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Abstract. The application of Fully Homomorphic Encryption (FHE) to pri-
vacy issues arising in inference or training of neural networks has been actively
researched over the last few years. Yet, although practical performances have
been demonstrated on certain classes of neural networks, the inherent high
computational cost of FHE operators has prevented the scaling capabilities of
FHE-based encrypted domain inference to the large and deep networks used to
deliver advanced classification functions such as image interpretation tasks. To
achieve this goal, a new hope is coming from TFHE functional bootstrapping
which, rather than being just used for refreshing ciphertexts (i.e., reducing their
noise level), can be used to evaluate operators which are difficult to express as
low complexity arithmetic circuits, at no additional cost. In this work, we first
propose ComBo (Composition of Bootstrappings) a new full domain functional
bootstrapping method with TFHE for evaluating any function of domain and
codomain the real torus T by using a small number of bootstrappings. This
result improves on previous approaches: like them, we allow for evaluating
any functions, but with error rates reduced by a factor of up to 28°. This
claim is supported by a theoretical analysis of the error rate of other functional
bootstrapping methods from the literature. The paper is concluded by extensive
experimental results demonstrating that our method achieves better perfor-
mances in terms of both time and precision, in particular for the Rectified Linear
Unit (ReLU) function, a nonlinear activation function commonly used in neural
networks. As such, this work provides a fundamental building-block towards
scaling the homomorphic evaluation of neural networks over encrypted data.

Keywords: FHE; TFHE; functional bootstrapping; ReLU; ComBo

1 Introduction

Machine learning application to the analysis of private data, such as health or genomic
data, has encouraged the use of homomorphic encryption for private inference or
prediction with classification or regression algorithms where the ML models and/or their
inputs are encrypted homomorphically [3, 12, 11, 7, 33, 25, 34]. Even training machine
learning models with privacy guarantees on the training data has been investigated in the
centralized [26, 14, 30, 29] and collaborative [31, 1] settings. In practice, machine learning

* This work was supported by the France 2030 ANR Project ANR-22-PECY-003
SecureCompute.
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algorithms and especially neural networks require the computation of non-linear acti-
vation functions such as the sign, ReLU or sigmoid functions. Still, computing non-linear
functions homomorphically remains challenging. For levelled homomorphic schemes such
as BFV [9, 23] or CKKS [13], non-linear functions have to be approximated by polynomi-
als. However, the precision of these approximations differs with respect to the considered
plaintext space (i.e., input range), approximation polynomial degree and its coefficients
size, and has a direct impact on the multiplicative depth and parameters of the cryptosys-
tem. The more precise is the approximation, the larger are the cryptosystem parameters
and the slower is the computation. On the other hand, homomorphic encryption schemes
having an efficient bootstrapping, such as TFHE [15, 18] or FHEW [22], can be tweaked
to encode functions via look-up table (LUT) evaluations within their bootstrapping pro-
cedure. Hence, rather than being just used for refreshing ciphertexts (i.e., reducing their
noise level), the bootstrapping becomes functional [8] or programmable [19] by allowing
the evaluation of arbitrary functions as a bonus. These capabilities result in promising new
approaches for improving the overall performances of homomorphic calculations, making
the FHE “API” better suited to the evaluation of mathematical operators which are diffi-
cult to express as low complexity arithmetic circuits. It is also important to note that FHE
cryptosystems can be hybridized, for example BFV ciphertexts can be efficiently (and
homomorphically) turned into TFHE ones [5, 33]. As such, the building blocks discussed
in this paper are of relevance also in the setting where the desired encrypted-domain
calculation can be split into a preprocessing step more efficiently done using BEV (e.g.
several inner product or distance computations) followed by a nonlinear postprocessing
step (such as an activation function or an argmin) which can then be more conveniently
performed by exploiting TFHE functional bootstrapping. In this work, we thus system-
atize and further investigate the capabilities of TFHE functional bootstrapping.

Contributions — The main contribution of this paper is a novel functional boot-
strapping algorithm!. It is a full domain functional bootstrapping algorithm in the
sense that it does not require to add a bit of padding to the encoding of the messages
(as described clearly in [19]). There are several other such methods in the literature.
We show that ours is the best option to date for single-digit operations on the full torus
(where a message is encoded into a single ciphertext).

There are several other contributions in this paper. We present them succinctly
here:

— Our novel functional bootstrapping algorithm (ComBo) is built by composing several
bootstrapping operations. It is based on the idea to separate any function in a
even and odd part and then compute both in parallel. We present several versions
to increase its efficiency and show that our method is the most accurate among
state-of-the art full domain bootstrapping algorithms.

— We implement and test our algorithms by evaluating several functions homomorphi-
cally. Among them, the Rectified Linear Unit (ReLU) function is of particular interest
for private neural network applications. This allows us to compare the computational
overhead of our algorithm with other existing methods.

— In order to compare the error rate of the different existing methods (which this work
aims to reduce), we develop an error analysis methodology and describe it in detail.
This shows that our algorithm improves on previous approaches, most of the time

! This paper is an updated version of the eprint [21]
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by a significant margin. This methodology, we argue, is the most appropriate way
to compare similar algorithms and can be reused for further research on the subject
to improve comparability.

— As a bonus, in order to compare our algorithm fairly to other previous solutions
from the community, we introduce consistent notations for describing all existing
solutions and their error probabilities in a unified way. We also fully implemented
and tested all of them. We consider that this strengthens the present paper and can
be considered, in and of itself, a worthy contribution to the development of the field.

Related works — In 2016, the TFHE paper made a breakthrough by proposing
an efficient bootstrapping for homomorphic gate computation. Then, Bourse et al.,
[7] and Izabachene et al., [25] used the same bootstrapping algorithm for extracting
the (encrypted) sign of an encrypted input. Boura et al., [6] showed later that TFHE
bootstrapping could be extended to support a wider class of functionalities. Indeed,
TFHE bootstrapping naturally allows to encode function evaluation via their represen-
tation as look-up tables (LUTs). Recently, different approaches have been investigated
for functional bootstrapping improvement. In particular, Kluczniak and Schild [27],
Liu et al., [28] and Yang et al., [32] proposed methods that take into consideration the
negacyclicity of the cyclotomic polynomial used within the bootstrapping, for encoding
look-up tables over the full real torus T. Meanwhile, Guimaraes et al., [24] extended the
ideas in Bourse et al., [8] to support the evaluation of certain activation functions such
as the sigmoid. One last method (WoP-PBS), presented in Chillotti et al., [20] achieves a
functional bootstrapping over the full torus using a BFV type multiplication, which was
designed for and only applicable to parameter sets much larger than standard TFHE
parameters. Besides, since the probabilistic behavior of decryption also appears during
the bootstrapping procedure, the error rate analysis of homomorphic computation are
becoming of interest when using TFHE as shown in [24] and [2].

Paper organization — The remainder of this paper is organized as follows. Section 2
reviews TFHE building blocks. Section 3 describes the functional bootstrapping idea
coming from the TFHE gate bootstrapping. Sections 4 presents our new functional
bootstrapping method ComBo in full detail. It also describes, under a unified formalism,
the other available methods for single digit functional bootstrapping. Finally, Section 6
provides experimental results for ComBo and compares it to the other methods which
we also implemented. These results are provided for both generic LUT evaluations over
encrypted data as well as the ReLU neural network activation function.

2 TFHE

2.1 Notations

In the upcoming sections, we denote vectors by bold letters and so, each vector  of
n elements is described as: @ = (z1,...,2,). (x,y) is the inner product of two vectors
x and y. We denote matrices by capital letters, and the set of matrices with m rows
and n columns with entries sampled in K by M., ,(K).

We refer to the real torus R/Z as T. Ty[X] denotes the Z-module R[X]/(X™ +
1) mod [1] of torus polynomials, where N is a power of 2. R is the ring Z[X]/(XY +1)
and its subring of polynomials with binary coefficients is By[X] = B[X]/(XY +1)
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(B={0,1}). Finally, we denote respectively by [z]r, [}, [x] and [z]r the encryption
of z over T, Ty[X] or R.

¢~ K denotes sampling x uniformly from K, while x<(“— K refers to sampling x

N(p
from K following a Gaussian distribution of mean / and variance o2, Given x # R,

the probability P(a<:1:<b) is equal to 2 (erf( b= “) erf (“ L)), where erf is Gauss
error function; er f(x ffo *If p=0, we will denote P(—a<z<a) zerf(i)

by P(a,0?). The same result and notation apply for z # T as long as the

distribution is concentrated as described in [18].

Given a function f:T—T and an integer k, we define LUT(f) to be the Look-Up
Table defined by the set of k pairs (i,f(%)) for i€ [0,k—1]. We will write LUT(f)
when the value of k is tacit.

Given a function f:T—T and an integer k£ <N, we define a polynomial Py €T y[X]

N-1
of degree N as: Py = Z f (%) -X*'. If k is a divisor of 2NV, Py can be written
k128 .

as Ppjp= Z Z F(£)-X % . For simplicity sake, we will write Py instead of Py,
=0 j=0
when the value k is tacit.

2.2 TFHE Structures

The TFHE encryption scheme was proposed in 2016 [15]. It improves the FHEW
cryptosystem [22] and introduces the TLWE problem as an adaptation of the LWE
problem to T. It was updated later in [16] and both works were recently unified in [18].
The TFHE scheme is implemented in the TFHE library [17]. TFHE relies on three
structures to encrypt plaintexts defined over T, Ty [X] or R:

— TIWE Sample: (a, b) is a valid TLWE sample if a & 10 and b e T verifies

b={(a,s)+e, where s<B" is the secret key, and eMT Then, (a,b) is a fresh

TLWE encryption of 0.
— TRLWE Sample: a pair (a,b) € Ty [X]* x Ty [X] is a valid TRLWE sample if ad

(72
Tn[X]*, and b= (a,s)+e, where s& Bn[X]* is a TRLWE secret key and allial

Tn[X] is a noise polynomial. In this case, (a,b) is a fresh TRLWE encryption of 0.

The TRLWE decision problem consists of distinguishing TRLWE samples from
random samples in Ty [X]¥ x Tx[X]. Meanwhile, the TRLWE search problem con-
sists in finding the private polynomial s given arbitrarily many TRLWE samples.
When N =1 and k is large, the TRLWE decision and search problems become the
TLWE decision and search problems, respectively.
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Let M CTy[X] (or M CT) be the discrete message space?. To encrypt a message
meM, we add (0,m) € {0}* x M to a TRLWE sample (or to a TLWE sample if
MCT). In the following, we refer to an encryption of m with the secret key s as
a T(R)LWE ciphertext noted c€ T(R)LWEg(m).

To decrypt a ciphertext ¢ € T(R)LWEg(m), we compute its phase ¢(c) =
b—{(a,s) =m-+e. Then, we round it to the nearest element of M. Therefore, if the
error e was chosen to be small enough (yet high enough to ensure security), the
decryption will be accurate.

— TRGSW Sample: a valid TRGSW sample is a vector of TRLWE samples. To
encrypt a message m € R, we add m- H to a TRGSW sample, where H is a
gadget matrix® using an integer By as a base for its decomposition. Chilotti et
al., [18] defines an external product between a TRGSW sample A encrypting m, € R
and a TRLWE sample b encrypting my, € Ty [X]. This external product consists
in multiplying A by the approximate decomposition of b with respect to H (Def-
inition 3.12 in [18]). It yields an encryption of m, - my i.e., a TRLWE sample
c€ TRIWE,(m,-my). Otherwise, the external product allows also to compute a
controlled MUX gate (CMUX) where the selector is C, € TRGSW(b),b€{0,1}, and
the inputs are ¢g € TRLWE,4(mp) and ¢; € TRLWE;(m4).

2.3 TFHE Bootstrapping
TFHE bootstrapping relies mainly on three building blocks:

— Blind Rotate: rotates a plaintext polynomial encrypted as a TRLWE ciphertext
by an encrypted position. It takes as inputs: a TRLWE ciphertext c€ TRLWE(m),
a vector (ay,...,Gn,an+1 = b) where Vi, a; € Zyn, and n TRGSW ciphertexts
encrypting (sy,...,s,) where Vi, s; € B. It returns a TRLWE ciphertext ¢’ €
TRLWEy (X (®)=b.1m). In this paper, we will refer to this algorithm as BlindRotate.
With respect to independence heuristic? stated in [18], the variance Vg of the
resulting noise after a BlindRotate satisfies the formula:

B,\’ 1+kN
VBR<VC+TL<(]C+1)€N<2'Q) 19BK+(Z:_BQZ)>
g

where V. is the variance of the noise of the input ciphertext ¢, and ¥k is the
variance of the error of the bootstrapping key. In the following, we define:

By\’ 1+kN
53R=n<(k+1)EN<2‘q> ﬂBK+(4B2l)>
g

— TLWE Sample Extract: takes as inputs both a ciphertext c€ TRLWEg(m) and
a position p€ [0,N[, and returns a TLWE ciphertext ¢/ € TLWEy(m,,) where m,, is

2 In practice, we discretize the Torus with respect to our plaintext modulus. For example,
the usual encryption of a message meZ4=1{0,1,2,3} would be one of the following value
{0,0.25,0.5,0.75}.

3 Refer to Definition 3.6 and Lemma 3.7 in TFHE paper [18] for more information about
the gadget matrix H.

4 The independence heuristic ensures that all the coefficients of the errors of TLWE,
TRLWE or TRGSW samples are independent and concentrated. More precisely, they are
o-subgaussian where o is their standard deviation.
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the pt* coefficient of the polynomial m. In this paper, we will refer to this algorithm
as SampleExtract. This algorithm does not add any noise to the ciphertext.

— Public Functional Keyswitching: transforms a set of p ciphertexts ¢; € TLWEg(m;)
into the resulting ciphertext ¢/ € T(R)LWE,(f(my,...,m;)), where f() is a public
linear morphism from T? to Tx[X]. This algorithm uses 2 specific parameters,
namely Bgs which is used as a base to decompose some coefficients, and ¢ which
gives the precision of the decomposition. Note that functional keyswitching serves
at changing encryption keys and parameters. In this paper, we will refer to this
algorithm as KeySwitch. As stated in [18, 24|, the variance Vi g of the resulting
noise after KeySwitch follows the formula®:

o B72t
Vks <R2'Vc+nN(ti9Ks+ ZS )

where V, is the variance of the noise of the input ciphertext ¢, R is the Lipschitz
constant of f and ¥k g the variance of the error of the keyswitching key. Note that
n is a parameter of the input ciphertext, while N is a parameter of the output
ciphertext. Thus, N =1 if the output is a TLWE ciphertext. In this paper and in
most cases, R=1. In the following, we define:

~ - B—Zt
gl :nN<u9Ks+ ZS>

TFHE comes with two bootstrapping algorithms. The first one is the gate bootstrap-
ping. It aims at reducing the noise level of a TLWE sample that encrypts the result of a
boolean gate evaluation on two ciphertexts, each of them encrypting a binary input. The
binary nature of inputs/outputs of this algorithm is not due to inherent limitations of the
TFHE scheme but rather to the fact that the authors of the paper were building a bitwise
set of operators for which this bootstrapping operation was perfectly fitted.

TFHE gate bootstrapping steps are summarized in Algorithm 1. Note that {0,1} is en-
coded as {0,3}. Step 1 consists in selecting a value y€ T which will serve later for setting
the coefficients of the test polynomial testv (in step 3). Step 2 rescales the components of
the input ciphertext ¢ as elements of Zs . Step 3 defines the test polynomial testv. Note
that for all p€[0,2N], the constant term of testv-X? is ifpe]]g,%]] and —p oth-
erwise. Step 4 returns an accumulator ACC' € TRIWE, (testv- X (@%)=?)_ Indeed, the
constant term of ACC'is —p if ¢ encrypts 0, or w if ¢ encrypts % as long as the noise of the
ciphertext is small enough. Then, step 5 creates a new ciphertext € by extracting the con-
stant term of AC'C and adding to it (0,u). That is, € either encrypts 0 if ¢ encrypts 0, or
m if ¢ encrypts % (By choosing m= %, we get a fresh encryption of ¢). Since a bootstrap-
ping operation can be summarized as a BlindRotate over a noiseless TRLWE followed
by a KeySwitch, the bootstrapping noise (Vpg) satisfies: Vg <Ep R—f—f,';(v’;.

TFHE specifies a second type of bootstrapping called circuit bootstrapping. It converts
TLWE samples into TRGSW samples and serves mainly for TFHE used in a leveled
manner. This additional type of bootstrapping will not be discussed further in this

paper.

5 Note that there is a discrepancy in the original TFHE papers [15, 16, 18] between the
theorem and the proof.
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Algorithm 1 TFHE gate bootstrapping [18]

Input: a constant m € T, a TLWE sample ¢ = (a,b) € TLWE,(z - 1) with z € B, a
bootstrapping key BK,_,o» = (BK; € TRGSW/(8:))ic[1,,] Where S is the TRLWE
interpretation of a secret key s’

Output: a TLWE sample ¢€ TLWE;(z.m)

Let p=2meT (pick one of the two possible values)

: Let b=|2Nb] and @;=|2Na;]| €Z, Vi€ [1,n]

: Let testvi=(1+X +-+XV"1). X2 . pueTy[X]

ACC «+ BlindRotate((0,testv),(@1,...,an,b),(BK1,...,BK,))

: €=(0,u)+SampleExtract(ACC)

: return KeySwitchy_,<(€)

A R

3 TFHE Functional Bootstrapping

3.1 Encoding and Decoding

Our goal is to build a homomorphic LUT for any function f:Z,—Z, for any integer
p. As we are using TFHE, every message from Z,, has to be encoded in T. To that
end, we use the encoding function:

Z,—

Ep:k:H

RSEESIE|

and its corresponding decoding function:

T— Z,
Do s o)

Finally, we specify a torus-to-torus function fr to get f=Dyo0froE,.

f=DpofroE,
EE——

ZP ZP
E,l D,
T —s T

fr

Since the function fr=FE,o foD, makes the diagram commutative, we consider this
function as the encoding of f over T.

We use m® to refer to a message in Z,, and m to refer to Ep(m(p)). That is, m
is the representation of m® in T after discretization.

3.2 Functional Bootstrapping Idea

The original bootstrapping algorithm from [15] had already all the tools to imple-
ment a LUT of any negacyclic function®. In particular, TFHE is well-suited for

5 Negacyclic functions are antiperiodic functions over T with period %, i.e., verifying

f@)==f(=+3).
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%—antiperiodic function, as the plaintext space for TFHE is T, where [O,%
to positive values and [%,1[ to negative ones, and the bootstrapping step 2 of the

Algorithm 1 encodes elements from T into powers of X modulo (X + 1), where
Vo€ [0,N], XN =—X* mod [XV +1].

[ corresponds

Boura et al., [6] were the first to use the term functional bootstrapping for TFHE.
They describe how TFHE bootstrapping computes a sign function. In addition, they
use bootstrapping to build a Rectified Linear Unit (ReLU). However, they do not delve
into the details of how to implement the RelLU in practice”.

Algorithm 2 describes a sign computation with the TFHE bootstrapping. It returns
p if m is positive (i.e.,, me€[0,1[), and —p if m is negative.

Algorithm 2 Sign extraction with bootstrapping

Input: a constant €T, a TLWE sample ¢=(a,b) € TLWE;(m) with m €T, a bootstrapping
key BK,_,s» = (BK; € TRGSWg(si))icq1,n] Where S’ is the TRLWE interpretation
of a secret key s’

Output: a TLWE sample ¢€ TLWE,(u.sign(m))

: Let b=[2Nb] and a;=|2Na;| €ZVi€[1,n]

: Let testv:=(14+X+-4+XV 1. ncTn[X]

: ACC <+ BlindRotate((0,testv),(a1,...,an,b),(BK1,....BK,))

: €=SampleExtract(ACC)

: return KeySwitchy_s(€)

U W N

When we look at the building blocks of Algorithm 2, we notice that we can build
more complex functions just by changing the coefficients of the test polynomial testv.

Indeed, if we consider ="~ '#;-X* where t; €T and ¢*(z) is the function:

[-NN-1] = T
£ ; Lot if ic [O,N[
tiyn  ifi€[-NO[’

the output of the bootstrapping of a TLWE ciphertext [z]; = (a,b) with the test
polynomial testv=t is [t*(4(@,b))]r, where (@,b) is the rescaled version of (a,b) in Zay
(line 1 of Algorithm 2).

Indeed, we first remind that for any positive integer ¢ s.t. 0<i <N, we have:
testv. X "=t 4 —to XV — o —t; 1 XV mod [ XV 1] (1)

Then, we notice that BlindRotate (line 3 of Algorithm 2) computes testv- X ~¢@®),
Therefore, we get using equation (1) the following results:

— if ¢(@,b) € [0,NT, the constant term of testv- X ~¢(@) i to(ap)-

" They build the function 2xReLU from an absolute value function, but do not explain how
to divide by two to get the ReLU result.
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— if ¢(a@,b) € [~N,0[, we have: i
testy- X ~#@) = _testy. X ~¢@D) =N mod [XN 41] .
with (¢(@,b)+N) € [0,N[. So, the constant term of testv-X ~@0) is —t, ;5\ .

All that remains for the bootstrapping algorithm is extracting the previous con-
stant term (in line 4) and keyswitching (in line 5) to get the TLWE sample [t*(¢4(@,b))] -

Now, we can tweak the previous idea to evaluate discretized functions. Let f:Z,—Z,

be any negacyclic function over Z, and fr=FE,ofoD,. We call ]Nf the well-defined
function froFEsy that satisfies:

R [-N,N—1] — T
f: Jr(5y if z€[0,N]| (2)
T - AER) tee[-NO
N-1
Let Py be the polynomial Py = Z f(i)-X*. Now, if we apply the bootstrapping
i=0

Algorithm 2 to a TLWE ciphertext [m]; = (a,b) with m® € Z,, and testv = Py, it
outputs [f(¢(@,b))]r. That is, Algorithm 2 allows the encoding of the function f as

long as % =m-+¢, for some € small enough. Further details on the variance of

¢’ and the error probability of the bootstrapping are given in Section 5.

T

0 3 0

3.3 Example of Functional Bootstrapping in Z,

{

dle)) =F+e =%4e¢

Fig. 1: Functional bootstrapping outputs with Z, as plaintext space.

As an example, let us consider the plaintext space Z4 and a negacyclic function f.
We represent Z4 in T by the set {g,%,%,%}. We denote by fr a function over T that

satisfies: fr(%)= @ for all :€]0,3]. We consider a ciphertext ¢y encrypting the value
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Algorithm 3 TFHE functional bootstrapping example

Input: a TLWE sample ¢=(a,b) € TLWE,(m) with z € {%,i,%,% , a bootstrapping key
BK;_, & = (BK; € TRGSWg/(8:))ic1,n) where S’ is the TRLWE interpretation of a
secret key s’

Output: a TLWE sample ¢€ TLWE;(fr(m))

Let b=|2Nb] and a;=|2Na;] €Z, Vi €[1,n]

Let testv::PfTA-X_% eTn[X]

ACC + BlindRotate((0,testv),(@1,...,an,b),( BK1,...,BKy))

¢=SampleExtract(ACC)

return KeySwitchy_,s(€)

0. We present in Algorithm 3 the functional bootstrapping algorithm that computes
LUT(f). We use the notation Py, from Section 2.1.

In step 2 of Algorithm 3, we set the test polynomial testv= Py 4-X *%, where Py, 4
encodes a look up table corresponding to fr, and X —7 is an offset term.

In Figure 1, we describe the action of the offset X ¥ on Py, 4. We represent
in the outer circle the possible phases associated to each entry from our plaintext
space Z4. Meanwhile, we represent in the inner circle the returned coefficients after a
bootstrapping. In the left part of Figure 1, we consider the result of the bootstrapping
algorithm without the offset. We note that the red part of the inner and outer circles
do not overlap. So, whenever the error term e in the phase is negative (even for small
values of e), the considered functional bootstrapping outputs an incorrect value. In our
example, the bootstrapping returns fT(%) =— fT(%) instead of fr(0). Meanwhile, in the
right part of the Figure 1, we consider the bootstrapping algorithm with the offset. Now,
the red part of the inner and outer circles overlap, and so, the functional bootstrapping
returns the right value as long as the error term remains small enough.

For a given plaintext space Z,, the offset is X ~L%1. We assume from now on that
p divides N to ease notations and formulas.

3.4 Multi-Value Functional Bootstrapping

Carpov et al., [10] introduced a nice method for evaluating multiple LUTs with one
bootstrapping. They factor the test polynomial Py, associated to the function f; into a
product of two polynomials vy and v;, where vy is a common factor to all Py,. Indeed,
they notice that:

(1+X 4+ XV (1-X)=2mod [ XV +1] (3)
Let Py, = Z;V:_Ol ai,ij with a;; €T, and ¢ € N* the smallest integer so that: Vi,
q-(1-X)-Py, €Z[X] (g is a divisor of p). We get using equation (3):
1
Pp= oo (144 XV (- (1= X)-Py,) mod [X™+1]
q
=wp-v; mod [ XN +1]
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where: 1
= = (14t xN-1
W=35, (14 )

N—-1

vi=q-(aiotain-1+ Y (qij—aij-1)-X7)
j=1

Thanks to this factorization, it becomes possible to compute many LUTSs with one
bootstrapping. Indeed, we just have to set the initial test polynomial to testv =1y
during the bootstrapping. Then, after the BlindRotate, we multiply the obtained ACC
by each v; corresponding to LUT(f;) to obtain ACC;.

Algorithm 4 Multi-value bootstrapping

Input: a TLWE sample ¢ = (a,b) € TLWE (m) with m € T, a bootstrapping key
BK,_, s = (BK; € TRGSWg/(8:))icq1,n) where S’ is the TRLWE interpretation of a
secret key s', k LUTs s.t. LUT(f;) =vo.v;,Vi € [1,k]

Output: a list of K TLWE ciphertexts €; € TLWEs( fl(%))

: Let b=|2Nb] and a; =|2Na;| €Z Vi [1,n]

: Let testv:=wvg

: ACC <« BlindRotate((0,testv),(@u,...,an,b),(BK1,...,.BKy,))

: for i<—1to k do

ACC;:=ACC-v;

€; =SampleExtract(ACC;)

return KeySwitchy_(€;)

NSO W

4 Look-Up-Tables over a Single Ciphertext

In Section 3.2, we demonstrated that functional bootstrapping can serve to compute
LUT(f) for any negacyclic function f. In this section, we describe 4 different ways
to specify homomorphic LUTSs for any function (i.e., not necessarily negacyclic ones).
We present 3 solutions from the state of the art [19, 27, 32] in Sections 4.1, 4.2 and
4.3, and our novel method ComBo in Section 4.4. In addition, we discuss a solution
to reduce the noise of the functional bootstrapping from [27] in Section 4.2.

As in Section 3.1, we call fr: T—T the function that specifies our homomorphic LUT,
and f:Z,—Z, its corresponding function over the input and output space Z,.

4.1 Partial Domain Functional Bootstrapping — Half-Torus

The Half-Torus method gets around the negacyclic restriction of functional bootstrap-
ping by encoding values only on [0,3[ (i.e., half of the torus). Let’s consider the test
polynomial Py, for a given negacyclic function h. Recall Equation 2 that defines the
output of the bootstrapping operation as:
[-N,N—-1] — T
h: = { h(ﬁ if z€[0,N]

* Ny if ze[-NO[
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As we restrict the encoding space to [0,3[, we also restrict h domain to [0,N], where

h has no negacyclic property. That is, we get a method to evaluate a LUT with a single
bootstrapping.

4.2 Full Domain Functional Bootstrapping — FDFB

Kluczniak and Schild [27] specified FDFB to evaluate encrypted LUTSs of domain the
full torus T. Let’s consider a TLWE ciphertext [m]r given a message m®) €Z, We
denote by g the function:
T T
I 2 —fr(a+})

We denote by g € N* the smallest integer such that ¢- (Py—P,) is a polynomial
with coefficients in Z. Then, we define P, =¢- P and P =gq-F,. We note that the
11

coefficients of Py — P, are multiples of % in T, where T corresponds to [—3,5[. We note

that ¢ is a divisor of p and P,—P; has coefficients of norm lower or equal to 2.

‘We define the Heaviside function H as:
{1 if 2>0
H:x—

0 if <0

We can express H by using the sign function as follows: H(z)= %

In order to evaluate a LUT, we first compute [E,(H (m))]t with one bootstrapping
(using Algorithm 2) and deduce [E,((1—H)(m))lr= (0,%)— [Eq(H(m))]r. Then, we
make a keyswitch to transform the TLWE sample [E,((1—H)(m))]r into a TRLWE
sample [E,((1—H)(m))]t,x]- Finally, we define:

cLur = (Po—P1)- [Eg(1—H)(m)) |7y (x]+(0,Ff)

_{ [Prlrapxg iEm=0
CLUT_{ [P‘J]TN[X} 1fm<0

such that:

We note that depending on the sign of m, e,y is a TRLWE encryption of Py or
P,, the test polynomials of f or g, respectively. As such, we obtain [fr(m)]r after a
second bootstrapping with [m]t as input and eryr as a test polynomial.

We can reduce the noise of eyt by applying to Py and P, the factorization described
in Section 3.4. First, we replace the polynomials Py and P, by vy=(1—X)-Py and
vg=(1—X)-P,, respectively. Thanks to the redundancy of the coefficients of Py and
Py, vy and vy have at most £ non null coefficients. We denote by ¢’ € N* the smallest
integer such that ¢'-(vy—vy) is a polynomial with coefficients in Z. We ensure that
¢ <qasq(1-X)-(Pr—P;)=(1—X)-(q-(Py—Fy)) has coefficients in Z. Then, we
define vy =¢’-vy and vy =¢-v,. We get that vo—v; has coefficients in Z of norm lower

N-1
or equal to ¢'. Finally, we compute a TRLWE encryption of ZX L Fa.g (1—H)(m))

=0
from the TLWE sample [Eb.o ((1—H)(m))]r, by applying a KeySwitch. We get:
N-1
cLur=(va—v1)[ D X* Ea g (1—H)(m))|r x)+(0,F))
=0
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such that: P .
_ Pf Tn[X] it m=>0
CLUT_{ [P(J]TN[X} 1fm<0

4.3 Full Domain Functional Bootstrapping — TOTA

Both Liu et al., [28] and Yan et al., [32] independently proposed the same approach®
to evaluate arbitrary functions over the torus using a functional bootstrapping. As such,
we refer to both methods in this paper with the name TOTA (as proposed by Yan
et al.). Let’s consider a ciphertext [m;]t = (a,b=(a,s)+m;+e). Then, by dividing

a

each coefficient of this ciphertext by 2, we get a ciphertext [mor=(%,(%,8) +ma+5)

29
where my =" 4% with k€ {0,1} and " €0,3[. Using the original bootstrapping
algorithm, we compute [Signz(lim”h an encryption of W = { 4 E Zi(l) . Then,
~1 =
we get an encryption of "5t by computing: [ma]t— [%]T—F(O,i).

For any function fr, let’s define foy such that fo)(z)= fr(2z). Since 5t € [0,%[, we
can compute fe)("5*) with a single bootstrapping using the partial domain approach
from 4.1, and fo)(%t) = fr(m1).

4.4 Full Domain Functional Bootstrapping with Composition -
ComBo

In this section, we present ComBo, a novel method to compute any function using the full
(discretized) torus as plaintext space. We will assume that p is even and fixed®.

Pseudo odd functions: We call pseudo odd function a function f that satisfies:
VeeZ,, f(—z—1)=—f(z).

Let f be a pseudo odd function over Z,. We define the following negacyclic func-
tions:

[[Ovp_]'ﬂ_> Zp
Fres: fl@) itzel0.5-1]
SR H{f(xg)ifxeﬂg,zz?lﬂ
and
[[Oap_]']]% R

P
1 .
Idpeg : - H{px—l—Ql}fxE[[(I)),g—l]]
E—x—5ifre[fp-1]
Since these 2 functions are negacyclic, they can be computed with the usual negacyclic
functional bootstrapping (presented in section 3.2).

Note that (Idnes— 1) is a bijection of Z,, that satisfies the equality (Ideg—3)(z) =2,
for all z € [0,2—1]. Otherwise, for all z € [5,p—1], (Idpeg—3)(z)=5—2—1. In Z,,
Vze[5,p—1], we have (§ —z—1) €[5 p—1].

8 Although both papers use different notations, both methods rescale the message space
into the first half of the torus before applying a half torus functional bootstrapping. In
both cases, a sign evaluation is performed to compute that rescaling.

9 If p is odd, we set p:=p+1 to get back to the assumption that p is even.
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Now, we compose it with f,eq to obtain: foeg o (Idneg — £)(#) = faeg(x) = f(z) if
2€[0,2-1]. If 2€[2,p—1], foeg®dneg—3)(2) = foeg(5 —z—1)=—f(—z—1). Since
f is pseudo odd, we have: —f(—z—1)= f(x).

Pseudo even functions: We call pseudo even function a function f that satisfies:
VeeZ,, f(—z—1)=f(z).

Let f be a pseudo even function over Z,,. We define the following negacyclic func-
tions:

[[O,p—lﬂ — Z,
og | if ze]0,2-1
et H{ e )§> ifxe%g,%—lﬁ
and
[0,p—1] — R,
absueg: ., {xp+§+% }fxeﬂo,g—l]}
P—x—5ifrelfp—1]

Since these 2 functions are also negacyclic, they can similarly be computed with the
usual negacyclic functional bootstrapping (presented in section 3.2).

Note that (absyeg — 2 — 3) satisfies the equality (abSpeg — £ — )(2) = 2 for all

x€[0,5—1]. However, 1f ze[§p—1], (absneg 1) (z)=—2—1€[0,2—1]. As such,
we ensure that the function (abspes —&—3) behaves similarly to the absolute value

function.

It follows that fheg o (abspeg — 2 — 1)(2) = fueg(z) = f(z) if 2 € [0,Z —1]. If

ze[8,p—1], fuego(absneg— 4§ — %)(m = freg(—x—1)= f(—x—1). Since f is pseudo
even, we have f(—z—1)=f(z).

Any function: We write any function f€Z, as a sum of a pseudo even function
and a pseudo odd function: f(x)= feyen(T)+ fodd(z), where feyen(z)= M

and foaa(z)= M. Besides, we build any pseudo odd or pseudo even func-
tion with at most 2 bootstrappings. So, we can build any function with at most 4
bootstrappings.

We describe in Algorithm 5 the overall algorithm for running ComBo. We denote
by FB[f]((a,b)) the application of the negacyclic functional bootstrapping procedure
using the test vector Py (as defined in Section 2.1) and applied to a ciphertext (a,b)

P
given a function f:Z,—R,.

Correctness: If we assume that the negacyclic functional bootstrapping (FB) is

correct, we obtain by Algorithm 5 a ciphertext [f (m) |t where meZ,, is the input of the

algorithm and f:Z,—Z, is the target function. Indeed, Step 1 computes an encryption

of Id“epﬁ since Idyes is @ negacyclic function. Step 2 computes an encryption of

_1 1
Id“eg(pm) 2 — Udneg - 2™ et us refer by fneg to the negacyclic function corresponding

_1
to foad over [0,5—1]. Then Step 3 computes an encryption of JnegoUdnes—3)(m) . 41,

encoding of foqqa(m) over T (as discussed in the paragraph about pseudo odd functions
in Section 4.4). Similarly, Steps 4 to 6 compute an encryption of the encoding of
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Algorithm 5 ComBo

Input: a TLWE sample [%}T € TLWES(%) with m € Z,, a bootstrapping key
BEK,_, s =(BK; € TRGSWg/(8:))icq1,n] Where S’ is the TRLWE interpretation of a se-

Z R
cret key 8, a target function f:Z,—Z,, and the two functions foda: wp : F@)— ff,z,l)
2
Z, — Rp
and feven: f(z>+f( z-1)
Output: a TLWE 01phertext (@' b)= [@]TG TLWES(@)
1: (ab)= FB[Idnelg]([%}T) > Start of pseudo odd computation
2 (ab)=(ab—3;
3: (@odd;bodd) =FB[foaa]((a,b)) > End of pseudo odd computation
4: (a,b)=FB[absneg] ([}]7) > Start of pseudo even computation
5 (ah)=(ab—% 1)
6: (aeven, beven) = FB[ feven]((@,b)) > End of pseudo even computation
7 ( /) (aoddybodd)+(aeven7beven)

feven(m) over T. Finally, Step 7 computes the sum of the pseudo odd and pseudo even
outputs which results in an encryption of @: the encoding of f(m) over T.

In practice, we can reduce the (single-shot) computation time by using parallelism
(e.g. multithreading or SIMD) for evaluating the pseudo odd and pseudo even functions
simultaneously. So, we end-up with a computation time of 2 bootstrappings. We can
alternatively reduce the number of bootstrappings to 3 thanks to the multi-value
functional bootstrapping (see Section 3.4).

From now on, we call ComBoMV the ComBo method when used with the multi-value
bootstrapping, and ComboP with parallelism.

Examples: We describe how to build the functions Id, and ReLU with ComBo.

For Id, the decomposition in pseudo even and pseudo odd functions gives Id(z) =
(—3)+(z+3). The pseudo even function Ideyen =—1 is a constant and does not require
any bootstrapping. We only have to compute the pseudo odd function Idyqq :x+%.
In this case, we have no need for multithreading or multi-value bootstrapping.

For ReLU, the decomposition gives ReLU(z) =ReLUeyen () +ReLUqqq () where:

z ifzxe [[O,g—l]}
otherwise

|
|

RelLUeven : x> {

IR
N

if z€[0,5-1]

x
RelLU dd:lﬂ—){ 2 1 A
© 5+5 otherwise

Applying ComBo naively results in 4 bootstrappings. However, we can actually compute
RelUcven With only 1 bootstrapping as for absyee. This specific improvement is useful
for ComBo, as it reduces the number of consecutive bootstrappings to 3.
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5 Error Rate and Noise Variance

In this section, we analyze the noise variance and error rate for the aforementioned
functional bootstrapping methods. We refer to each bootstrapping method by its
acronym as defined in Section 4.

5.1 Noise Variance

The noise variance of a bootstrapped ciphertext depends on the operations applied
to the input ciphertext during the bootstrapping. Table 1 gives the theoretical variance
of each of these operations. These formulas are taken from [18].

Operation Variance
ci+c;j Vi+V;
C;+C; Vi+V;
P-C; [[P[3-Vi

Keyswitch(c;) Vit &
BlindRotate(C;,v) | Vi+E&sr

Bootstrap(c;) Epr+ERs
Table 1: Obtained noise variances when applying basic operations to independent
inputs: ¢; is a TLWE ciphertext of variance V;, C; is a TRLWE ciphertext of variance
Vi, P is a plaintext polynomial and UGZ;L]J{,l.

Each of the bootstrapping methods of Section 4 relies on a composition of the
operations from Table 1. So, we compute their resulting variances in Table 2 by simply
composing the formulas from Table 1.

Bootstrapping Variance
Half-Torus Epr+Eny
FDFB [lv2—uil[3-(Epr+Exs +Ecs ) +EBrFERS
TOTA Eprt+ERs
ComBo & ComBoP 2 (Esr+ERL)
ComBoMV (los B+ [[o2l)-Epnt2-Exa

Table 2: Output noise variance of the aforementioned functional bootstrapping methods

We identify in Table 2 two kinds of functional bootstrapping algorithms. On the one
hand, we have functional bootstrapping algorithms that do not use any intermediary
polynomial multiplication and end-up with a similar noise growth to a gate bootstrap-
ping. On the other hand, we have functional bootstrapping algorithms that have a
quadratic growth of the output noise variance with respect to the norm of the used
test polynomial. For this second category, we can reduce the output noise by using
the factorization technique described in Section 3.4.
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5.2 Probability of Error

We discuss in this section the probabilities of error of all the functional bootstrapping
methods from Section 4. Similar approaches to compute the probability of error of
functional bootstrapping can be found in [2] and [24].

We first consider a single BlindRotate operation given a message m(®) €Z,, a TLWE
ciphertext (a,b) where b= ({a,s)+m+e), and a TRLWE ciphertext (0,t), where ¢ is the
test polynomial. Following the notation from Section 3.1, we have m:Ep(m(p)).

As mentioned in Section 3.2, applying a BlindRotate and extracting the first coefficient
outputs [t*(¢(a,b))]r. Hence, we need the equality [t*(é(@,b))]=[f(m)] to hold true
for any message m'?) in order to compute LUT,(f) for a given negacyclic function
f. To that end, we consider ¢t =Py, - X % assuming that p divides N (we motivated
this choice in Figure 1 and Section 3.3). Note that ¢(@,b)=2N-(m+e+r) mod [2N]
where 7 is an error introduced when scaling and rounding the coefficients of (a,b) from
T to Zon. Thus, we have:

[t*(o(a,b)]= | f 2;: :[f<[p~(m+«;+r)+2j)]

It follows that [t*(¢p(@,b))]=[f(m)] as long as |e+7| < ﬁ. The error r follows a translated

Irwin-Hall distribution with variance 42%12 that, as is well known, can be closely
approximated by a centered Gaussian distribution. With the assumptions that e and r are
independent random variables, the probability that |e+r|< ﬁ is 77(%,‘/C—H/})7 where
V. and V. are respectively the variances of the ciphertext and r, and P is the notation

introduced in Section 2.1. The probability of error is then lfp(%,‘/chVr).

When multiple BlindRotate operations occur during a functional bootstrapping,
each of them must succeed to ensure a correct computation. We can use the well

known formulas of probabilities for independent or correlated events to find the overall
probability of error of a functional bootstrapping method.

The probabilities of success of the functional bootstrapping methods from Section 4
are summarized in Table 3. We denote by:

V=Epr+ERs
the variance of a simple gate bootstrapping, and by:
N
Vi=lluill3-Enn+Ex's

the variance of a bootstrapping using an intermediary polynomial multiplication.
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Bootstrapping Probability of success
Half-Torus P(%pyﬁ-vr)
1
FDFB P(Tp,\/ﬁ%)
TOTA P vy pl Ve v
R S

ComBo & ComBoP P(ﬁ,VC—H@)-P(iV—i—W)Q

1
ComBoMV P(%p,vcwr)-ﬂp(ﬁ,mm
=0

Table 3: Probability of success for each functional boogstrapping method with plaintext
size p

The variances and the value of p given as inputs to the formulas of Table 3 have
a high impact on the error rate. Indeed, 1—"P(a,V’) gets exponentially closer to 0 when
a increases or when V' decreases. For example, for a given p and V, the error rate of
the Half-Torus method (i.e., (lfP(ﬁ,V))) is higher than the probability of error of

FDFB (1—P(5;,V))-

6 Experimental Results

In this section, we compare the computation time and the error rate for the functional
bootstrapping methods of Section 4. We wrap up this section with a time-error trade-off
analysis. All experiments'® were implemented on an Intel Core i5-8250U CPU @
1.60GHz by building on the TFHE open source library''.

6.1 Parameters

We present in Table 4 the parameter sets used for our tests. We generate these
parameters by following the guidelines below:

— We fix the security level A to 128 bits, which is the lowest security level considered
as secure by present day standard.

— For efficiency, we want N to be a small power of 2. We notice that for N =512, the
noise level required for ensuring security is too large to compute properly a functional
bootstrapping. Thus, we choose N =1024, which is the default value for the degree
of the cyclotomic polynomial with TFHE.

— We note o7 x] the standard deviation used for the noise of the bootstrapping key
and the keyswitch key from TLWE to TRLWE. We use the lattice-estimator [4] to set
0Ty [x] @ low as possible with respect to the security level A. Thus, o1 x]=5.6- 108,

19 Code available at:  https://github.com/CEA-LIST/Cingulata/experiments/tfhe-
funcbootstrap-experiments.zip.
M https://github.com/tfthe/tthe
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— For efficiency, we choose values of n lower than N. As such, we generate sets of
parameters for all n between 700 and 1024 by step of 100.

— We note ot the standard deviation used for the noise of the keyswitch key from
TLWE to TLWE and fresh ciphertexts. For each n, we use the lattice-estimator to
set o as low as possible with respect to the security level A.

The remaining parameters, present in Table 4, are unrelated to the security level of
the cryptosystem. We choose them using the following guidelines:

— We consider the Half-Torus method as the baseline for the error rate of each method.
As such, we tailor sets of parameters to reach an error rate close to 273 using the
Half-Torus method for a plaintext space of p=38.

— For faster bootstrapping operations, we need to have [ as low as possible. We still

need to select [ high enough to reach the target error rate.

For given [, n, N, and o7 [x], We choose B, to minimize the noise of the BlindRotate.

For lower noise, we need Bk g to be as high as possible. Since the size of the keys

grows with the basis, we set it to 1024 to avoid memory issues.

— For faster keyswitching operations, we need to have ¢ as low as possible. We still
need to select ¢ high enough to reach the target error rate. Given the choice of Big,
we find that ¢=2 is the optimal choice.

Set n 1| By oT o1 [X]
1 [1024[5] 16 | 5.6e % | 5.6e=®
2 [1024 4] 32 [5.6e7® | 5.6~
3 1900 [4]32]51e7 % [5.6e7%®
4 1900 [3]64 |51e77 | 5.6e7 "8
5 | 800 [ 4] 32 [3.1e7%% [ 5.6e7*®
6 | 800 [3] 64 [3.1e % 5.6e~
7 1700 [4] 32 [1.9e7% [ 5.6e7 %
8 [ 700 [3] 64 [1.9¢7% | 5.6e7 %8

Table 4: Selected parameter sets with p=8, N =1024, Bxs=1024, t=2, and A=128,
following the guidelines of Section 6.1

6.2 FError Rate

In this section, we compute the probability of error for the functional bootstrapping
methods of Section 4 with respect to every set of parameters described in Table 4.

In order to have a fair evaluation of the ability to consecutively bootstrap with
the same method, we assume that the input to each method immediately follows a
bootstrapping with the same method. We present in Table 5 the obtained error rates
with respect to each method.

We note that the error rate of each method does not depend on the function computed
during the bootstrapping except for FDFB and ComBoMV. Thus, we define a dedicated
analysis methodology for these methods:
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— For FDFB, we evaluate the error rate for the functions Id and RelLU as well as the worst
case that maximizes the output noise. Since we use the multi-value bootstrapping
factorization (described in Section 3.4), the worst case test polynomial vo—wv; has
£ non-zero values each equal to p. If we apply the FDFB error variance formula
from Table 2, we obtain the worst case noise bound for the output ciphertext:
é'(gBR+5ﬁ§+5?éV)+EBR+Eﬁ§.

— For ComBoMV, we follow the decomposition fodd,neg©ldneg + feven,neg ©absnes given
in Section 4.4, and use a multi-value bootstrapping to compute Idyes and absyeg at the
same time. As such, the error rate becomes independent from the computed function.

Set 1 /2|3 |4|5 |6| 7|8
Half-Torus 34 (2813220 36 |{23] 39 |25
TOTA 33 (2713018 34 |20 36 |22

Worst | 7 3131 3 1 3 1

FDFB Id 55 |27 |31 (11| 34 |13 ] 35 | 14

ReLU | 55 |27 (31|11 34 |13] 35 | 14

ComBo 116 | 85 | 97 [ 50 | 108 | 56 | 116 | 61

ComBoP 116 | 85 | 97 [ 50 | 108 | 56 | 116 | 61

ComBoMV 46 1211238 |26 |9 29 |10
Table 5: —log, of error rate for p=8

In Table 5, we show that for any given set of parameters, the probability of error
is almost identical between TOTA and Half-Torus, or slightly in favor of the latter.
Meanwhile, ComBo and ComBoP outperform the other methods in every case by at
least 30 orders of magnitude.

We notice that FDFB and ComBoMV do not behave in the same fashion as the other
methods with respect to changes in parameters:

— They favorably compare to the others when the noise of the input ciphertext is small
compared to V., as in set 1 where ComBoMYV reaches an error rate of 2746 while
the Half-Torus method reaches an error rate of 2734, In these cases, the overhead of
the noise created by the intermediary polynomial multiplication is absorbed by V..

— They unfavorably compare to the other methods when V. is small compared to the
noise of the input ciphertext, as in set 8 where ComBoMV reaches an error rate of
2710 while the Half-Torus method reaches an error rate of 272°.

In addition, for FDFB, the specific values of the polynomial (P,— Py from Section4.2)
also have to be taken into account when trying to gauge whether the parameters are
favorable or not towards FDFB use. Indeed, in simple cases such as the ReLU and Id
functions, we can see a huge improvement (from 27 to 275 for the set 1) compared
to the worst case approximation for FDFB.

6.3 Time Performance

The Half-Torus method is the fastest as it requires one BlindRotate. Then, TOTA is slightly
faster than FDFB as it requires less KeySwitch operations. It is also on par with ComBoP
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as the parallelism overhead is negligible. As far as the ComBo method is concerned, the
number of BlindRotate depends on the evaluated function. For a simple function such
as the absolute value, its speed is identical to the Half-Torus method. Meanwhile, more
complex functions need up to 4 bootstrappings. So, a sequential execution of ComBo
becomes twice slower than TOTA and FDFB. Note however that these latter methods
are intrinsically sequential. As such, they cannot outperform ComBoP.

As a bonus, we obtain a rule of thumb to get the computation time of each functional
bootstrapping method. Indeed, multiplying the computation time of one bootstrapping
with the number of consecutive BlindRotate gives accurate estimations of the result
from Table 6. We remind that the computation time of one bootstrapping is almost
equal to the time required to run to 1 BlindRotate plus 1 KeySwitch.

Set 1 2 3 4 5 6 7 8
Half-Torus 135.0 | 126.1 | 101.4 | 94.6 | 974 | 84.5 | 85.5 | 72.0
TOTA 274.7 | 252.4 1 209.3 | 189.3 | 194.9 | 169.1 | 174.3 |147.9
FDFB 287.0 | 268.1 | 220.5 | 203.2 | 207.4 | 181.2 | 182.8 | 157.8

ComBo abs 136.5 | 126.0 | 104.9 | 94.6 | 97.5 | 84.5 | 87.0 | 74.2
generic | 551.5 | 503.6 | 417.7 | 378.0 | 389.6 | 337.5 | 341.4 |296.5
ComBoP 273.6 | 258.8 | 211.1 | 200.1 | 205.3 | 182.1 | 183.3 | 153.5
ComBoMV 419.0 | 386.2 | 319.7 | 290.9 | 299.0 | 260.1 | 262.0 | 224.6
Table 6: Computation time in ms

Another way of showing ComBoP advantages is to compute the time performance of
each method given their own optimized parameter set with respect to the same target
error rate and plaintext space of size p. When doing so, we get the following example
results with a target error rate of 2732

— p=4: We achieve a speed up of x1.04 versus TOTA, x1.1 versus FDFB (ReLU) and
x2 versus FDFB (worst case).

— p=8: We achieve a speed up of x1.09 versus TOTA, x1.12 versus FDFB (ReLU) and
x4 versus FDFB (worst case).

— p=16: We achieve a speed up of x1.12 versus TOTA, x1.4 versus FDFB (ReLU) and
x2 versus FDFB (worst case).

Besides, ComBo, ComBoP and ComBoMV are the only method allowing for param-
eters using N =1024 when p=16. This lead to ciphertexts twice smaller in this specific
case, which is another important metric for FHE computations.

6.4 Wrapping-up: Time-Error Trade-offs

We summarize the trade-offs between the computation time and the error rate for each
method in Figure 2 and Figure 3. We separate the sets defined in Table 4 in order
to have better readability of the figures.

For FDFB, we represent both the worst case and the ReLU, which is the best case
among the functions we considered. For ComBo, ComBoMV and ComBoP methods, the
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Fig. 3: Time-Error trade-off for parameters 4,6 and 8

best case is represented with the absolute value function and noted ComBo abs. The
ComBo, ComBoMV and ComBoP points are all relative to a generic function following
the pseudo even and pseudo odd decomposition from Section 4.4.

Fast operations will result in having points closer to the left. Meanwhile, a low error
rate corresponds to points close to the upper parts of the graphs from Figures 2 and
3. With those two considerations in mind, we notice that the only methods on the left
of the red line are the Half-Torus method and ComBo in the best case scenario. In this
specific scenario, the ComBo method is the best in all regards. For functions requiring
more bootstrappings, a compromise between speed and error rate must be made. In
the red circle lies the points relative to the ComBoP method. We can clearly see that
it is both more accurate and faster than all the other methods except for the Half-Torus
one. Thus, it is the best alternative to the Half-Torus method among the suggested
functional bootstrapping.
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7 Conclusion

Through the use of several bootstrappings and, most of the time, additional operations,
every full domain method adds some output noise when compared to the partial domain
method (Section 4.1). So the bottom line is: does a larger initial plaintext space make
up for the added noise and computation time?

Table 5 and Table 6 confirm that the Yan et al., [32] (TOTA) method is both less
accurate and twice as time-consuming than the partial domain method. Both Kluczniak
and Schild’s [27] (FDFB) and ComBoP methods provide a better accuracy than the par-
tial domain method for well chosen parameters with varying additional computational
costs.

Among the above full-domain methods, ComBoP achieves the best performance
and accuracy. Furthermore, it outperforms the partial domain method in the following
cases:

— The parameters of the cryptosystem are limited due to application constraints and
the error rate of the Half-Torus is too large.

— Intermediate operations such as additions and multiplications push messages out
of the Half-Torus space.

— Modular arithmetic is needed (which is impossible with the partial domain method).

When none of the above applies, however, the Half-Torus bootstrapping method still
achieves better performances. This illustrates the fact, that there is no universal best
method for functional bootstrapping and that one should carefully choose the most ap-
propriate one depending on his or her application constraints. This paper’s methodology
and unified analysis gives a complete set of tools for making these choices.

ComBo (Section 4.4) has a smaller error rate than any other method available in
the literature. In addition, as it allows to perform two bootstrappings in parallel, it
may come without additional computational cost compared to the other full domain
methods which are intrinsically serial. As such, ComBoP appears especially well adapted
to benefit from the SIMD instruction sets available in modern processors. Furthermore,
ComBo is particularly suited to homomorphic evaluation of functions such as ReLU, one
of the key building-blocks for enabling advanced deep learning functions over encrypted
data at larger scale.
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