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Extended abstract 
 

The VXP is a hardware accelerator designed at CEA-List and designed to support extended precision 

for the resolution of large, ill-conditioned scientific computing problems [1].  Its primary target is to 

accelerate the convergence of Krylov subspace solvers and eigensolvers, which are the dominant 

linear kernels of modern applications in computational Fluidics, structure calculation, etc. 

The VXP is specifically tailored for accurate floating-point computation using arbitrary length 

fractional parts (up to 512 bits).  It supports IEEE 754 extendable format in memory with byte-aligned 

data format to optimize memory usage and computing efficiency.  The VXP core is built upon a 64 

bits RISC V processor which has been modified to feature an extended and variable precision 

Floating-Point Unit (FPU), a custom Load-and-Store Unit (LSU) and internal registers for up to 512 bits 

of mantissa and 18 bits of exponent floating-point working registers. 

 The VXP has been implemented on Silicon as part of EPI system [2] . Nevertheless, since the silicon 

not yet available (it is expected for Fall’23), this preliminary study has been realized with the 

prototype versions based on 1/ FPGA Xilinx Virtex UltraScale+ board and 2/ hardware emulation.  

The runtime environment is the Real-Time Executive for Multiprocessor Systems (RTEMS rev 5.1). 

The classical BLAS functions such as gemv, dot, axpy are implemented for extended precision using 

calls to assembly. VXPs are meant for running in parallel, but this has not been considered in this 

study: all results are obtained with serial implementation involving only one core. The experiments 

reported here are coded in C/C++ with extended types. Compilation currently uses a modified 

version of gcc. 

The present work evaluates the performance impact of extended precision 1/ on generic vector-

vector, matrix-vector and matrix-matrix operations, 2/ on commonly used Krylov-subspace solvers, 

namely Jacobi preconditioned Conjugate Gradient (PCG) and Bi-Conjugate Gradient (BiCG) and 3/ on 

the “periodic reorthogonalization” variant of Lanczos tridiagonalization, which is used for eigen-

decomposition. The study involves both dense and sparse matrices. For sparse matrices, we select a 

subset the Florida sparse Matrix Collection [3] [4], whose actual diagonal size range between 4K and 

20K, in order to comply with the limits of our prototyping platform. Otherwise, we use the “ransvd” 

method [5] to generate pseudo-random dense matrices. 

From this set of matrices, we perform two series of evaluations:  



1. Iteration count: Using the same library on the same VXP platform, we compare the convergence, 

i.e. the number of iterations necessary for reaching a predefined error tolerance, between 

executions in different precisions (including standard double format). This metric is valid for linear 

solvers, eg PCG and BiCG. For tridiagonalization, we instead measure the number of necessary 

reorthogonalizations. 

2. Cycle count: We measure the execution times of the linear solvers, in clock cycles, using our 

complete HW/SW, and compared them to “equivalent” kernels running with the same precision 

on a MPFR [6] software emulation on the same platform.  

We observe up to an 8X improvements on kernel iteration count, and up to a 40 % improvement on 

latency. The count is predictable for dense matrices, and varies with structure for sparse matrices. 

Nevertheless, the main benefit is the stability gained with the precision. It makes it possible to 

resolve larger and ill-conditioned systems without costly compensating techniques. 
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