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• Work initiated in 2016 at CEA Grenoble

• Original motivations : 
• Accelerate convergence of linear solvers for structural modeling, computational physics
• Improve accuracy in computational geometry
•  provide hardware support for 1/ arbitrary extended precision and 2/ interval arithmetics

• Current focus is arbitrary precision applied to  Krylov-based iterative solvers
• Goal : Improve stability of short-recurrence Krylov solvers / eigensolvers
• Application to large size sparse matrices, dense vectors

• Sponsors 
• Initial support from ANR Imprenum project (With INSA Lyon and University Grenoble Alpes )
• Current support with EPI (European Processor Initiative) https://www.european-processor-

initiative.eu/
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VXP: Project Context

https://www.european-processor-initiative.eu/
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VXP: Motivation

Yves DURAND | May 20, 2022

• The focus is on  linear solvers/eigensolvers which may take 80% of computing time on 
computing nodes

• Using extended precision (64-512 bits of mantissa) significantly improves convergence 
• and avoids/simplifies numerical pre-processing (preconditionning, orthogonalization)

• However software-based support for extended precision is not efficient 
■ Memory pressure too high

• VXP provides native extended precision in hardware with low performance overhead
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1. We are dealing with the working precision, i.e. the precision of intermediate floating point 
computations (aka 𝜖𝑚 = 21−𝑝𝑟𝑒𝑐) 
• and not with data precision
• In numerical terms, working precision is linked the relative representation error, bounded

by  u (ulp) or  (error analysis)

• The distance of representation ෝ𝑥 to real 𝑥 is bounded:  
𝑥− ො𝑥

𝑥
< 𝑢

2. Precision applies to all floating point arithmetics (FP) numbers both
• Inside the processor, 
• And in memory, using IEEE standard extendable format.
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Two details of importance…



• The VXP resides on the  compute 
node, and shares  the local 
memory (DRAM, Caches) with 
the local processor
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VXP in Computing Infrastructure
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Differences with a mainstream processor
Variable-Precision Core (VRP)

Instruction Queue
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• 64 bits RISC-V processor based on « Ariane » 
from ETH Zürich

• ISA extensions for VP operations
• L&S Unit optimized for unaligned transfers
• Pipeline is optimized for (dense) Matrix-vector

multiplication with 192 bit of precision










VXP is a standalone processor used as accelerator for linear kernels
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VXP: Current Status
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1. Key operation is the matrix-vector multiplication 𝑦 = 𝐴 × 𝑥 (SparsexDense, 
DensexDense): we measure its latency in terms of MAC/cycle for different precisions

2. global performance of reference linear solvers (𝐴 × 𝑥 = 𝑏), e.g.  PCG, BiCG :
1. Comparaison of Convergence speed for different precisions. 

Expressed In terms of number of iterations to reach a predefined error threshold
(tolerance)

2. global latency (measured in clock cycles) with different precisions, same tolerance
and same problems
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« benchmarking » the VXP 1/2



• Problem matrix A are dense/sparse, in double (64b) format

• Vectors b are dense, double vectors

• Problems are taken from
• classical benchmarks in SuiteSparse Matrix Collection 

https://sparse.tamu.edu/

• Synthetic random dense matrices using « ransvd » method [Higham 2002 ] for 
dense matrices

• Synthetic sparse matrices using Saad’s finite difference scheme −Δu + γx ˙∇u + βu 
= f [Chen 2016] 
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« benchmarking » the VXP 2/2

https://sparse.tamu.edu/
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Matrix-vector multiplication latency 1/2

Latency of a single-core dense MV 
operation of size 1024x1024 in extended
precision with varying precisions. 
• Different lines represent different DRAM 

latencies
• Higher curves are measured without

hardware prefetcher
• Bottom-level curves (almost identical) 

represent measure with the hardware 
prefetcher activated. 

 The prefetcher is key for masking
cache miss latency



June 19&20, 
2023Yves Durand                                                                                  Sparse Days 2023 11

Matrix-vector multiplication latency 1/2

IPC: MAC Operation per cycle of a MV 
operation of size 1024x1024 in extended
precision with varying precisions. 
• Different lines represent different DRAM 

latencies
• bottom curves are measured without

hardware prefetcher
• upper curve is measured with the 

hardware prefetcher activated.

• With prefetcher, MAC IPC ranges from
0.21 (in double) to 0.10 (for 499 bits of 
mantissa)  factor of 2



• 2 main cases
• Preconditionned Conjugate Gradient on symmetric real matrices

• Random denses matrices: non preconditionner
• Sparse, real cases matrices : Jacobi preconditionner

• Biconjugate Gradient on unsymmetric matrices
• Sparse, real and synthetic cases, with/without preconditionner

• Bonus: lanczos tri-diagonalization with periodic re-orthogonalization
• Precision alone is not sufficient, Re-orthogonalization necessary
• New criterion: number of re-orthogonalizations
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Measuring precision impact & performance on solvers
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CG on synthetic dense matrices : iteration count

• Tolerance is set to 10-12

• Value below 0 means that the run did not converge
• Conclusions
1. Iteration count decreases consequently with precision starting at 128
2. Effect of precision is more visible than with sparse matrices 

The Diagram below represents iteration count of kernel CG (conjugate Gradient) running 
on random symmetric matrices with controlled eigenvalue profile (cliff)
Bars correspond to different precisions (e.g. 53/128/256/400/512)
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CG on synthetic dense matrices : cycle count 
(values from June, 2023)

• Tolerance is set to 10-12

• Value are normalized against precision 53 (double)
• Conclusions
1. Sweet spot for latency around precision 128
2. Latency is reduced by a factor of 4

The Diagram below represents cycle count of kernel CG (conjugate Gradient) running on 
random symmetric matrices with controlled eigenvalue profile (cliff)
Bars correspond to different precisions (e.g. 53/128/256/400/512)
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Preconditionned CG on Matrix Market sparse matrices : 
iteration count
• The Diagram below represents iteration count of kernel PCG (conjugate Gradient, Jacobi preconditionning) 

running on MatrixMarket matrices Bars correspond to different precisions (e.g. 53/128/256/400)

• Tolerance is set to 10-12 , Value below 0 means that the run did not converge

• No real improvement when iteration count is already close to the diagonal size → not 
surprising

• Extended precision improves the iteration count when it is >> diagonal size

Size 15k x 15k Size 12k  
Size 2.4k  

Size 3k  

Size 9k  Size 5.5k  

Size 5.5k  



Conclusion:
• No decisive latency improvement for small matrices, better with larger (>5K) 
• However, these measures do not activate prefetching : presumably, memory access latencies

dominate arithmetic latencies
 we are revisiting our spMV routines to minimize/anticipate caches misses
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Preconditionned CG on Matrix Market sparse matrices : 
cycle count
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The Diagram below represents iteration count of kernel BiCG (Biconjugate Gradient) running 
on matrices from the SuiteSparse collection
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BiCG on Matrix Market matrices : iteration count

• Tolerance is set to 10-5

• Value below 0 means that the run did not converge
• Conclusions
1. In several cases, convergence is not attained with precision 53 (double) but works at higher 

precisions : bp_1000, gre_1107, Impcol_a, lns__131
2. Iteration count decreases consequently with precision

Size 4k  Size 1k  

Size 3.3k  Size 3.3k  
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Lanczos tridiagonalization on synthetic dense 
matrices

Conclusion: 
• Using 256/400 bits mantissas saves a lot 

of reorthogonalization work
• Besides, the orthogonality estimator used

here is consistent with actual
orthogonality computation

• Lanczos tridiagonalization is the first step of eigendecomposition → key numerical technique

• It systematically requires reorthogonalization : we use the Periodic reorthogonalization algorithm from 
Simon (aka PO TD) [Simon 2000] 

• This algorithm estimates the loss of orthogonality (𝜔𝑖,𝑗= 𝑞𝑖
′𝑞𝑗) at each step j and performs a partial 

reorthogonalisation when  𝑚𝑎𝑥(𝜔𝑖,𝑗) ≥ 𝜖𝑝

• The Diagram below represents reorthogonalization counts of kernel PO TD running on dense matrices 

• Bars correspond to different precisions (e.g. 53//256/512)
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Lanczos tridiagonalization on SparseMatrix matrices 

Conclusion: 
• Using 256/400 bits mantissas saves a lot 

of reorthogonalization work
• Besides, the orthogonality estimator used

here is not really reliable for full range of 
eigenvalues of sparse matrices

• Lanczos tridiagonalization is the first step of eigendecomposition → key numerical technique

• It systematically requires reorthogonalization : we use the Periodic reorthogonalization algorithm from 
Simon (aka PO TD)

• This algorithm estimates the loss of orthogonality (𝜔𝑖,𝑗= 𝑞𝑖
′𝑞𝑗) at each step j and performs a partial 

reorthogonalisation when  𝑚𝑎𝑥(𝜔𝑖,𝑗) ≥ 𝜖𝑝

• The Diagram below represents reorthogonalization counts of kernel PO TD running on SparseMatrix
matrices 

• Bars correspond to different precisions (e.g. 53//256/512)



• Variable Extended Precision gives opportunities for using simpler algorithms, 
improves convergence →improve efficiency
• Standard FP format exists already, Numerical analysis background is there
• Surpringly, BiCG benefits from precision, becomes reliable  our prefered

choice for real-life cases (up to 20 K size so far)
• Extended precision does not replace usual techniques

• It may simplify preconditionning
• It unlocks the door for larger (eigen)problem sizes (future work)

• « Effective » means usable
• consistent support in memory, reasonably fast execution
• … and full software support

• Our work proves the feasibility in silicon
• Fast Arithmetics for up to 512(/1024) bits of mantissa
• Effective support in memory for unaligned FP arrays
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Conclusions 
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• Mixed precision combines different fixed sizes representations, e.g. floats (32 bits) and doubles 
(64 bits)
• May also alternatively be done with double / quad

• Mixed precision for iterative refinement: 
• Mixed precision fits well for iterative refinement methods: 
• Inner Solve/factorization done in lower precision
• Residual computation and correction done in higher precision

• However, the solve/ factorization is usually a direct method (eg a LU)  cost in O(n2) in memory 
even if matrix is sparse

• Alternatively, Krylov method may be used as solver (but not in mixed precision ) 
• (cf Mixed Precision Iterative Refinement Methods for Linear Systems: Convergence Analysis

Based on Krylov Subspace Methods, Hartwig Anzt, Vincent Heuveline & Björn Rocker ) 

What is the difference between arbitrary extended
precision and  « mixed precision » ?
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We generate a random matrix M by a simple 
multiplication M=σ.U ×D×V^T   (U = V for symmetric 
matrices) where  

• σ is a scaling factor, 

• U and V random orthonormal matrices and 

• D a diagonal matrix whose eigenvalues follow a 
specific distribution.

Specifically, we use two distributions “cliff” (resp. 
“step”) which consist in three abutted segments with 
slopes 0:1; 10; 0:1 (resp. 10, 0.1, 10).
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Profiles for the ransvd method

forced eigenvalues, sorted in decreasing order, for a 600x600 
matrix. Scaling is defined arbitrarily.
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VXP software stack

// A*x = b
int cg_vp(int precision , int Ndiag, 

VPFloatArray & x, double *A,            
VPFloatArra y b, double tolerance ) {

…
while (relerror < tolerance ) {

…

VBLAS::vgemv(precision, n, n, A, p_k, Ap_k, …)

// y = A*x
void VBLAS::vgemv(int precision , …){

pser_ec(precision , EC0);        // compute precision
pser_evp (X.es(), X.fs(), EVP1); // memory precision
for (int i = 0; i < m; i++) {

pcvt_d_p (P24, 0);          // acc = 0
for (int j = 0; j < n; j++) {

ple(P0, a_ptr, 0, EVP0); // A(m)(n)

ple(P1, x_ptr, 0, EVP1); // x(n)
pmul(P0, P0, P1, EC0);   // A(m)(n)*x(n)
padd(P24, P24, P0, EC0); // acc += A(m)(n)*x(n)

VPFloatArray X(EXP_SZ, FRAC_SZ, Ndiag);

…
Nbiter = cg_vp(precision, Ndiag, X, A, B, tol);

Solver
(VPFloat software)

Application
(executed on host or natively on the VRP)

(V)BLAS routine
(assembly)

SW Emulation
(MPFR)

SW Emulation
(Spike)

HW
(FPGA/ASIC)

offloading

Runtime

• Solvers interface close to PETsC

• Calls to dense/sparse library
close to BLAS 

• Custom C++ types VPFloat and 
VPFloatArray

• Support of OSKI sparse
structures

• Execution backends: 
• VRP 
• Also MPFR, Spike emulation


