(size), where size = {32, 64, 96}
bits. The state configuration ⟨PC,R,M⟩ISA consists of pro-
gram counter (PC), register file (R) and memory (M ) with
R = Map[rn 7→ bits(64)], rn is the register name and
M = Map[(addr, w) 7→ valu], with addr is the address of
size w bits and valu is the respective memory value.

The proposed ISA model does not only serve as formal
specification of the ISA but it also enables an instruction-
accurate execution of any given well-defined program. A
program is a sequence of instructions prog = {(addr, i)};
each instruction i is paired with its memory address addr. The
execution of a program consists in executing the semantics of
i. Concretely, the top-level execution loop of a program is a



Fig. 1: Hierarchy of abstract and concrete semantics.

straightforward fetch-execute loop that fetches the instructions
pre-loaded in the program memory, according to the address
given by the PC, and invokes from the formal ISA model the
execution semantics corresponding to the fetched instructions.
We denote the concrete formal ISA semantics by SISA.

B. Formal Micro-architecture Model - Aarch

We introduce next the formal semantics of kvx, a VLIW
architecture based on a 7-stage pipeline [5], as shown in
Figure 2. The pipeline frontend presents a prefetch buffer
(PFB) and an instruction cache (IC) while the data memory
accesses are through a write-buffer (WB) and a data cache
(DC). The execution model of the kvx pipeline is encoded at
bundle-level (i.e. up to 8-slot) and the execution model through
the memory components is represented at address-level. We
present next the semantics for the kvx pipeline, the PFB and
the IC. We opt to detail the PFB semantics since we further
evaluate its impact on the proposed interference analysis and
to detail the abstract IC semantics since it provides some of
the variabilities to be explored in an interference analysis.

Fig. 2: The kvx architecture: pipeline and memory model

Pipeline Semantics - Spipe. The pipeline model advances
a set of independent instructions forming the so-called bundle
simultaneously (i.e. as one large instruction) across its stages.
This means that each pipeline stage is able to process up to 8
syllables (a syllable is a 32-bit word), which is the maximum
bundle size, in parallel. A pipeline stage communicates with
its upstream and downstream adjacent stages by sending a
stalling/un-stalling request and passing data (e.g. a decoded
bundle), respectively. In addition to their neighbor stages, the
IF, ID and RR stages interact with the PFB through an interface

by sending a bundle request with the address of the requested
bundle, flushing the PFB in case of a branch, receiving a
bundle if it is available and a stalling request if it is not. As for
the operation specific to each stage, it is provided by the ISA
semantics model. For instance, the ID stage uses the decode

semantics from the ISA model and an EX stage leverages the
execute semantics of an instruction. We denote the concrete
semantics of the kvx pipeline by Spipe.

PFB Semantics - SPFB . The PFB is responsible to feed
instruction bundles to the pipeline. In short, the PFB of kvx
keeps 4 FIFOs of 3x32bit size, receives 4x32bit packet from
the IC each clock cycle and is flushed whenever a branch is
taken. Moreover, the timing penalty of a PFB flush is 1 cycle
unless the branching is to a bundle spanning two IC lines. In
this case, the penalty is two clock cycles. The timing behavior
of the PFB (i.e. more complex than exemplified above) is
defined by the interplay between the pipeline demands from
ID and even RR stages and the IC content.

The state configuration ⟨C,P,D, cy⟩PFB has the following
elements: C encodes the interface between IC and PFB,
P is the PFB content, D encodes the interface between
PFB and the pipeline and cy represents the execution cycle.
More precisely, P = Map[fi 7→ ci], is the PFB with
FIFOs fi, i = 1..4 and their respective content ci. Also,
C = Fields{hm, req, fb, blks} has fields hm to denote the
hit/miss type of IC access, req to represent a requested block
(e.g. a branch target), fb to encode the bundle status and blks
to capture the memory blocks sent to PFB. The fb is necessary
since the PFB is agnostic to bundle formation from the IC (i.e.
the 4x32bit fetched block could represent a partial bundle, a
complete bundle or spanning several bundles). As such, fb
denotes in which of the three bundle category a fetched block
from IC belongs. Finally, D = Fields{id, rr, st, blks} has
fields id and rr for taken branches from ID and respectively
RR stages to signal the PFB flush. Also, st signals pipeline
stalling (due to data dependencies) and blks represents the
blocks pushed into the pipeline.

A state of the PFB is (c, p, d), c ∈ C, p ∈ P and d ∈ D,
the set of states is S and the semantics of the PFB is
defined in terms of a state transformer T : S → S. We
consider the following notations: empty, to overload an empty
semantic entity (i.e. an empty map for the PFB or a zero
memory address), |s| to represent the size of s, to denote



a placeholder, ’.’, a field access and ’. . . ’ to stand for the
unchanged/unused elements in Fields. Each clock cycle, a
single state transformer Tnext[addr] is applied, yielding to the
following definition over the pipeline progression.

Definition 1: The concrete semantics of PFB, SPFB is
defined over the pipeline requests P = List[addrs] as
SPFB(addr :: addrs) = Tnext[addrs] ◦ Tnext[addr].

IC Semantics - AIC . The instruction cache is connected to
the PFB model to provide the requested blocks, either directly,
i.e. cache hit, or through RAM, i.e. cache miss. Whereas
a formal concrete cache semantics could be defined, in this
paper we consider an abstract semantics AIC , defined by
two classical cache abstractions in the context of the WCET
analysis, i.e. for may- and must-, to predict cache misses and
respectively cache hits. As such, AIC [addr] establishes, for a
memory block addr, if it is always a cache hit, always a cache
miss or unclassified. In this latter case, a variable latency (for
cache hit/miss) is assigned to addr. Intuitively, AIC augments
program executions with variable latencies due to IC accesses.
These variable latencies are then propagated through the SPFB

and Spipe to data memory accesses.
Definition 2: The abstract semantics of IC, AIC is de-

fined over the pipeline requests P = List[addrs] as
AIC(addr :: addrs) = asgn hm(addr) :: AIC(addrs),
where asgn hm(addr) = (addr, c), with c = 1 (hit), c = mp
(miss penalty) or c = {1,mp} (for an unclassified access).

III. MEMORY INTERFERENCE ANALYSIS

In the following, we propose a method to quantify memory
interferences when a task system, developed as a multi-
threaded application, is executed on a manycore architecture
like MPPA. This algorithm considers the following elements:
the mapping of tasks to cores (i.e. through threads) is a priori
determined and a task is characterized by the longest execution
path L (which is to be executed by our formal infrastructure).
Precisely, L is determined by the worst input data of a task,
provided, for example, by standard benchmarks.

Our application model is defined by n threads, where n is
the number of cores, with each thread including one or several
tasks, executed under periodic or aperiodic assumptions. For
example, let us consider two tasks t1 and t2, which are
dependent, say that t2 depends on t1, and scheduled to be
executed on the same core. Also, each task is represented
by the longest execution path L1 and respectively L2 as
previously stated. Also, let us assume that the execution of t1
and t2 is periodic. Then, informally, a thread th is a bitvector,
with 1, representing the cycle when an access to data memory
is demanded and 0 for anything else. The thread th captures
cycle-accurate information as issued from the execution of
Aarch – the abstract micro-architecture model of IC, PFB
and pipeline. A thread with periodic and dependent t1 and t2,
as shown in Fig. 3, is constructed with a projection function
φ, which transforms traces of Aarchi and the scheduling and
mapping of tasks into the bitvector representation.

Formally, the projection function φ is defined over timed
traces, as executed on a the particular core, with two cases:

Fig. 3: The bitvector representation of a thread

TABLE I: Runtime slowdown of the SPFB .

without PFB with PFB
Benchmark #Bndl Exec. #Cyc. Exec. #Cyc. Sl.
adpcm_dec 14543 4.15 26952 5.48 25335 1.32
ammunition 22318 6.35 39354 7.16 35781 1.12
mpeg2 20069 5.80 35901 7.06 32661 1.21
statemate 15595 4.58 29284 5.89 27474 1.28
susan 27992 7.41 48018 8.77 42032 1.18

φ(L) whenever a task t is in execution and φ(o) whenever
the core is idle. φ(L) is the bitvector of size equal to the
execution of longest path L of task t where 1 stands for a
data memory access and 0 for anything else. The position of
1s in φ(L) represents the timestamp (i.e. cycle) of the memory
access. φ(o) is a bitvector of 0s with the size equal to the idle
time (i.e. in cycles) of the core. Henceforth, a thread th is the
concatenation of bitvectors corresponding to the computation
of mapped tasks and idle times on the particular core, up to
the hyperperiod of the task system.

Then, quantifying the memory interference would be based
on the exhaustive, parallel exploration of threads thi, i = 1..n,
for n cores in order to determine the maximal number of
concurrent data memory accesses (i.e. several 1s at the same
timestamp). While the construction of a thread is through
bitvector concatenation of φ(L)s and φ(o)s, the Ls for the
respective tasks are produced when running formal ISA se-
mantics, SISA on an abstract architecture Aarch. In short, the
pipeline model Spipe demands the first bundle (as sequences
of addr), which is constructed in the IF stage and further
decoded, instruction by instruction in the ID stage, by using
the decode function of SISA. These demands are served by
the frontend memory model, namely PFB, IC and RAM. The
SPFB , through its pipeline interface D (i.e. field blks) receives
these addr and applies one or several transitions of Tnext

to either return the requested addr or advance the request
to the IC interface C. Here, the field hm value is decided
by the AIC , where standard may- and must-analyses would
classify the correponding addr. Once the addr is returned to
the pipeline, the execute function of SISA is applied.

As such, the algorithm to evaluate the memory interferences
is based, for each addr, on an abstraction Ainterf , defined as:

Ainterf (addr) = (Aarch ◦ SISA)(addr)

with Aarch = Spipe ◦ SPFB ◦ AIC .
We conduct preliminary experiments using two configu-

rations for Aarch (with and without PFB) on the TACLe
benchmarks [6]. The AIC could be provided by static analysis
tools like Otawa [1]. In the experimentation we aim to evaluate
mostly the execution of the formal infrastructure on both
software and hardware models (e.g. PFB).



TABLE II: Results of the Interference Analysis.

Tasks without PFB with PFB
Thread Thread type #Max th size. Exec. Inter (%) #Max th size Exec. Inter (%)
mpeg2
susan

periodic 1446460 0.086 13 1334360 0.079 12

ammunition
susan

aperiodic 1729042 0.090 10 1535938 0.089 11

statemate
petri

periodic 1204644 0.082 11 1150401 0.078 10

audiobeam
ndes

aperiodic 1729042 0.090 10 1132790 0.089 11

adpcm_dec
adpcm_enc

periodic 1109973 0.081 13 1065734 0.077 12

For example, in Table I, we present the runtime impact of
the SPFB . The benchmarks have a number of bundles #Bndl
with reported runtime Exec (in seconds) and resulting cycles
#Cyc (of our cycle-accurate model) for both configurations.
Finally, Sl reports the slowdown caused by SPFB . For ex-
ample, the execution time of adpcm_dec using the PFB is
1.32 × slower than without the PFB. We could also observe
that the execution using a PFB is faster (e.g. the respective
columns reporting the runtime performance).

Preliminary results of the interference analysis are in Ta-
ble II. In particular, we aim to determine runtime performance,
i.e. columns Exec, for single interleavings of the consid-
ered threads (i.e. task system representation). The reported
runtime performance is with respect to our timing analysis
infrastructure, namely the cycle-accurate micro-architecture
modeling and not to the MPPA platform. Columns Thread
and Thread type show the core mapping (e.g. first line -
mpeg2 is executed on a core and susan on another core)
respectively the type of thread execution. For example, thread
mpeg2 is a concatenation of six φ(Lmpeg2) and five φ(o)
(of size 3000 cycles), while thread susan is a concatenation
of three φ(Lsusan)s and two φ(o) (of size 2000 cycles).
Also, the aperiodic thread type is modeled by considering
different bitvector size for the φ(o)s (e.g. values between 1000
cycles and 5000 cycles, for audiobeam and ndes). Column
max th size is the size of the longest thread, in cycles and
finally, Interf is the percentage of concurrent data memory
accesses (thus potential interferences). The impact of the PFB
on the results is not uniform, for example the presence of the
PFB could lead to more (e.g. lines 3 or 5) or less potential
interferences (e.g. lines 2 or 4). More specifically, for the
thread with ammunition and susan, the shorter execution
trace exhibits more memory interferences than longer one
since our analysis counts the number of concurrent accesses.
Under this consideration, the memory interference analysis,
which considers at this point only the longest execution path
(i.e. interleaving), is not conservative; a full fledge efficient
exploration of all possible interleavings is left for future work.

IV. RELATED WORK

There is considerable work tackling the formalization of
ISA specifications but each proposed formal ISA is usually
created for a specific purpose, e.g. verifying the correct-
ness of an embedded OS [12], implementing or extending

a compiler [11], generating tests and verifying functional
properties [3], etc. Therefore, only the ISA subset that caters
for each specific purpose is modeled, leading to partial formal
ISA models. In [3], the authors propose a formalization of
user-level x86-64 instructions. These instruction semantics
were then translated into K [9] specification in order to benefit
from the K framework’s automatically generated interpreter
and its formal analysis tools.

In the context of extending the CompCert backend to sup-
port VLIW cores, the authors in [11] formalize the assembly
semantics of kvx, which is a VLIW processor. They define
parallel semantics for bundles and they verify the preservation
of the original sequential semantics wrt. the proposed parallel
semantics using symbolic execution.

To demonstrate the usability of our formal ISA model, we
targeted, in this paper, the problem of memory interference
characterization. This problem has been investigated in pre-
vious work in the context of WCET analysis [8] and using
tools such as [1] and [7], whose starting point is a high
level representation of the software (usually a control flow
graph - CFG). Some existing approaches like in [10] rely on
analytical interference models under a timing compositionality
assumption to account for contention delay. Other approaches,
like [4] and [2], analyze the changes in hardware performance
counters, which are not always accurate, to instrument their
interference models. These approaches yield pessimistic in-
terference bounds because of their high-level and sometimes
overly-simplified SW and/or HW models. We, however, aim
for an accurate application representation using a formal and
executable ISA, complemented with formal hardware models.

V. FUTURE WORK

The development of our formal timing analyzer is ongoing
(i.e. the SISA covers most of the ALU, memory and branch
instructions and provides limited support for floating point
instructions). Also, the Spipe is complete but with ongoing
integration with SPFB , which is also complete.

The memory intereference analysis requires an efficient
exploration of all possible interleavings for which an imple-
mentation with hash consing is in progress. This analysis also
requires a validation infrastructure to ensure that its results are
correct wrt. the cycle-accurate behavior of the actual platform.
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