
HAL Id: cea-04487791
https://cea.hal.science/cea-04487791

Submitted on 4 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Variable Precision Processor VXP: preliminary
performance results on generic Krylov-based solvers

Yves Durand, Jérome Fereyre, César Fuguet Tortolero

To cite this version:
Yves Durand, Jérome Fereyre, César Fuguet Tortolero. The Variable Precision Processor VXP: pre-
liminary performance results on generic Krylov-based solvers. Colloque Sparse Days 2023, Jun 2023,
Toulouse, France. 2023. �cea-04487791�

https://cea.hal.science/cea-04487791
https://hal.archives-ouvertes.fr

The Variable eXtended
Precision Accelerator VXP
preliminary performance results on generic Krylov-based
solvers

Yves Durand, Jérôme Fereyre, Eric Guthmuller, CEA
yves.durand@cea.fr

Colloque Sparse Days 2023 19 – 20 Juin 2023

• Work initiated in 2016 at CEA Grenoble

• Original motivations :
• Accelerate convergence of linear solvers for structural modeling, computational physics
• Improve accuracy in computational geometry
•  provide hardware support for 1/ arbitrary extended precision and 2/ interval arithmetics

• Current focus is arbitrary precision applied to Krylov-based iterative solvers
• Goal : Improve stability of short-recurrence Krylov solvers / eigensolvers
• Application to large size sparse matrices, dense vectors

• Sponsors
• Initial support from ANR Imprenum project (With INSA Lyon and University Grenoble Alpes)
• Current support with EPI (European Processor Initiative) https://www.european-processor-

initiative.eu/

June 19&20,
2023Yves Durand Sparse Days 2023 2

VXP: Project Context

https://www.european-processor-initiative.eu/

June 19&20,
2023Yves Durand Sparse Days 2023 3

VXP: Motivation

Yves DURAND | May 20, 2022

• The focus is on linear solvers/eigensolvers which may take 80% of computing time on
computing nodes

• Using extended precision (64-512 bits of mantissa) significantly improves convergence
• and avoids/simplifies numerical pre-processing (preconditionning, orthogonalization)

• However software-based support for extended precision is not efficient
■ Memory pressure too high

• VXP provides native extended precision in hardware with low performance overhead

discretization
Algebraic

manipulation

Algebraic

resolution

𝐴𝑥 = 𝑏

𝐴𝑥 = 𝜆𝑥
𝐴 = 𝑄 × 𝑆 × 𝑄𝑡

min
𝑥

𝐵 − 𝐴 𝑥𝑘

A

b

Post

processing

LINEAR
SOLVER

1. We are dealing with the working precision, i.e. the precision of intermediate floating point
computations (aka 𝜖𝑚 = 21−𝑝𝑟𝑒𝑐)
• and not with data precision
• In numerical terms, working precision is linked the relative representation error, bounded

by u (ulp) or  (error analysis)

• The distance of representation ෝ𝑥 to real 𝑥 is bounded:
𝑥− ො𝑥

𝑥
< 𝑢

2. Precision applies to all floating point arithmetics (FP) numbers both
• Inside the processor,
• And in memory, using IEEE standard extendable format.

June 19&20,
2023Yves Durand Sparse Days 2023 4

Two details of importance…

• The VXP resides on the compute
node, and shares the local
memory (DRAM, Caches) with
the local processor

June 19&20,
2023Yves Durand Sparse Days 2023 5

VXP in Computing Infrastructure

Problem
matrix

(RO, std
IEEE)

Working
structures

(RW,
Variable

precision)

Compute node memory

Compute node

GPCPU

VRP

Problem
matrix

(RO, std
IEEE)

Working
structures

(RW,
Variable

precision)

Compute node memory

Compute node

GPCPU

VRP

Global
Computing

Infrastructure

Problem
formulation,
decomposition

Problem
matrix

(RO, std IEEE)

Working
structures

(RW, Variable
Extended

precision)

Compute node memory

Compute node

GPCPU
VXP

Sub-
Problem
algebraic
resolution

June 19&20,
2023Yves Durand Sparse Days 2023 6

Differences with a mainstream processor
Variable-Precision Core (VRP)

Instruction Queue

Decode

Issue

VRP
Regfile

ScoreBoar
d

Integer
Regfile

Execute

FPU LSU LSUALU

Variable
Precision

Integer

L1
D-Cache

(32 KB)

L1
I-Cache
(16 KB)

No
C

• 64 bits RISC-V processor based on « Ariane »
from ETH Zürich

• ISA extensions for VP operations
• L&S Unit optimized for unaligned transfers
• Pipeline is optimized for (dense) Matrix-vector

multiplication with 192 bit of precision








VXP is a standalone processor used as accelerator for linear kernels

June 19&20,
2023Yves Durand Sparse Days 2023 7

VXP: Current Status

VRP
Accelerator

XP

STX
0

(ETHZ/FHG)

VRP
3

VRP
2

VRP
1

VRP
0

Dual core ARM CPU
(36 tiles)

SYSTEM LEVEL CACHE
(64 tiles)

XP

STX
1

(ETHZ/FHG)

VRP
7

VRP
6

VRP
5

VRP
4

XP XP

RHEA
TSMC7

Chips available on Q2 2024
EPI Accelerator TestChip

GF22FDX
Chips available on Q2 2023

FPGA
Prototype
(In use)

EPACTC 1.5 (VXP features)
Up to 512 bits of significand

IEEE extendable memory format

8 dynamic data formats

Indexed load/store operations

High-Throughput memory subsystem

Clock frequency: 1.2 GHz

RHEA (VXP features)

Same features that in EPACTC 1.5

Two tiles with 4 VXP cores each

Clock frequency: 1.4 GHz

FPGA prototype

2 VRP cores

Clock frequency: 83 MHz

1. Key operation is the matrix-vector multiplication 𝑦 = 𝐴 × 𝑥 (SparsexDense,
DensexDense): we measure its latency in terms of MAC/cycle for different precisions

2. global performance of reference linear solvers (𝐴 × 𝑥 = 𝑏), e.g. PCG, BiCG :
1. Comparaison of Convergence speed for different precisions.

Expressed In terms of number of iterations to reach a predefined error threshold
(tolerance)

2. global latency (measured in clock cycles) with different precisions, same tolerance
and same problems

June 19&20,
2023Yves Durand Sparse Days 2023 8

« benchmarking » the VXP 1/2

• Problem matrix A are dense/sparse, in double (64b) format

• Vectors b are dense, double vectors

• Problems are taken from
• classical benchmarks in SuiteSparse Matrix Collection

https://sparse.tamu.edu/

• Synthetic random dense matrices using « ransvd » method [Higham 2002] for
dense matrices

• Synthetic sparse matrices using Saad’s finite difference scheme −Δu + γx ˙∇u + βu
= f [Chen 2016]

June 19&20,
2023Yves Durand Sparse Days 2023 9

« benchmarking » the VXP 2/2

https://sparse.tamu.edu/

June 19&20,
2023Yves Durand Sparse Days 2023 10

Matrix-vector multiplication latency 1/2

Latency of a single-core dense MV
operation of size 1024x1024 in extended
precision with varying precisions.
• Different lines represent different DRAM

latencies
• Higher curves are measured without

hardware prefetcher
• Bottom-level curves (almost identical)

represent measure with the hardware
prefetcher activated.

 The prefetcher is key for masking
cache miss latency

June 19&20,
2023Yves Durand Sparse Days 2023 11

Matrix-vector multiplication latency 1/2

IPC: MAC Operation per cycle of a MV
operation of size 1024x1024 in extended
precision with varying precisions.
• Different lines represent different DRAM

latencies
• bottom curves are measured without

hardware prefetcher
• upper curve is measured with the

hardware prefetcher activated.

• With prefetcher, MAC IPC ranges from
0.21 (in double) to 0.10 (for 499 bits of
mantissa)  factor of 2

• 2 main cases
• Preconditionned Conjugate Gradient on symmetric real matrices

• Random denses matrices: non preconditionner
• Sparse, real cases matrices : Jacobi preconditionner

• Biconjugate Gradient on unsymmetric matrices
• Sparse, real and synthetic cases, with/without preconditionner

• Bonus: lanczos tri-diagonalization with periodic re-orthogonalization
• Precision alone is not sufficient, Re-orthogonalization necessary
• New criterion: number of re-orthogonalizations

June 19&20,
2023Yves Durand Sparse Days 2023 12

Measuring precision impact & performance on solvers

June 19&20,
2023Yves Durand Sparse Days 2023 13

CG on synthetic dense matrices : iteration count

• Tolerance is set to 10-12

• Value below 0 means that the run did not converge
• Conclusions
1. Iteration count decreases consequently with precision starting at 128
2. Effect of precision is more visible than with sparse matrices

The Diagram below represents iteration count of kernel CG (conjugate Gradient) running
on random symmetric matrices with controlled eigenvalue profile (cliff)
Bars correspond to different precisions (e.g. 53/128/256/400/512)

June 19&20,
2023Yves Durand Sparse Days 2023 14

CG on synthetic dense matrices : cycle count
(values from June, 2023)

• Tolerance is set to 10-12

• Value are normalized against precision 53 (double)
• Conclusions
1. Sweet spot for latency around precision 128
2. Latency is reduced by a factor of 4

The Diagram below represents cycle count of kernel CG (conjugate Gradient) running on
random symmetric matrices with controlled eigenvalue profile (cliff)
Bars correspond to different precisions (e.g. 53/128/256/400/512)

June 19&20,
2023Yves Durand Sparse Days 2023 15

Preconditionned CG on Matrix Market sparse matrices :
iteration count
• The Diagram below represents iteration count of kernel PCG (conjugate Gradient, Jacobi preconditionning)

running on MatrixMarket matrices Bars correspond to different precisions (e.g. 53/128/256/400)

• Tolerance is set to 10-12 , Value below 0 means that the run did not converge

• No real improvement when iteration count is already close to the diagonal size → not
surprising

• Extended precision improves the iteration count when it is >> diagonal size

Size 15k x 15k Size 12k
Size 2.4k

Size 3k

Size 9k Size 5.5k

Size 5.5k

Conclusion:
• No decisive latency improvement for small matrices, better with larger (>5K)
• However, these measures do not activate prefetching : presumably, memory access latencies

dominate arithmetic latencies
 we are revisiting our spMV routines to minimize/anticipate caches misses

June 19&20,
2023Yves Durand Sparse Days 2023 16

Preconditionned CG on Matrix Market sparse matrices :
cycle count

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

140,00%

160,00%

180,00%

bcsstk17 bcsstk18 ex10 nasa2910 nd3k s2rmq4m1 s3rmt3m3

PCG : cycles count (normalized) no prefetch

53 128 256 400 512

The Diagram below represents iteration count of kernel BiCG (Biconjugate Gradient) running
on matrices from the SuiteSparse collection

June 19&20,
2023Yves Durand Sparse Days 2023 17

BiCG on Matrix Market matrices : iteration count

• Tolerance is set to 10-5

• Value below 0 means that the run did not converge
• Conclusions
1. In several cases, convergence is not attained with precision 53 (double) but works at higher

precisions : bp_1000, gre_1107, Impcol_a, lns__131
2. Iteration count decreases consequently with precision

Size 4k Size 1k

Size 3.3k Size 3.3k

June 19&20,
2023Yves Durand Sparse Days 2023 18

Lanczos tridiagonalization on synthetic dense
matrices

Conclusion:
• Using 256/400 bits mantissas saves a lot

of reorthogonalization work
• Besides, the orthogonality estimator used

here is consistent with actual
orthogonality computation

• Lanczos tridiagonalization is the first step of eigendecomposition → key numerical technique

• It systematically requires reorthogonalization : we use the Periodic reorthogonalization algorithm from
Simon (aka PO TD) [Simon 2000]

• This algorithm estimates the loss of orthogonality (𝜔𝑖,𝑗= 𝑞𝑖
′𝑞𝑗) at each step j and performs a partial

reorthogonalisation when 𝑚𝑎𝑥(𝜔𝑖,𝑗) ≥ 𝜖𝑝

• The Diagram below represents reorthogonalization counts of kernel PO TD running on dense matrices

• Bars correspond to different precisions (e.g. 53//256/512)

June 19&20,
2023Yves Durand Sparse Days 2023 19

Lanczos tridiagonalization on SparseMatrix matrices

Conclusion:
• Using 256/400 bits mantissas saves a lot

of reorthogonalization work
• Besides, the orthogonality estimator used

here is not really reliable for full range of
eigenvalues of sparse matrices

• Lanczos tridiagonalization is the first step of eigendecomposition → key numerical technique

• It systematically requires reorthogonalization : we use the Periodic reorthogonalization algorithm from
Simon (aka PO TD)

• This algorithm estimates the loss of orthogonality (𝜔𝑖,𝑗= 𝑞𝑖
′𝑞𝑗) at each step j and performs a partial

reorthogonalisation when 𝑚𝑎𝑥(𝜔𝑖,𝑗) ≥ 𝜖𝑝

• The Diagram below represents reorthogonalization counts of kernel PO TD running on SparseMatrix
matrices

• Bars correspond to different precisions (e.g. 53//256/512)

• Variable Extended Precision gives opportunities for using simpler algorithms,
improves convergence →improve efficiency
• Standard FP format exists already, Numerical analysis background is there
• Surpringly, BiCG benefits from precision, becomes reliable  our prefered

choice for real-life cases (up to 20 K size so far)
• Extended precision does not replace usual techniques

• It may simplify preconditionning
• It unlocks the door for larger (eigen)problem sizes (future work)

• « Effective » means usable
• consistent support in memory, reasonably fast execution
• … and full software support

• Our work proves the feasibility in silicon
• Fast Arithmetics for up to 512(/1024) bits of mantissa
• Effective support in memory for unaligned FP arrays

June 19&20,
2023Yves Durand Sparse Days 2023 20

Conclusions

• [Durand 2022] Y. Durand, E. Guthmuller, C. Fuguet, J. Fereyre, A. Bocco, and R. Alidori.
Accelerating variants of the conjugate gradient with the variable precision processor. In
2022 IEEE 29th Symposium on Computer Arithmetic (ARITH)

• [Trevisan 2021] Tiago Trevisan Jost, Yves Durand, Christian Fabre, Albert Cohen, and Frédéric
Petrot. Seamless compiler integration of variable precision floating-point arithmetic. In 2021
IEEE/ACM International Symposium on Code Generation and Optimization (CGO)

• [Higham 2002] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms.
Society for Industrial and Applied Mathematics, second edition, 2002.

• [Chen 2016] Jie Chen, Lois C. Mcinnes, and Hong Zhang. Analysis and practical use of
flexible bicgstab. J. Sci. Comput., 68(2):803–825, aug 2016.

• [Ruhe 1999] Bai, Demmel, Dongarra. 1999. Templates for the Solution of Algebraic
Eigenvalue Problems: a Practical Guide (Draft, May 21, 1999). (Draft, May 21, 1999).

June 19&20,
2023Yves Durand Sparse Days 2023 21

references

Thanks for your attention !

Contact:
Yves.durand@cea.fr

• Mixed precision combines different fixed sizes representations, e.g. floats (32 bits) and doubles
(64 bits)
• May also alternatively be done with double / quad

• Mixed precision for iterative refinement:
• Mixed precision fits well for iterative refinement methods:
• Inner Solve/factorization done in lower precision
• Residual computation and correction done in higher precision

• However, the solve/ factorization is usually a direct method (eg a LU)  cost in O(n2) in memory
even if matrix is sparse

• Alternatively, Krylov method may be used as solver (but not in mixed precision)
• (cf Mixed Precision Iterative Refinement Methods for Linear Systems: Convergence Analysis

Based on Krylov Subspace Methods, Hartwig Anzt, Vincent Heuveline & Björn Rocker)

What is the difference between arbitrary extended
precision and « mixed precision » ?

June 19&20,
2023Yves Durand Sparse Days 2023 23

We generate a random matrix M by a simple
multiplication M=σ.U ×D×V^T (U = V for symmetric
matrices) where

• σ is a scaling factor,

• U and V random orthonormal matrices and

• D a diagonal matrix whose eigenvalues follow a
specific distribution.

Specifically, we use two distributions “cliff” (resp.
“step”) which consist in three abutted segments with
slopes 0:1; 10; 0:1 (resp. 10, 0.1, 10).

June 19&20,
2023Yves Durand Sparse Days 2023 24

Profiles for the ransvd method

forced eigenvalues, sorted in decreasing order, for a 600x600
matrix. Scaling is defined arbitrarily.

June 19&20,
2023Yves Durand Sparse Days 2023 25

VXP software stack

// A*x = b
int cg_vp(int precision , int Ndiag,

VPFloatArray & x, double *A,
VPFloatArra y b, double tolerance) {

…
while (relerror < tolerance) {

…

VBLAS::vgemv(precision, n, n, A, p_k, Ap_k, …)

// y = A*x
void VBLAS::vgemv(int precision , …){

pser_ec(precision , EC0); // compute precision
pser_evp (X.es(), X.fs(), EVP1); // memory precision
for (int i = 0; i < m; i++) {

pcvt_d_p (P24, 0); // acc = 0
for (int j = 0; j < n; j++) {

ple(P0, a_ptr, 0, EVP0); // A(m)(n)

ple(P1, x_ptr, 0, EVP1); // x(n)
pmul(P0, P0, P1, EC0); // A(m)(n)*x(n)
padd(P24, P24, P0, EC0); // acc += A(m)(n)*x(n)

VPFloatArray X(EXP_SZ, FRAC_SZ, Ndiag);

…
Nbiter = cg_vp(precision, Ndiag, X, A, B, tol);

Solver
(VPFloat software)

Application
(executed on host or natively on the VRP)

(V)BLAS routine
(assembly)

SW Emulation
(MPFR)

SW Emulation
(Spike)

HW
(FPGA/ASIC)

offloading

Runtime

• Solvers interface close to PETsC

• Calls to dense/sparse library
close to BLAS

• Custom C++ types VPFloat and
VPFloatArray

• Support of OSKI sparse
structures

• Execution backends:
• VRP
• Also MPFR, Spike emulation

