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Abstract—The ability to read intents from the brain is no
longer science fiction. This requires acquiring and decoding the
brain signals to make them usable in different applications.
The signal processing requires high computational capacities and
consequently high energy consumption. This paper introduces the
flows for brain signal decoding and focuses on electrocorticogra-
phy (ECoG) approaches for motor imagery. SoA ECoG decoding
algorithms require significant computing power creating a need
for specialized low-power circuits for embedded use.

Index Terms—brain-computer interface (BCI), system-on-chip
(SoC), decoder, ECoG

I. INTRODUCTION

The development of BCIs has been following the progress
of machine learning (ML) algorithms as well as technological
advances in electronics. The current trend aims for fully
implantable devices with embedded computing for more use
cases. Fig. 1 shows some BCI applications.

Fig. 1. Examples of BCI Applications.

Techniques for acquiring brain electrical signals can range
from electroencephalography (EEG), non-invasive but limited
in spatial resolution, to the implantation of microelectrode
arrays (MEAs) in the brain for a better resolution but at the
cost of a high risk of physiological complications. ECoG,
being less invasive than MEAs and closer to the brain than
EEG, makes a compromise between spatial resolution and low
risk of infection. Decoding brain signals refers to the extraction
of information that could be turned into a relevant action such
as speech or motion. This work focuses on motor imagery
approaches i.e. decoding mental intentions of motion such as
regaining motor control for patients with paralysis.

II. BCI ALGORITHMS

ECoG-based approaches can extract information either di-
rectly from the signal such as the deep learning (DL) method
used in [1] to detect finger binding with a discrete classifier,
or indirectly by first computing intermediate variables called
features. The latter method follows the pipeline shown in

Fig. 2 where the extracted features are fed into a decoder
that outputs signals to control an effector (exoskeleton, screen,
speech generator, spinal cord stimulator...).

Fig. 2. Indirect ECoG Decoding Flow.

A. Features computing

Feature computing extracts information (e.g. time-frequency
domain) that serves as an input to a decoder model. Wavelet
transforms (WTs) are frequently used as it has been shown [2]
that the original signal can be reconstructed from the wavelet
coefficients. The WT, described in (1), relies on a convolution
between the ECoG signal and a wavelet function that can
be scaled and translated to extract similarities for different
frequencies and times.

F (τ, s) =
1√
|s|

∫ ∞

−∞
f(t) ψ∗

( t− τ

s

)
dt (1)

Where ψ, s and τ are the mother wavelet, frequency and
time scaling factors, respectively. Features can be computed
by decimating the wavelet coefficients F (τ, s). Different al-
gorithmic implementations with complexity exist for WTs e.g.
discrete wavelet transform (DWT) [3] and fast continuous
wavelet transform (fCWT) [4]. DWT is a WT variant based
on a power-of-two discretization of the s and τ parameters
in (1) resulting in a O(N) instead of a O(N2) complexity
for direct convolution. fCWT uses a fast Fourier transform
(FFT) to simplify the convolution into a multiplication in the
frequency domain. The product is then expressed in the time
domain using an inverse FFT with a O(Nlog(N)) complexity.

B. Decoding models

As shown in Fig. 2, features need to be decoded into effector
inputs. The decoder model can be linear or not depending on
the used features and computation constraints.



The work of [3] presents a probabilistic neural network
(PNN) decoder of relative wavelet energy features following a
non-linear Bayesian classifier approach. The model was tested
offline on 8 ECoG channel outputs to classify left small-finger
and tongue movement. The tests have yielded a maximum
accuracy of 91.8% in offline decoding and no tests have been
reported on real-time applications.

In [1], a 83.3% accuracy on finger bending detection
is reached using an online method with a direct decoder.
The proof-of-concept is demonstrated on a robotic arm. No
power consumption estimation was reported in the two studies
to evaluate the solutions implantability. In addition to that,
the two previous models are fixed after the training phase,
meaning that any evolution in the ECoG signals due to brain
plasticity can result in a lower accuracy.

Adaptive decoders present a promising alternative that could
solve the fixed-model issue by modifying it to adapt with the
brain plasticity. A proof-of-concept [5] has been demonstrated
for a BCI that has enabled the control of an exoskeleton by
tetraplegic patients when decoding brain signals corresponding
to motor intentions. The model uses features computed with a
complex continuous wavelet transform (CCWT) of the ECoG
signals coming from 64 electrodes channels [6]. A hidden
Markov model (HMM) controls the output probabilities of
independent linear decoders to ensure a stable behavior. Even
after 167 days of implantation, it yields an average accuracy
of 92% for the gating output [5]. The implementation satisfies
the real-time constraint. The computation is done on an
external computer consuming tens of watts currently limiting
its implantability.

III. BCI PLATFORMS

In parallel to the development of decoding algorithms,
research is currently focused on embedded computing in BCI
to achieve a fully implantable autonomous system capable of
decoding brain signals.

The work in [7] presents a fully implantable 16-channel
system that can detect early seizures from ECoG signals. The
entire system consumes 230.4 uW when all channels are used.
The features extraction step is optimized on hardware (HW)
to output 10 feature vectors per second (real-time for BCI
applications). The RISC processor is however only tested with
a K-nearest neighbor (KNN) algorithm applied to a specific
application with no tests for motor imagery.

Another approach in [8] describes a distributed-chip plat-
form using brain MEA. The chips can be used for seizure
detection, spike sorting but also movement decoding. The
designed SoC supports a FFT HW module for optimized
feature extraction and a linear support vector machine (SVM)
accelerator for decoding. The design satisfies the power con-
sumption and time constraints for fully-implantable BCIs. The
major drawback of this approach is its high invasiveness
as measurements are collected with MEAs (96 per node)
distributed across many brain regions.

The presented approaches are summarized in Tab. I and
evaluated based on the type of brain signals, channels number,

power budget (PB) (less than 100 mW) and real-time compat-
ibility (RT) (less than 100 ms decoding time) for implantable
BCIs, adaptability potential and accuracy.

TABLE I
SUMMARY OF THE PRESENTED WORKS

Ref Characteristics
work Signal Channels Method PB RT Adaptive Accuracy

[1] ECoG 48/62/64 DL - yes no 83.3%
[3] ECoG 8 DWT + PNN - - no 91.8%a

[5] ECoG 64 fCWT + no yes yes 92%c

REW-MSLMb

[7] ECoG 16 KNN yes yes no -
[8] MEA 96 x Nd FFT + SVM yes yes - -

aMaximum reached accuracy.
bRecursive exponentially weighted Markov-switching multi-linear model.
cAccuracy of the HMM gate prediction.
dNumber of implanted nodes.

IV. CONCLUSION

The works presented in this study show a gap between the
progress of adaptive algorithms for real-time online decoding
and the existing implantable HW platforms. To address this
bottleneck, a SoC capable of adaptive decoding is needed
within a limited power consumption and time budget.
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