N

N

128-bit addresses for the masses (of memory and
devices).
Mathieu Bacou, Adam Chader, Chandana Deshpande, Christian Fabre, César
Fuguet Tortolero, Pierre Michaud, Arthur Perais, Frédéric Pétrot, Gaél

Thomas, Eduardo Tomasi Ribeiro

» To cite this version:

Mathieu Bacou, Adam Chader, Chandana Deshpande, Christian Fabre, César Fuguet Tortolero, et
al.. 128-bit addresses for the masses (of memory and devices).. HotInfra 2023 - Workshop on Hot
Topics in System Infrastructure, Jun 2023, Orlando, United States. 2023. cea-04487782

HAL 1d: cea-04487782
https://cea.hal.science/cea-04487782

Submitted on 4 Mar 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://cea.hal.science/cea-04487782
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

128-bit Addreses for the Masses
(of Memory and Devices)

Maplurinum — ANR Project ANR-21-CE25-0016
Machinze pluribus unum: One Machine out of Many

Christian Fabre — Univ. Grenoble Alpes, CEA, LIST, 38000 Grenoble, France

HOTINFRA’ 23 — Workshop on Hot Topics in System Infrastructure
June 18, 2023, Orlando, Florida, USA — Co-located with ISCA 2023

list
_

ANl Z.zc. -

Mathieu Bacou, Adam Chader (Télécom SudParis), TIMA
Chandana Deshpande (Grenoble INP), Christian Fabre, SudParis @ |NP
César Fuguet (CEA List), Pierre Michaud (Inria), =hd il Uen
Arthur Perais (CNRS), Frédéric Pétrot (Grenoble INP),

Gaél Thomas (Télécom SudParis), Eduardo Tomasi (CEA List) %1 Parts

Plan

1. Why RISC-V 128 bit?

2. Context & Vision

3. Some key 128 bit Issues

4. Operating System Research Avenues
5. System Architecture Research Avenues
6. pArchitecture Research Avenues

7. RISC-V 128 bit Software Toolset

8. Conclusion

Why RISC-V 128 bit?

“There is only one mistake that can be made in
computer design that is difficult to recover

from — not having enough address bits for memory
addressing and memory management.”

Bell and Strecker, ISCA-3, 1976. Chapter 6

Volume I: RISC-V Unprivileged ISA V20191213

To improve compatibility with RV64, in a reverse of how RV V64 was handled, we might
change the decoding around to rename RV64I ADD as a 64 add a 198-bit ADDQ
in what was previously the OP-64 major opcode (now renamed 8 major opcode).

Shifts by an immediate (SLLI/SRLI/SRAI) are now encoded using the low 7 bits of the I-immediate,
and variable shifts (SLL/SRL/SRA) use the low 7 bits of the shift amount source register.

A LDU (load double unsigned) instruction is added using the existing LOAD major opcode, along

with new LQ and SQ instructions to load and store quadword values. SQ is added to the STORE
major opcode, while LQ is added to the MISC-MEM major opcode.

RV128I Base Integer Instruction Set,
At historic rates of growth, it is possible that greater Version 1.7
than 64 bits of address space might be required

b f 2 030 “There is only one mistake that can be made in computer design that is difficult to re-
e Or e " cover from—not having enough address bits for memory addressing and memory man-

agement.” Bell and Strecker, ISCA-3, 1976.

The floating-point instruction set is unchanged, although the 128-bit Q floating-point extension can
now support FMV.X.Q and FMV.Q.X instructions, together with additional FCVT instructions to
and from the T (128-bit) integer format.

This chapter describes RV128I, a variant of the RISC-V ISA supporting a flat 128-bit address space.
The variant is a straightforward extrapolation of the existing RV32I and RV64I designs.

History suggests that whenever it becomes clear
that more than 64 bits of address space is needed,

of DRA. {, anpd would require o1
. . . . address space. Some wareho
architects will repeat intensive debates about
demand for even larger memory s;
systems, which occupy 57 bits of address space. At historic of growth, it is possible that

alternatives to extending the address space, et 64 s o adioess space might b e efore 090

History suggests that whenever it becomes clear that more than 64 bits of address space is

reh is targeting 100 PB memory

needed, architects will repeat intensive debates about alternatives to extending the address space,

inc/uding Segmentation’ 96-bit address spaces, and inchuding seqmentation, 96t adress spaces, and sotware workarounds, unt, il ot 125

bit address spaces will be adopted as the simplest and best solution.
We have not frozen the RV128 spec at this time, as there might be need to evolve the design

software workarounds, until, finally, flat 128-bit b o atul g of 125 i sy

RV128I builds upon RV64I in the same way RV64I builds upon RV32I, with integer registers

address SpaCeS Wi// be adop ted aS the Simp/est and extended to 128 bits (i.e., XLEN=128). Most integer computational instructions are unchanged

as they are defined to operate on XLEN bits. The RV641 “*W” integer instructions that operate

o on 32-bit values in the low bits of a register are retained but now sign extend their results from

best solution. D5 U i 157 no st o D" et mtrcins e 00t operts on S v
held in the low bits of the 128-bit integer registers and sign extend their results from bit 63 to bit

127. The “*D” instructions consume two major opcodes (OP-IMM-64 and OP-64) in the standard
32-bit encoding.

We have not frozen the RV128 spec at this time, as
there might be need to evolve the design based on

actual usage of 128-bit address spaces. [1] A. Waterman and K. Asanovi¢, “Chapter 6, RV128I Base Integer Instruction Set, Version 1.7,” in
The RISC-V Instruction Set Manual - Volume I: Unpriviliged ISA, 20191213, The RISC-V Foundation,
2019. Available online at https://riscv.org/technical/specifications/

= ;

Context & Vision (1/2)

Hight Performance Computing (HPC) Hardware View
floating-point dominated computations

Supercomputers are composed of multiple shared-memory nodes connected
through a high-performance communication network.

Communication Network

Cluster
or Node CPU CPU CPU CPU CPU CPU

L1 L1 L1 L1 L1 L1

L2 Cache

L2 Cache

Last Level Cache (LLC)

L2 Cache

Local Memory

Last Level Cache (LLC)

Local Memory

Last Level Cache (LLC)

Local Memory

Context & Vision (2/2)

* Regular increase of total system RAM on
HPC

* The 64—65 bit threshold might be
passed sometime around 2035

- Advent of byte addressable NVRAM

- What is a 128 bit software playground?

* Now: One Linux instance per shared
memory domain + MPI

* Then: Single System Image (SSI).

* Virtual pointers are valid across the
whole machine.

* Use cases

- “HPC”: Distributing huge dataset over
clusters, floating-point compute
bound

- “Datacenter” : Temporary mappings of
many shared objects by many threads

« RISC-V and ISA extensions help mitigate

heterogeneity

» Clusters might not support the same
set of extensions: vector vs ML vs
variable precisions etc.

* [deas take 10-20 years to percolate, so

start early!

Some Key 128 bit Issues

« OS design: - System architecture
+ Single kernel will not scale on millions of « Communication network
cores

« Memory coherency scope:
« How can user and processes see the

* Full machine scope not achievable.
whole machine as a single entity (SSI)? P

What abstractions to expose? - Shall we aim at cluster scope only?

: : * Virtual memory at the machine level
 Data migration from cluster to cluster by

VM page remapping instead of message * parchitecture
passing across virtual spaces . HW complexity
* Someone has to manage data locality » Moore/Dennard laws are MIA, so moving
- Software tooling to 128 bit will not be as easy as old’

- What would be the 128 bit C 32—64 bit transition

programming model?

Plan

4. Operating System Research Avenues
5. System Architecture Research Avenues
6. pArchitecture Research Avenues
7. RISC-V 128 bit Software Toolset

8. Conclusion

Operating System Research Avenues (1/2)

Message Passing (e.g., MPI)

Communication Network

Communication Network

CPU

CPU CPU

I l

CPU

I

CPU

CPU CPU

CPU

Address Space

Address Space

CPU CPU

_‘_1

CPU CPU

_H

l

Local Memory

l

Local Memory

128-bit Address Space

Shared Memory (e.g., OpenMP)

From one Linux per cluster
plus orchestration and middleware layers...

l

Local Memory

l

Local Memory

Global Address Space (e.g., PGAS)

. to a machine-wide address space.

How to maintain and represent
such a virtual address space?

Operating System Research Avenues (2/2)

- Operating system at scale through
multikernels:

* One kernel per clusters

- What is a virtual address space at the
machine level?

* Lend/borrow resources to other
multikernels

« User abstractions

« Virtual Memory Open Questions
- Page table organization:

* More levels (business as usual) or
novel organization?

- Change minimum page size to 16K/
32K or rely on superpages

« How to ensure virtual address space
consistency at the machine level

- What is a machine-wide process?

- Give view of topology to user, e.g.
NUMA domains?

- Allocate/free resources (does it need to
be more than mmap () + cpu bind ?)

« How to split HW/SW responsibilities for

VM consistency

* We do not have answers yet!

Plan

5. System Architecture Research Avenues
6. pArchitecture Research Avenues
7. RISC-V 128 bit Software Toolset

8. Conclusion

10

System Architecture Research Avenues

Cluster

DRAM

=2

NIC

The cluster + interconnect architecture pattern is here to stay...

Bﬂ?

L
=
=

(a) Dragonfly (b) Torus Fusion (Tofu)

...although the interconnect may change.

1"

Plan

1. Why RISC-V 128 bit?

2. Context & Vision

3. Some key 128 bit Issues

4. Operating System Research Avenues
5. System Architecture Research Avenues
6. pArchitecture Research Avenues

7. RISC-V 128 bit Software Toolset

8. Conclusion

12

pArchitecure Research Avenues (1/3)

Some remarks:

* Implemented Virtual Addresses (VA) and
> 128e5|'§t'§r‘3{=$'ca| < Physical Addresses (PA) are not not 64 bit in
current 64 bit HW
il bypass)—)—)—) 128-bit bypass « 128-bit transition is not 2x for parchitecture
< < << structures that contain VA/PA, e.g. TLB
¢ W ¢ tags, cache tags.
* Yet, registers, functional units, bypass network
&28 bit FU \128 bt FL/ width has to double
* This will bring latency, timing, and power
costs

* Also, pointers occupy twice the space in
cache memory

« Should we increase cache line size to
preserve spatial locality?

13

pArchitecure Research Avenues (2/3)

Problem statement — for now:

« Can we design a cost efficient transitional 128-bit
uarchitecture with

* Full 128-bit ISA support — i.e. RV128
* Limited 128-bit data path

 Reasonable performance

14

MArchitecure Research Avenues (3/4)

How we plan to address these issues?
« One key hypothesis: Get figures by compiling current C source for 128-bit.

- int remains 32-bit, long remains 64-bit, etc.

« Only pointer manipulation will be 128-bit

« That is ~60% dynamic instructions on SPEC & Polybench on RV64G.

 Leverage this to divide & conquer the parchitecture

- 128-bit “address” cluster

+ 64-bit “compute” cluster

* In essence, 64-bit instructions (40% dyn. insts.) will not consume 128-bit resources
- Address cluster has high value locality

- Compress physical registers using region-based compression

15

Plan

1. Why RISC-V 128 bit?

2. Context & Vision

3. Some key 128 bit Issues

4. Operating System Research Avenues
5. System Architecture Research Avenues
6. pArchitecture Research Avenues

7. RISC-V 128 bit Software Toolset

8. Conclusion

16

RISC-V 128 bit Toolset

Software tools operational on bare metal:

Data type LLP128 + QEMU -cpu=x-rv128

« most of it upstreamed since jan 2022.

char 8 * Binutils + gas + gld + gdb:
short 16 - ELF128 support
int 32 - RV128 opcodes
Iong 64 + 128-bit relocs
 Relatively simple thanks to [u]intl28 t native
long long 128 support — B
void *, size t, ptrdiff t 128 * gcc:
+ Instructions in machine description file
Frédéric Pétrot’s Github page: « Only 1ong long and pointers are 128 bit wide

https://github.com/fpetrot/riscv-gnu-toolchain

- Still full of bugs, but a first step!

@ Exemple de pied de page (A modifier dans I'onglet "Insertion"/"En-téte/Pied" 28/10/2022 17

Conclusion: Let’s define what RISC-V 128 bit will be!

“There is only one mistake that can be made in
computer design that is difficult to recover

from — not having enough address bits for memory
addressing and memory management.”

Bell and Strecker, ISCA-3, 1976.

At historic rates of growth, it is possible that greater
than 64 bits of address space might be required
before 2030.

History suggests that whenever it becomes
clear that more than 64 bits of address space is
needed, architects will repeat intensive debates
about alternatives to extending the address
space, including segmentation, 96-bit address
spaces, and software workarounds, until, finally,
flat 128-bit address spaces will be adopted as
the simplest and best solution.

We have not frozen the RV128 spec at this time,
as there might be need to evolve the design
based on actual usage of 128-bit address
spaces.

Chapter 6

RV128I Base Integer Instruction Set,
Version 1.7

“There is only one mistake that can be made in computer design that is difficult to re-
cover from—not having enough address bits for memory addressing and memory man-
agement.” Bell and Strecker, ISCA-3, 1976.

This chapter describes RV128I, a variant of the RISC-V ISA supporting a flat 128-bit address space.
The variant is a straightforward extrapolation of the existing RV32I and RV64I designs.

not clear

resided in a single

ties of DRAM,

s might drive a

y 00PB memory

systems, which occupy 57 bits of address space. At historic rates of growth, it is possible that
greater than 64 bits of address space might be required before 2030.

History suggests that whenever it becomes clear that more than 64 bits of address space is
needed, architects will repeat intensive debates about alternatives to extending the address space,
including segmentation, 96-bit address spaces, and software workarounds, until, finally, flat 128-
bit address spaces will be adopted as the simplest and best solution.

We have not frozen the RV ec at this time, as there might be need to evolve the design
based on actual usage of 128-bit address spaces.

RV128I builds upon RV64I in the same way RV64I builds upon RV32I, with integer registers
extended to 128 bits (i.e., XLEN=128). Most integer computational ins ons are unchanged
as they are defined to operate on XLEN bits. The RV641 “*W” integer instructions that operate
on 32-bit values in the low bits of a register are retained but now sign extend their results from
bit 31 to bit 127. A new set of “*D” integer instructions are added that operate on 64-bit values
held in the low bits of the 128-bit integer registers and sign extend their results from bit 63 to bit
127. The “*D” instructions consume two major opcodes (OP-IMM-64 and OP-64) in the standard
32-bit encoding.

Volume I: RISC-V Unprivileged ISA V20191213

To improve compatibility with RV64, in a reverse of how RVS2 to RV64 was handled, we might
change the decoding around to rename RV64I ADD as a 64-bit ADDD, and add a 128-bit ADDQ
in what was previously the OP-64 major opcode (now renamed the OP-128 major opcode).

Shifts by an immediate (SLLI/SRLI/SRAI) are now encoded using the low 7 bits of the I-immediate,
and variable shifts (SLL/SRL/SRA) use the low 7 bits of the shift amount source register.

A LDU (load double unsigned) instruction is added using the existing LOAD major opcode, along
with new LQ and SQ instructions to load and store quadword values. SQ is added to the STORE
major opcode, while LQ is added to the MISC-MEM major opcode.

The floating-point instruction set is unchanged, although the 128-bit Q floating-point extension can
now support FMV.X.Q and FMV.Q.X instructions, together with additional FCVT instructions to
and from the T (128-bit) integer format.

[1] A. Waterman and K. Asanovi¢, “Chapter 6, RV128I| Base Integer Instruction Set, Version 1.7,” in
The RISC-V Instruction Set Manual - Volume I: Unpriviliged ISA, 20191213, The RISC-V Foundation,
2019. Available online at https://riscv.org/technical/specifications/

18

"ﬂ, & » S &
- -d a
s § &0 =
-~ & 5
O™ 4
g Pp-.
~ ' \ T -~
5 ‘ : N 1 ¢ -~

~ J ’ 5
/| ':* ‘ S
*; . . $

Mathieu Bacou, Adam Chader (Télécom SudParis),
Chandana Deshpande (Grenoble INP), Christian Fabre,
César Fuguet (CEA List), Pierre Michaud (Inria),

Arthur Perais (CNRS), Fredeéric Pétrot (Grenoble INP),

Gaél Thomas (Télécom SudParis), Eduardo Tomasi (CEA List)
Maplurinum — ANR Project ANR-21-CE25-0016

Machinase pluribus unum: One Machine out of Man

© Samuel Blanc - F
www.horizonspartages.fr o

