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Formal Processor Modeling for Analyzing
Safety and Security Properties

Benjamin Binder, Samira Ait Bensaid, Simon Tollec, Farhat Thabet, Mihail Asavoae and Mathieu Jan
Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

Abstract—Thanks to the emergence of open hardware ini-
tiatives, the exact behavior of the hardware design can be
analyzed and combined with program representations to verify
system-level safety and security properties. However, such formal
verifications require the design of appropriate abstract models
to scale with the complexity of the analyzed computational
systems. In this paper, we compare the different needs when
designing abstract processor models for the evaluation of timing
predictability, a safety property, and for security assessments
when considering fault injections. We also report how the process
of building these abstract processor models could be automated.

Index Terms—Formal Methods, Hardware Models, Safety and
Security Properties

I. INTRODUCTION

The design of complex computational systems, such as
Cyber-Physical Systems (CPSs) or the Internet of Things
(IoT), is facilitated by the emergence of open hardware initia-
tives [2]. Such initiatives propose software-like development
workflows, from complex high-level Hardware Description
Languages (HDLs) [4] down to circuits, while using so-
phisticated compilation chains. These approaches favor the
availability of hardware designs, which can thus be used
as (detailed) golden models, replacing the standard manual
reference where only certain design details are provided.

These CPSs and the IoT are often subjected to safety
and/or security requirements. Ensuring those requirements can
be done with various degrees of confidence, from informal
argumentation to formal verification of properties. When using
the latter approach, the formal verification of software and
hardware parts of a system is generally performed as sepa-
rate activities and focuses mostly on functional correctness.

For example, a binary representation of an application can
be executed with formal Instruction Set Architecture (ISA)
semantics [1], while hardware designs can be composed from
formally proved modules [11]. However, in the former there
is no hardware model while the latter ignores the software
level. The availability of hardware designs, combined with
ISA application representations, enables new possibilities in
the formal verification of safety and security properties at
system level, in particular by integrating non-functional char-
acteristics. We restrict the notion of hardware design to that
of processor design and we consider timing to be the non-
functional characteristic of interest, when dealing with safety
properties.

In this paper, we study how to design formal processor
models so as to prove safety and security properties, such as
timing predictability and assessments of Fault-Injection (FI).
We present several instances of a general workflow, shown
in Fig. 1, to address various needs as designing specialized
abstractions. Due to the availability of a processor design,
different abstract processor models can be derived while
analyzing its code, both data and control paths (i.e., model
generation in Fig. 1). In the case of security assessments under
FI, such an abstraction requires a high temporal and spatial
accuracy on certain parts of the design while non-important
aspects of the system can be removed. Both control and data
path are relevant, since security properties should follow how
instructions (i.e., control) are correctly (or not) executed on
the processor (i.e., data). In the case of timing predictability
evaluations, the datapath is abstracted to black-box, but cycle-
accurate, pipeline stages imposing timing constraints to the

HDL model

generation

control path

data path

control path

for fault injections

for predictability

formal

verif.

data path

binary

analysis properties

Abstract Architecture Model

satisfied

counter-example

ELF

Figure 1: General workflow for the verification of system-level safety and security properties.



instruction flow. The actual system executions capture how a
given binary code is executed on the processor design and
hence, we extract a binary representation (e.g., a control-
flow graph or explicit traces) to represent these sequences
of instructions (i.e., binary analysis in Fig. 1) in the formal
verification step.

The remainder of this paper is organized as follows. Sec-
tion II describes related work on formal modeling of micro-
architectures. In Section III, we show how to design abstract
processor models to assess timing predictability and we apply
this approach over an out-of-order pipeline to detect timing
anomalies. In Section IV, we present how to design abstract
processor models to identify exploitable fault-injection points
and we illustrate this process over a RISC-V processor. In
Section V, we look how to automate the construction of for-
mal hardware models, using underlying hardware compilation
chains. Finally, Section VI concludes the paper.

II. RELATED WORK

The literature around modeling real-time systems often elab-
orates results using a pen and paper approach, without relying
on formal and executable models—necessary in the automatic
verification of properties. There are several exceptions, for
example the framework PROSA [10], which focuses on on
the correctness of schedulability analyses (and not microarchi-
tectural modeling). The SIC pipeline is accompanied with a
formal semantics based on a detailed transition system but that
is not intended to execute in a verification methodology [18].
Even when formal models are assumed for the automatic
verification, few modeling details are provided [15]. Model
checking has been used in order to estimate the worst-case ex-
ecution time (WCET), however on in-order architectures [14],
[31]. A similar approach to ours for verifying a specific safety
property by model checking has already been proposed [3].
In the present work, we nevertheless adopt a more generic
viewpoint, e.g., letting the number of resources be provided
as parameters. A similar architecture template (cf. Fig. 2) is
used in [29], however together with an analytical approach.

Formally verifying FI-related security properties has been
the subject of several works, in general at the ISA level. The
modeling of the program execution has allowed to explore all
the possible effects that certain FIs, such as register corruption,
may have on program execution [7], [37], [16]. Nevertheless,
recent results [17], [26] have shown the interest of considering
the microarchitectural behavior to find FI points ignored by
a strictly ISA-based study. This also helps to limit spurious
vulnerabilities (i.e., false positives) that are not feasible in
practice. However, to the best of our knowledge, no work has
combined formal modeling of hardware and the verification
of FI-related security properties. In the scope of general
security properties, formally verifying hardware/software co-
designs has been the subject of numerous works, such as [34].
However, they mainly focus on functional properties, such as
the correctness of updating ISA-level states of processors [19]
or detecting bugs in specific hardware components synthesized

on FPGA [33]. Note that safety properties can also target func-
tional failures [13], which share similar modeling requirements
with our security-assessment approach.

Generating formal models from hardware designs is an ex-
tensively studied problem [24], [22], [32], [28], [20]. However,
all consider Verilog or VHDL as input hardware languages,
while we start from a high-level design language that poses
different problems when generating abstract processor models
specific to the targeted properties. This is made possible thanks
to the high-level hardware compilation frameworks that are
currently being built (see [4], [39], [36] to cite a few).

III. ABSTRACT PROCESSOR MODELS FOR TIMING
PREDICTABILITY

In this section, we target the verification of non-functional,
safety properties, namely relative to the processor timing
behavior. We first address the general modeling needs for tim-
ing predictability, then we exemplify this modeling approach
through an Out-of-Order (OoO) template, and finally we verify
a particular safety property on the OoO model.

A. Abstract Modeling for Timing Predictability

A suitable model necessarily integrates both hardware and
software features, whose combination characterizes the system
and in particular its non-functional timing characteristics. The
properties are not correlated to the functional complexity
of architectures, which materializes into the datapath. More
precisely, we do not need to consider the functional aspects
beyond their impact on the pipeline-level timing behavior.
Instead, we need to develop an abstract formal model of
the processor focusing on the instruction progress—the soft-
ware characteristics—through the successive pipeline stages of
the processor—the hardware characteristics. On the contrary,
pipeline-level models are required since pipeline stages are
essential to the cycle-accurate timing behavior, which enables
to observe external events, e.g., the full completion of an
instruction.
Our abstraction thus needs to precisely delimit the pipeline
stages from the datapath of the hardware architecture, and to
extract the control signals that impact the timing behavior of
the control path according to the pipeline stalling logic. We
also need to map at any time instructions onto the identified
stages that process them, from the input program—this is
the combination of the hardware and software specifications.
Finally, our model also requires explicitly capturing (absolute)
time, in view of verifying properties.

B. Application to an Out-of-Order Pipeline Template

Hereafter, we exemplify the main features of a suitable model
for the verification of timing-predictability properties, from a
simplified standard OoO-pipeline template, shown in Fig. 2.
We present an overview of this template designed for the de-
tection of timing anomalies [6]. We intend to provide formal-
modeling details below. This template consists of stages that
process instructions in the same order as specified in the
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LD r1, 0(r2) ; A
ADD r3, r1, r4 ; B
ADD r5, r6, r7 ; C
LD r8, (0)r5 ; D
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Figure 2: Representative hardware template of an OoO pipeline based on Tomasulo’s algorithm. The pipeline has NFU functional
units and is able to fetch, decode and commit superscal instructions per cycle from a software specification (program) [6].

program (i.e., IF, ID and COM), namely the in-order front-
end and the in-order back-end, as well as of Functional
Units (FU) associated with Reservation Stations (RS) and a
Reorder-Buffer (ROB) in order to implement Tomasulo’s al-
gorithm [40] for OoO computation. Instructions are dispatched
to the ROB that keeps track of their status (pending/complet-
ed/committed) ( ), which is used to schedule instructions
to the FUs taking into account data dependencies and to
later commit instructions in-order. Results from the FUs are
bypassed to all RSs ( ), which essentially avoids waiting
for the ROB update and allows back-to-back executions.
We encode the template introduced above into a formal
specification (written in the TLA+ modeling and verification
language [25]). In our abstraction, pipeline stages do not have
side effects, such as a write to the memory or the register
file. We consider multi-cycle instructions that thus may cause
stalling. The pipeline timing behavior depends on the number
of units for each stage (cf. superscal and NFU in Fig. 2), on the
program dependencies that clearly restrict OoO computations,
and, when needed, on the mere information of the required
computation clock cycles.
1) Abstract Datapath and Computations: The specification
relies on hardware parameters, i.e., superscal and NFU, which
allow to represent a particular version of the pipeline template
by fixing its abstract datapath. We define a state variable
for each pipeline stage ( IF , ID , RS , FU and COM ),
which notably contains the instructions that are currently pro-
cessed. The specification also relies on a software-execution
parameter, i.e., program , which specifies the input instruction
sequence with increasing addresses1 associated with informa-
tion about the mapping onto the hardware architecture. This
information originates from the analysis of the concrete pro-
gram: each instruction embeds the set of admissible functional
units (as an abstraction of the functional instruction class), as
well as the set of possible latencies related to timing-variable
stages (as an abstraction of the intended computations). The
variables related to a timing-variable stage also contain the
current elapsed latency (i.e., a counter) and the total required
latency in the stage (assigned from the program input pa-
rameter). The memory is not explicitly modeled, but the IF
stage and the FUs instead feature a variable timing behavior,
since for instance they both may perform memory accesses

1We exclude branch instructions, thus focusing on one program path.

resulting either in an instruction/data-cache hit or miss. The
register file is not modeled either, but only the (Read-After-
Write) data dependencies ( ), which are explicitly encoded
in program . The resulting abstract specification allows for
all the behaviors, i.e., series of states, that are concretely
made possible by different initial hardware states (e.g., the
initial cache content), considering the execution of the input
instruction sequence on the target architecture. It remains to
actually make instruction classes progress through the pipeline,
i.e., to encode the control path from the established datapath
and the execution information.

2) Timing-Oriented Modeling of the Control Path: The tem-
plate specification is a transition system (TS) characterized by
an initial-state predicate and a next-state relation built from
actions, namely transition predicates relating the values of
variables in the current state (e.g., x ) to their values in the
next state (x ′). We consider that the pipeline is initially empty
of any instruction (cf. the datapath state variables). Transitions
model the control path, which entails changes in the datapath
state. In order to get a cycle-accurate abstraction of the control
path, a transition models one clock cycle, where each stage
processing is modeled by an action involving a datapath
variable. The additional state variable currCycle is a counter
modeling the absolute time (currCycle ′ = currCycle + 1 as
long as the input sequence has not fully executed). Finally, the
prog state variable is a record monitoring the execution, with a
field (rest) containing the remaining instructions (not fetched
yet) from program and a field (exec) modeling the ROB.
Each of these fields are sequences of instructions, where the
instructions are nested records, e.g., with Booleans completed ,
committed for the instruction status in the ROB.
We now illustrate how the abstract datapath state is used
in order to accurately model the control path, by focusing
on one of the most critical, OoO-specific elements of the
control path. Modeling the scheduling of instructions to FUs
requires selecting the next pending instruction. It relies on the
instruction status in the ROB.

a) Prerequisite Operator: Let us define an operator Exec used
in order to specify the next-state relation. It returns the set of
the ROB indexes of the instructions that will have already
completed in the next cycle.
NxtFUBusy(i)

∆
= FU [i ].currLat < FU [i ].baseLat

Exec
∆
= {i ∈ 1 . . Len(prog .exec) :
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∨ prog .exec[i ].completed

∨ ∃ j ∈ 1 . . NFU : prog .exec[i ].PC = FU [j ].PC

∧ ¬NxtFUBusy(j )}
The operator Exec returns the set of indexes in the range of
the current ROB (first line of the definition) s.t. the relevant
Boolean field (completed ) of the corresponding instructions
(exec[i ]) is set (first disjunct) or a back-to-back execution is
possible (second disjunct). In the latter case, the instruction
itself (PC field) is currently handled by one of the FUs, i.e., it
is the instruction of the j -th element of the FU state variable
(penultimate line), and the instruction in this FU is to leave the
FU in the next cycle (last line). Indeed, the NxtFUBusy(i)
operator uses the information about latencies contained in the
FU variable to determine whether the instruction currently

handled by a given FU should remain in the FU in the
next cycle and, hence, cause a pipeline stalling. This operator
compares the current latency currLat of the i -th FU with the
total required latency baseLat . The operator Exec is used to
update the ROB field exec of prog in each cycle.

b) Scheduling on the FUs: Based on the operator Exec, we
can now specify the very scheduling of instructions to the
FUs. The operator NxtFU (i) returns the instruction that is to
be scheduled to the i -th FU in the next cycle, or a special
instruction empty that models the absence of an instruction:
NxtFU (i)

∆
= IF NxtFUBusy(i) THEN empty

ELSE LET minReady
∆
= Min({x .pc : x ∈

{y ∈ RS [i ] ∪ FURout(i) :

∀ z ∈ y .dep : z ∈ Exec}})IN

IF minReady = 0 THEN empty

ELSE CHOOSE x ∈ RS [i ] ∪ FURout(i) : x .pc = minReady

In the case that the i -th FU does not suffer stalling and
thus may accept a new instruction in the next cycle (i.e.,
NxtFUBusy(i) evaluates false line 1), we define a local
operator minReady (lines 2-4) that determines the address
(pc field from the program input parameter) of the relevant
instruction among the candidate instructions. If this instruction
exists (0 is the conventional address of the empty instruction;
penultimate line), we select (TLA+ CHOOSE operator) the
instruction itself whose address have been determined by the
local operator minReady (last line). minReady implements
an age-ordered policy that selects the oldest instruction whose
all dependencies are satisfied (or will be in the next cycle). It
is based on the assumption that older, preceding instructions
in the program order, have smaller addresses (see above). It is
also based on the operator FURout(i) (not detailed) providing
the set of the currently decoded instructions (in the ID stage)
that have actually been assigned the FU under consideration.
This is trivial when the decoded instructions have only one
admissible FU and it lies on an arbitrary choice otherwise.
Consequently, minReady selects the smallest address (line 2),
from the instructions waiting in the associated RS or directly

from the ID stage2 (line 3), more precisely only those (line 4)
whose all dependencies (dep field assigned from the program
input parameter) will have been computed.
The issued instructions are removed from the RSs in accor-
dance, while the non-issued decoded instructions are added
for a later selection, the whole through simple set-theory
operators. Each entry of the RS variable (one per RS/FU) is
updated under this consideration:
RS ′ = [i ∈ (1 . . N FU ) 7→ ( RS [i ] ∪ FURouting(i))

\ {NxtFU (i)}]
Similarly, the FU variable is updated using the NxtFU (i)
operator for each FU i .

C. Formal Verification of Timing Anomalies

As a case study, we introduce timing anomalies and show how
to detect them in the context of a program execution on our
OoO-pipeline template.
1) Timing Anomalies: Evaluating the timing behavior or pre-
dictability of CPSs is often based on the estimation of the
worst-case execution time (WCET). Several methods allow
to compute such a bound, e.g., testing-based methods [27],
probabilistic methods [9] or static analysis [43]. In any case,
these methods rely on specific assumptions addressing the
absence of exhaustivity, which is impractical for complex de-
signs. Certain execution phenomena, called Timing Anomalies
(TAs), question those assumptions and may thus skew WCET
analyses. As a consequence, it is essential to accurately detect
the occurrences of TAs in the execution of an application on
the target hardware architecture. Common OoO processors are
known to present TAs [42]. We are to illustrate the detection
of counter-intuitive TAs in our model, according to one family
of formal definitions of TAs from the literature [15], [23], [8].
These definitions essentially consider that a TA occurs iff the
(local) commit of a given instruction (A) is performed earlier
in one execution behavior, say α (see Fig. 3), than in another
behavior (β), whereas the commit of a later instruction in the
program (D) is performed earlier in β than in α—in other
words, a timing reversal in commit events.

1 2 3 4 5 6 7 8 9 10 11 12 13

α
A IF ID FU1 COM
B IF ID RS2 FU2 FU2 FU2 COM
C IF ID RS2 RS2 RS2 FU2 FU2 FU2 COM
D IF ID RS1 RS1 RS1 RS1 RS1 RS1 FU1 FU1 FU1 COM

β
A IF ID FU1 FU1 FU1 COM
B IF ID RS2 RS2 RS2 RS2 FU2 FU2 FU2 COM
C IF ID FU2 FU2 FU2 ROB ROB ROB COM
D IF ID RS1 RS1 RS1 FU1 FU1 FU1 ROB COM

•

•

Figure 3: Execution traces showing the assignment to func-
tional units ( / / ) and a reversal of the order of commits
( ) representing a counter-intuitive TA, obtained from the
OoO template and the program of Fig. 2 (with superscal = 2
and NFU = 2) [6].

2A decoded instruction is immediately issued to the FU if it is ready to
execute and the related RS is empty (see in Fig. 2).
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2) Formalization of a TA Property: In order to address
the verification/detection of TAs, we expand the template
specification with a comTime field in the ROB entries that
keeps track of the instant (currCycle) of each commit event
occurring during the execution. Besides, TAs are defined as a
relation between two different executions of the same program.
One behavior of the template specification is related to a single
(arbitrary) execution of the program. We thus need to consider
two behaviors at a time. To do so, we define a self-composition
through two instances of the template specification in a main,
higher-order specification module [5]. All state variables are
duplicated and each instance manipulates its own set. Both
instances share the input parameters, which guarantees that
we consider the same program and the same version of the
architecture datapath. However, they may progress at their own
pace, according to their actual choices of FUs and latencies.
We endow the main specification module with a safety prop-
erty related to the absence of TAs. We use the simplest form
of safety properties, i.e., an invariant, in order to stipulate
that (counter-intuitive) TAs may never occur while executing
the input program on the considered version of the archi-
tecture. We may observe a TA only when both executions
have completed, at least up to a certain instruction. The
operator ProgDone(n) (not detailed here) returns a Boolean
indicating whether both executions have completed (at least)
up to the n-th instruction of the input sequence. The operator
ComTime(ex ,n) returns the value of the comTime field for
the n-th instruction of the (first or second) execution ex . Based
on these operators, we now specify the property expressing the
absence of TAs:
NoTA

∆
= ∀ k ∈ 1 . . Len(Program)− 1 :

∀n ∈ k + 1 . . Len(Program) :

∧ ProgDone(n)

∧ ComTime(1, k) < ComTime(2, k)

=⇒ ComTime(1, n) ≤ ComTime(2, n)

The execution of the input sequence on the underlying archi-
tecture exhibits no TA iff, for any instruction k (line 1) and
for any subsequent instruction n (line 2), it holds that if:
a) the execution is completed up to the considered instructions
in both instances under consideration (line 3) and
b) the (local) commit ordering for instruction k is s.t. the first
instance (e.g., α) precedes the second one (e.g., β) (line 4),
then the commit ordering is the same for the subsequent
instruction n (line 5). Note that both instances are totally
interchangeable. That justifies the fact that we fix a priori the
roles of each in the property, namely their commit ordering.

3) Verification Example: We verify the property NoTA by
model checking. Consequently, the violation of the property
indicates the existence of a TA, and the provided counter-
example is a TA scenario. Let us consider the verification with
superscal = 2, NFU = 2 and program describing the input
sequence of Fig. 2 annotated with the data dependencies ( ),
the set of admissible FUs for the instructions (respectively, the
singletons {1}, {2}, {2} and {1}) and the possible latencies

({1}, i.e., no instruction cache miss,3 for each instruction in
the IF stage, and, respectively, {1, 3}, {3}, {3} and {3} in
the FUs, where A experiences a variable latency). The model
checker signals that the property is violated, thus indicating the
detection of a TA while executing the input program on the
OoO architecture. The reported counter-example is graphically
represented here in Fig. 3.

IV. ABSTRACT PROCESSOR MODELS FOR FAULT
INJECTIONS

In this section, we target the formal verification of security
properties under Fault-Injection (FI) attacks.

A. Modeling Requirements for FI Security Assessment

FIs consist in applying an abnormal physical stress to the
hardware to modify the behavior of the microelectronics. This
leads to the appearance of incorrect values called faults in
the micro-architecture as detailed by Yuce et al. [45]. These
faulty values can be recovered or propagated through the
processor circuit and lead to observable effects at the ISA or
software level. For instance, this can result in the execution of
a casual instruction, reading or writing to a wrong address
in memory [30]. The observable effects of the faults can
then be exploited by an adversary. To comprehensively locate
and characterize FI-based vulnerabilities, developing a formal
model of the processor helps to identify which FI attacks—
targeting the hardware—defeat a given security requirement—
often based on the software. Such a suitable processor model
requires four elements that we now describe.
1) The hardware model of the processor provides a complete
representation of both the combinatorial and sequential logics
constituting a processor design.
2) The software model describes the sequence of instructions,
represented in a binary form and performed on the hardware.
3) The fault model indicates how the physical attack interferes
with the hardware model. A fault model has three dimensions:
temporal, spatial and effect. The temporal dimension specifies
the targeted clock cycles by the attack. The spatial dimension
describes which signals can be modified by the fault. Finally,
the effect dimension defines which values can be applied to
the faulty signals.
4) The security property is necessary to identify if a FI attack
can lead to new vulnerabilities by encoding the expected
software behavior.
Compared to the modeling requirements described in Sec. III,
the assessment of FI attacks requires not only a cycle-accurate
but also a bit-accurate hardware model. This is necessary
to accurately propagate the effects of the faulty signals into
the hardware model. Note that various fault models can be
assessed on formal models involving hardware, software and
security properties. Hereafter, only transient faults that do not
permanently damage the processor are considered—i.e., when
the clock cycle leaves the temporal window specified in the

3Consider an instruction scratchpad for instance.
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Figure 4: CV32E40P block diagram.
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Figure 5: Modeling steps for FI vulnerability evaluation.

fault model, the targeted signals are no longer under the control
of the fault model.

B. FI-Assessment Process of an In-Order RISC-V Processor

We now illustrate how to implement these four elements over
an in-order RISC-V processor and simplify them to formally
verify FI-based vulnerability.

1) Hardware Design: The CV32E40P is a 32-bit processor
intended for light and embedded use. It has a 4-stage pipeline
(IF, ID, EX, WB) and the RTL implementation in the Sys-
temVerilog language is provided by the OpenHW Group [35].
Fig. 4 shows the block diagram containing the main mod-
ules and their interconnections. From the hardware-design
description, a formal Satisfiability Modulo Theories (SMT)
model is produced by relying on the open-source synthesis tool
Yosys [44]. This model is represented as a classical transition
system and is illustrated (in green) in Fig. 5a. Each state of this
transition system contains the values of the memory elements
included in the micro-architecture while the transitions are
governed by the combinatorial logic of the design.

2) Specified Software: Fig. 5b shows (in blue) how the spec-
ified program is used to restrict the model to some execution
paths. Since the program behavior may depend on the input
data, multiple execution paths can be explored in the model
through the use of symbolic variables.

Listing 1: Example of a (bit-reset) fault model at RTL level.
1 state 10:90
2 assume [fw_mux] bit-reset
3 count 1

3) Fault Model: By injecting faults into the system, the
program behaves differently over the micro-architecture. Such
a fault injection is specified into the formal model by defining
its temporal and spatial location and its effect. As an example,
Listing 1 describes a bit-reset fault model, where the fw
mux bits are set to 0 (line 2) between cycles 10 and 90
(line 1). count 1 (line 3) specifies that only one fault
injection is allowed on this time interval. Fig. 5c illustrates
the faulty behaviors by adding (purple) transitions into the
model towards the (purple) states, which were previously not
reachable by the program or not allowed by the hardware.
4) Security Property: Security requirements can be defined
by expressing a property on the states of the model. Fig. 5d
illustrates this additional information by considering a (red)
state to be faulty. A model checker is then used to verify if the
property holds or is violated, and, in this latter case, counter-
example(s) are provided. Thereafter, the security property
is intended to control the instructions passing through the
pipeline. This analysis ensures that secure data are never
accessed or that a given instruction, whose semantics indicate
successful authentication at the program level for instance, is
never executed.
Next, we present several simplifications to efficiently handle
the model that we have previously described.
a) Hardware Reduction: The security property only checks
the values taken by a restricted number of state variables.
The hardware model can thus be reduced by keeping only
the necessary ones [12]. Whether variables are useful is
determined iteratively by observing if they have an influence
on the property to be verified. When performed manually, this
technique can also remove entire modules from a hardware
design if they are not involved in the faulty behaviors of
the program. Regarding the CV32E40P use case, the Control
and Status Register (CSR) module—which manages privileged
execution modes [41], performance statistics, and interruption
and debugging mechanisms—can safely be removed as its
behavior does not interfere with the specified security prop-
erty. Table I shows the proportion of variables saved in the
formal model of the CV32E40P processor when applying this
optimization. Even if the CSR does not represent a large part
of the netlist, its deletion considerably reduces the model size
because of the memory features that it contains.
The model can be further simplified by adding constraints
on the environment. The CV32E40P micro-architecture has
memory elements (e.g., flip-flops providing a large range of
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Variables Netlist Formal Model
Wire bits Logic cells of which Flip-Flops SMT-functions

Quantity 11903 374 18 110033
Proportion 6.6% 4.5% 10% 32%

Table I: Number of variables saved both at the RTL (Netlist)
and formal model levels when removing the CSR module.

initial states) that we can constrain. External modules can
also interact with the processor via interrupts or debugging
signals. Since these demands are not part of the model but
can influence the security property, they must be controlled.
b) Software Reduction: At the software level, some instruc-
tions are not relevant regarding the security property and
unused functions are embedded within the program due to
the library linking process. A static analysis allows us to
considerably limit the size of the input program used for
the software model by removing these extra details. We
restricted our models to execute an assembly program with
200 instructions—possibly with loops and unconstrained data
input. This helps to reduce the number of states to be explored
and their size in the formal model.

C. Formal Verification of FI-based Vulnerability

We now illustrate the capability of our abstract formal model
to detect hardware vulnerabilities when verifying a specific
security property. Listing 2 shows a security property that
forbids the execution of the instruction, 0xfd5ff06f in
hexadecimal, allowing a secure authentication. The program
does not normally allow this behavior, but it can be enabled
by FIs.

Listing 2: An example of a security property.
assert (distinct [instr_id] 0xfd5ff06f)

Our fault model consists of a single bit-flip (bit-inversion)
attack during one clock cycle of the program execution. We
arbitrarily restrict the exploration of FI locations to the signals
contained in the ID stage.
Model checking identifies several injection points on the
micro-architecture, all due to the forwarding mechanism.
Laurent et al. already point out [26] that it is possible to
modify the forwarding control signal in order to recover values
from EX and WB stages. These values can then be used as
new operands, allowing, for example, to fool the comparison
instructions. By modifying the forwarding behavior of the
CV32E40P (depicted in Fig. 4 by a multiplexer in the ID
stage) with a simple bit flip, the program execution reaches
the vulnerable instruction indicated in Listing 2.

V. TOWARDS AUTOMATED EXTRACTION OF ABSTRACT
PROCESSOR MODELS

The formal models described in the previous sections are all
based on the accurate representation of specific details of the
processor microarchitecture. Ideally, these models should be
automatically derived from HDL processor designs. In this
section, we present how we can take advantage of hardware

compilation frameworks to ease the generation of abstract
pipeline-stage-level models.

A. Hardware Compilation Framework: Chisel/FIRRTL

High-level design languages and the associated compilation
chains enable the use of highly parameterized generators,
domain-specific language constructs and advance module sys-
tems to facilitate the hardware design [4], [39], [36]. These
compilation chains rely on several transformation passes to
optimize the HDL (Verilog or VHDL) code that they generate
for a later use as input in classical commercial (FPGA or
ASIC) hardware-design flows. As in software compilers, hard-
ware designers can also insert specific transformation passes
in those compilation chains to manipulate the designs. This
enables to deploy, within these chains, analyses to automati-
cally construct abstract processor models. For instance, when
targeting timing predictability, a transformation would mainly
focus on the sequential logic to generate pipeline-level models,
while for FI the whole design would initially be extracted,
before abstractions are applied over the generated models.
We select the Chisel/FIRRTL hardware-compilation
toolchain [4], [21] to illustrate this idea.Chisel (Constructing
Hardware In a Scala Embedded Language) [4] is an open-
source hardware-construction Domain-Specific Language
(DSL) embedded in the Scala programming language. Adding
hardware construction primitives to the Scala language allows
the designers to write parameterized circuit generators, while
using object-oriented and functional programming features to
design circuits. Chisel emits synthesizable Verilog through an
intermediate representation called FIRRTL [21], which stands
for Flexible Intermediate Representation for RTL. Chisel thus
constitutes the frontend part of the toolchain, FIRRTL, the
middle-end from which all Scala-related hardware generators
have been executed, and finally Verilog as a backend.
FIRRTL comes with different Intermediate Representations
(IR), called forms. Each form uses a smaller, stricter and
simpler subset of the Chisel language features and defines
different transformations to generate the next (lower) form.
Compiling FIRRTL to Verilog is implemented as a set of
passes that implement optimizations, such as constant folding
or dead-code elimination. A so-called high form supports the
Chisel high-level constructs such as vector types, bundle types,
and conditional statements. These constructs are replaced by
a set of low-level features, resembling a structured netlist that
simplifies its translation to Verilog, in the lowest form named
low form. Which one of these forms is the most appropriate
one to generate abstract processor models? A lower form
ensures an easier equivalence to the actual pipeline circuits
and is thus mandatory for fault-injection assessment (Sec. IV),
while a higher-level form facilitates the integration of complex
properties such as timing predictability (Sec. III).
We now illustrate these differences in the high and low forms,
through a very simple example presented by Listing 3. This
example defines two registers, reg1 and reg2, at lines
1 and 2. Both registers are initialized on reset using the
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RegInit construct. Note that the reset and clock signals
are implicit in Chisel (but can be explicit in the FIRRTL
forms). Finally, both registers are updated at lines 3 and 4,
but for register reg2 this update depends on the value of the
cond variable (actual value not defined to simplify) and is
thus performed within a Chisel when construct (line 4).

Listing 3: A simple Chisel code.
1 val reg1 = RegInit(0.U(4.W))
2 val reg2 = RegInit(0.U(4.W))
3 reg1 := value
4 when (cond) { reg2 := reg1 }

Listings 4 and 5 describe, respectively, the FIRRTL high form
and low form obtained from the Chisel Listing 3.

Listing 4: FIRRTL high form from Listing 3.
1 reg reg1 : UInt<4>, clock with :
2 reset => (reset, UInt<4>("h0"))
3 reg reg2 : UInt<4>, clock with :
4 reset => (reset, UInt<4>("h0"))
5 reg1 <=value
6 when cond :
7 reg2 <=reg1

Listing 5: FIRRTL low form from Listing 3.
1 reg reg1 : UInt<4>, clock with :
2 reset => (UInt<1>("h0"), reg1)
3 reg reg2 : UInt<4>, clock with :
4 reset => (UInt<1>("h0"), reg2)
5 node _GEN_0 = mux(cond, reg1, reg2)
6 reg1 <=mux(reset, UInt<4>("h0"), value)
7 reg2 <=mux(reset, UInt<4>("h0"), _GEN_0)

It can be noticed that the when statement remains in the high
form (line 6, Listing 4), while it is translated into a multiplexer
in the low form (line 5, Listing 5). Note that in Chisel, a condi-
tion can be translated into a set of multiplexers to implement
a multi-variable condition. Directly translating a high form
into a formal-specification language may thus discard these
multiplexers, which can be source points for a fault-injection
attack as presented in Sec. IV. Such a statement can however
be safely translated into a formal statement when targeting
a pipeline-stage abstract model, such as the one shown for
the detection of TAs (Sec. III). This demonstrates the need
to develop custom FIRRTL passes aimed at automatically
generating abstract models, against the targeted properties.

B. Extracting Abstract Pipeline Models

The FIRRTL design is internally represented with an abstract-
syntax-tree (AST) structure, where passes recursively visit
nested elements to manipulate the AST. The FIRRTL AST
consists of IR nodes represented by objects, each of which is
a subclass of the following IR abstract classes: circuit, module,
port, statement, expression or type. The registers and when-
condition nodes, shown on the previous listings, are in the
statement class. Each update of a register is represented by a
connect node that is also part of the statement class.

We now present a custom pass that currently targets the
automatic generation of abstract pipeline models specific to
safety properties, as presented in Sec. III. This pass analyzes
both the combinatorial and sequential logic of the pipeline
datapaths in their high-form FIRRTL representations. It pro-
duces the pipeline stages, their order (thus forward edges
between stages) and the backward edges between stages. Note
that backward edges do not only correspond to the processor
data-forwarding mechanisms between stages, e.g., classically
from the write-back/memory to the execute stages, but also
for instance simply the update of the program counter.
To achieve this, Chisel registers must first be identified at
the FIRRTL level and their dependencies analyzed.Then,
assigning a pipeline stage to the identified registers starts
from an arbitrary specified4 register, to be placed in the
first pipeline stage. Two successive explorations of the set
of identified registers are performed. The first exploration
aims to assign pipeline stages based on two rules relying on
register dependencies: 1) when only a single forward link
between a source and a destination register exists, assign
to the destination register the immediately following stage
of the source register, and 2) when a destination register
has several (already assigned) source registers, assign to the
destination register the immediately following stage of the
register having the minimal depth in the pipeline. This latter
rule detects any forwarding mechanism within a pipeline. The
second exploration relies on a heuristic based on the idea that
a designer groups the update of register located in a same
pipeline stage within a same conditional block.

C. Case Study: a RISC-V-based Processor

We now illustrate how our pass analyzes a RISC-V processor,
called KyogenRV [38], so as to extract an abstract pipeline
model. KyogenRV is an open-source 5-stage pipeline pro-
cessor (IF, ID, EX, MEM, WB) targeting Intel FPGAs and
developed for academic purposes. We focus on the top module
of the pipeline, which has 60 registers. We specify the if
pc register to our pass as being located in the first stage
of this pipeline. Our pass then automatically computes the
dependencies between these registers, which are made of 46
edges, assigns a pipeline stage to each register, and outputs the
abstract pipeline model. Fig. 6 shows a subset of the identified
registers and their dependencies (omitting the combinatorial
circuitry). Registers are represented by blue boxes, while red
boxes represents Chisel instances of modules embedded within
the currently analyzed Chisel module. Our pass correctly
identifies the 5 stages, with forwarding mechanisms from the
WB and the MEM to the EX stage. On the Fig. 6, the abstract
pipeline model corresponds to the dashed boxes only, one for
each stage, and associated edges are not shown for readability
reason. It is thus similar to the one used for the detection of
TAs (Sec. III) with: 1) a single forward edge kept between
each stage, and 2) the green edges (potentially merged) im-
plementing the forwarding mechanism corresponding to the

4By the hardware designer for instance.

8



if pc

if npc

Fetch

id pc

id npc

id inst

Write-Back

ex pc

ex npc

ex inst

ex reg waddrIDModule

ex rs

mem pc

mem npc

mem alu out

mem reg waddr

mem rs

ALU

wb npc

wb alu out

wb reg waddr

MemoryExecuteDecode

IF ID EX
MEM

WB

Figure 6: Representation of the extracted registers and (part) of the abstract pipeline model of the KyogenRV processor.

dashed edge ( ) of Fig. 2, which enables a back-to-back
execution of instructions over the FUS.
Listing 6 presents a subset of the data forwarding implemented
from the WB and MEM towards the EX stage. The Chisel
wire ex reg rs1 bypass is updated from the output of the
mem alu out register (line 5), located in the MEM stage,
or from the wb alu out register (line 6), located in the
WB stage, through the Chisel MuxCase construction. In the
FIRRTL low form the MuxCase is translated into a cascade of
multiplexers. This forwarding corresponds to the green arrows,
shown in Fig. 6, from the registers wb alu out and mem
alu out to the input of the ALU red box. The other green
arrow, between the register wb reg waddr and the input of
the ALU, is part of the check to detect the need for forwarding
a value (not shown in Listing 6).

Listing 6: Forwarding in KyogenRV 5-stage.
1 val ex_reg_rs1_bypass = Wire(UInt(32.W))
2
3 /* Ci, i = 1..2 - conjuncts of write enable

↪→ and selection signals */
4 ex_reg_rs1_bypass := MuxCase(ex_rs(0), Seq(
5 (ex_reg_raddr(0) === mem_reg_waddr && C1)

↪→ → mem_alu_out
6 (ex_reg_raddr(0) === wb_reg_waddr && C2)

↪→ → wb_alu_out))
7 ...
8 when (C4 /* no stalling condition */) {
9 mem_rs(0) := ex_reg_rs1_bypass

10 }

VI. CONCLUSION AND FUTURE WORK

We have presented the various needs in the formal modeling
of pipeline processors to verify both safety and security
properties of CPS or IoT systems. The safety property that we

consider (detection of timing anomalies) requires an abstract
pipeline model where only stages are visible and whose timing
behavior is accurate, while the security property (identification
of fault-injection points) requires a cycle- and bit-accurate
model where useless either software or hardware parts of the
considered system have been removed. Finally, we have shown
how a high-level hardware compilation toolchain can ease the
adaptation of automatically generated formal abstract models
to such safety and security properties. We have reported on a
custom pass to generate an abstract pipeline model (and to be
used for the detection of timing anomalies).
As future work, we are currently investigating how to expand
the definition of timing anomalies to other hardware resources
such as caches or speculation mechanisms and verify the
needs in formal modeling of these elements. We also plan to
implement various abstraction strategies of the formal models
to speedup the fault-injection assessment. Finally, we plan to
expand our pass to be able to generate the different formal
models needed for both the safety and security properties that
we consider.
Acknowledgments. The authors would like to thanks Claire
Pagetti from ONERA, France and to the anonymous reviewers
for providing valuable feedback which helped us improve this
work.
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