
HAL Id: cea-04486240
https://cea.hal.science/cea-04486240

Submitted on 1 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploring IoT Trickle-Based Dissemination Using Timed
Model-Checking and Symbolic Execution

Boutheina Bannour, Arnault Lapitre, Pascale Le Gall

To cite this version:
Boutheina Bannour, Arnault Lapitre, Pascale Le Gall. Exploring IoT Trickle-Based Dissemination
Using Timed Model-Checking and Symbolic Execution. International Conference on Network Sys-
tems (NETYS), Jun 2020, Marrachech, Morocco. pp.94-111, �10.1007/978-3-030-67087-0_7�. �cea-
04486240�

https://cea.hal.science/cea-04486240
https://hal.archives-ouvertes.fr

Exploring IoT Trickle-based Dissemination using
Timed Model-checking and Symbolic Execution

Boutheina Bannour1, Arnault Lapitre1, and Pascale Le Gall2

1 CEA LIST, Gif-sur-Yvette, France
email: {firstname.lastname}@cea.fr

2 MICS Lab., Univ. Paris-Saclay, Gif-sur-Yvette, France
email: {firstname.lastname}@centralesupelec.fr

Abstract. We focus on studying an IoT algorithm called Trickle using
a formal model-based approach. The algorithm has an essential role in
traffic regulation across distributed networks of wireless sensors which
are part of IoT. The algorithm allows efficient dissemination of infor-
mation such as critical applicative data, firmware upgrades or security
fixes. In this paper, we develop timed asynchronous computational mod-
els for Trickle. We show how reachability properties can be assessed on
such models using an original combination of model-checking and sym-
bolic execution implemented by the tools UPPAAL and DIVERSITY,
respectively. Our experiments produce promising results on highlighting
updated or outdated nodes situations during dissemination.

1 Introduction

Context. Sensors networks (WSN) play an essential role in the uptake of the
Internet of Things (IoT) as they allow direct connection between the physi-
cal environment and the digital systems. They come with a reduced econom-
ical cost, and they can easily be deployed in inaccessible areas. WSN involve
constrained-energy devices (sensors) which operate over long periods. The in-
formation dissemination across these networks is often subject to constraints to
reduce the communication cost, with the objective not to exhaust the batteries
of such nodes that are in general neither rechargeable nor replaceable after the
deployment. Gossip paradigm has been recognized as being efficient in practice
to control the communications of each node, roughly speaking: i) every node try
quickly to transmit new data, and ii) in case of redundant data reception, the
node reduces the transmissions frequency over time. The algorithm Trickle [23,
?,?] is one of the most known: It comes as a standard library in TinyOS [22]
and Contiki [15], two well-known firmware Operating Systems (OS) for WSN.
The algorithm is involved in recently standardized WSN protocols namely the
Multicast Protocol for Low Power and Lossy Networks (MPL) [16] and the IPv6
Routing Protocol for Low Power and Lossy Networks (RPL) [1]. There are many
others like FireFly Gossip (FiGo) [7], Energy Efficient Gossiping (E-Gossip) [21],
Multi Randomized Gossip-Consensus-based Sync (Multi RGCS) [29], and new
ones continue to be proposed given the economic interest of WSN.

2 Boutheina Bannour, Arnault Lapitre, and Pascale Le Gall

Case study: Trickle dissemination. The goal of Trickle is to reach a stable
global state of the network where all the nodes have the same up-to-date informa-
tion. Each node applies a set of rules to control its transmissions as follows [27]:

– each node maintains a current interval I, a counter c and a broadcasting
time t in interval [I/2, I[,

– global parameters to all nodes are k the redundancy constant, Imin (resp.
Imax) the smallest (resp. largest) interval,

– each node applies the following rules:
1. at the start of a new interval, the timer and counter c are reset and t is

randomly set to a value in [I/2, I[,
2. if a received message is consistent with the information the node holds,

the counter c is incremented,
3. when the timer reaches t and c < k, a message carrying the node infor-

mation is transmitted to neighbours in broadcast,
4. when the timer expires at I, the interval length is increased by setting I

to min(2 · I, Imax) and a new interval starts,
5. when a received message is inconsistent with the node information, then
I is set to Imin, and a new interval starts. Otherwise, nothing happens.

Trickle uses ”polite gossip” to exchange information with its network neighbours.
It breaks time into dynamically adjustable intervals, and at a random point in
each interval, it considers broadcasting the information it holds. If Trickle has
already heard several other nodes gossip the same information in this interval,
it politely stays quiet: ”repeating what someone else has said is rude” [23].

Motivation and related work. As it may show from Trickle, popular gossip
protocols are sophisticated and complex on the nature of applied control on node
transmissions. For that reason, most of the validation effort of this class of pro-
tocols relies mainly on testbeds or simulations, and at a less extend on analytical
methods, more exhaustive, yet they lack automation: among the latter, we can
cite those developed for Trickle in [6, 18, 28, 11, 31]. On the other hand, formal
methods and in particular model-checking [10] come with a high degree of au-
tomation. They consider computational models which, by its nature, delimit the
perimeter of the analysis and the kind of properties to be verified. The survey [8]
overviews many relevant works on applying formal methods on WSN protocols,
including gossip-based protocols. The following papers [19, 32, 14, 34, 33]) have
successfully applied model-checking on gossip protocols, among which [14, 34, 33]
concern Trickle. The early work [14] proposed formal models for WSN based on
classic process algebras. The work developed a simplified model of Trickle for il-
lustration purposes, then translated into a network of Timed Automata (TA) [2]
supported by the model-checker UPPAAL. In their model, Trickle intervals are
not adjustable and are of fixed length, which restricts the coverage of performed
analyses. More recently, authors in [34, ?] have proposed model-checking tech-
niques for WSN, and Trickle has been proposed for illustration as well. The
work [34] provides formal semantics for a subset of NesC programs used to built
TinyOS [22] applications; such semantics have been implemented in the model-
checking framework PAT [24] which supports TA too. The work [33] focuses on

3

combining probabilistic model checking provided by the tool PRISM [20] with
automated debugging algorithms in order to find pathological typologies which
cause some failure: typically in case of Trickle, it is about finding the topology
pattern that prevents recent information from being spread. In both works [34,
?], Trickle models have not been given. In this paper, we are interested in the
distributed and desynchronized nature of WSN nodes [26, ?], that is they are
dephased by some duration because often they do not share a common zero
as classically in distributed systems. Gossip protocols, Trickle included, do not
have any assumption on nodes that should be synchronized. The control they
provide on transmission instants is usually implemented by introducing some
time randomness to benefit from desynchronized nodes. Besides, inline with such
assumption, we consider asynchronous communications which can take time to
deliver data, all previous works have not taken into account such desynchronized
hypothesis.

Contribution and paper outline. We provide formal models for Trickle as
Extended Timed Automata (XTA) in which data can be used to define com-
putations, random updates, constraints on clocks and communication actions.
A network of XTA can then be designed to form the overall Trickle topology
of nodes. The network is endowed with operational semantics in which XTA
communicate their data via unbounded queues. In this paper, we are interested
in highlighting some situations of updated or outdated nodes using reachability
properties under the desynchronized assumption. To assess such properties on
XTA, which are more expressive than classical TA because they introduce data,
we propose to combine model-checking [10] with symbolic execution [17]. The
latter virtually executes models (or code) for symbolic input parameters rather
than concrete values. Each execution path is associated with logical constraints
on those input parameters computed at each execution step, the so-called Path
Conditions (PC). PCs are a compact representation of classes of actual values
for input parameters for executing those paths; they can be solved using SMT
solvers such as CVC4 [5] or Z3 [12]. Symbolic execution can be applied on timed
models (e.g., [4]).

Yet enumerating all execution paths to check a property of interest is com-
binatorial, this is an identified problem of the technique that we have experi-
mented as well on some early work on Trickle [30, ?]. The idea is then to apply
model-checking first on XTA in which data is numeric and random updates
are restricted to some values, yet clock constraints are handled as usual by
zone-based abstraction implemented in UPPAAL using the efficient Difference
Bounded Matrices data structure (DBM) [13]. In case the property is verified,
the corresponding sequence of transitions of a solution is used to guide symbolic
execution. We experiment with the combined techniques in UPPAAL and in the
symbolic execution tool DIVERSITY [25]. The rest of the paper is organized
as follows. Section 2 introduces the formal model of the network of XTA and
its operational semantics. Section 3 proposes a Trickle model designed as a net-
work of XTA. Section 4 introduces our approach of combining model-checking

4 Boutheina Bannour, Arnault Lapitre, and Pascale Le Gall

and symbolic execution to assess reachability properties and evaluates it on
UPPAAL-DIVERSITY connection. Section 5 concludes the paper.

2 Network of extended timed automata

The model of Timed automata [3] is a well-established formalism for modelling
the timing behaviour of systems. This section defines syntax and semantics of an
extension of timed automata introducing data updates, communication actions
with data transmission, and non-trivial data-dependent time constraints. Those
appear in functional specification of systems, as in the specification of Trickle in
the introduction.

Data domain. We use a a universal data domain D to abstract all values of
time variables, called clocks as usual, and other data variables. Data variables
can be of any type, whereas clocks are typed in a time domain T ⊆ D which is
isomorphic to Q+, the set of positive rational numbers.

Data valuations. For a set of data variables V , a data valuation is a type-
preserving mapping v : V → D. We canonically extend data valuation to usual
arithmetical expressions defined over V , i.e., v(e) is the value of e for the valua-
tion v. We denote DV the set of all such valuations.

Data formulae. The set F(V) of data formula f over V is either: an atomic
formula of the form true, false, e1 = e2, e1 ≺ e2, and e1 � e2 with ≺∈ {<,≤}
and �∈ {>,≥}: or built over those using usual connectives: conjunction (∧),
disjunction (∨), and negation (¬).

Sequential data updates. We consider sequential updates defined as follows:

u ::= skip | x :=e1 | e1 ≺: x :≺ e2 | u1;u2 | if(f)then{u1}else{u2} | repeat(n){u1}

skip is the null update; x := e1 assigns the variable x with a new value denoted
by e1; e1 ≺: x :≺ e2 assigns x with a new random value bounded from below
by the value denoted by e1, the value of x is also bounded from above by the
value denoted by e2. Moreover, updates can be built using usual control primi-
tives: sequence (;), condition (if . . . then . . . else . . .) or counted-loop (repeat(n))
allowing the repetition of the enclosed update n times.

5

The set of update functions U(V) is defined by functions JuK from DV to 2(D
V).

The set of valuations JuK(v) ∈ 2(D
V) is defined on the form of u as follows3:

JskipK(v)={v} (1)

Jx:=e1K(v)={v[x→v(e1)]} (2)

Je1≺:x:≺e2K(v)={v[x→y]|v(e1)≺y≺v(e2)} (3)

Ju1;u2K(v)={v′ | ∃v′′∈u1(v), v
′∈u2(v

′′)} (4)

Jif(f)then{u1}else{u2}K(v)=u1(v) v(f) (5)

Jif(f)then{u1}else{u2}K(v)=u2(v) ¬v(f) (6)

Jrepeat(n){u1}K(v)=Ju1;repeat(n−1){u1}K(v) n>0 (7)

Jrepeat(0){u1}K(v)={v} (8)

Clock formulae. Given a set of clocks Cl disjointed from V (Cl ∩ V = ∅),
a clock valuation is a mapping w : Cl → T . With previous notation, the set
G(Cl, V) of clock formulas g over Cl and V is either an atomic formulas of the
form true, false, clk ≺ e or clk � e where e is an expression over V typed in
time domain T ; or a conjunction of those. The set of clock invariants I(Cl) is
defined by conjunctions of formulas of the form clk ≺ e. We define a universal
valuation v ⊕ w : V ∪ Cl → D as the resulting valuation which coincide with v
and w on V and Cl respectively. This valuation can be canonically extended to
formulas as usual.

Communication actions with data. Given a set of interaction points, often
called ports, P , the set of communication actions C(P, V) contains two kind
elements: output actions of the form p!e which denotes an emission on some
port p of a piece of data corresponding to the current valuation of e; or input
actions of the form p?x which denotes a reception of a piece of data that is stored
in the variable x. Moreover, we consider the special action ε which denotes the
absence of communication action. The valuations of actions of the form p!e, p?x,
and ε, are defined by v(p!e) = p!v(e), v(p?x) = p?v(x), and v(ε) = ε respectively.

Extended timed automaton. An extended timed automaton (XTA in short)
is a tuple (L, l0, V, Cl, P, Tr, Inv) where L is a finite set of locations, l0 ∈ L is
the initial location, V is a set of variables, Cl is a set of clocks, P is a set of
ports, Tr ⊆ L×F(V)×G(Cl, V)× (C(P, V)∪ {ε})×U(V)× 2Cl ×L is a set of
transitions, and Inv : L→ I(Cl) is a state invariant mapping.

For a transition tr=(l, f, g, ca, u,R, l′)∈Tr, l and l′ are respectively the source
and target location of tr; f and g are respectively the data guard and time
guard of tr, i.e., enabling conditions on data variables and clocks; ca is the
communication action of tr; u is an update function through which data variables
are updated when tr is executed; and R ⊆ Cl is the set of clocks to be reset.

3 Given a function h : A→ B, a subset X ⊂ A, the function h′ = h[x→ y , x ∈ X] is
defined as follows: h′(z) = y if z ∈ X otherwise h′(z) = h(z). In case X is a singleton
of the form {x}, we denote h′ = h[x→ y] in short.

6 Boutheina Bannour, Arnault Lapitre, and Pascale Le Gall

The semantics of an XTA is a labeled transition system where states s are triples
(l, v, w) where l is a location, v and w are data and clock valuations respectively.
The transition relation is defined as follows:

– delay transition: (l, v, w)
d−→ (l, v, w′) where for all clk ∈ Cl, w′(clk) =

w(clk) + d with some d ∈ T such that v ⊕ w′ |= Inv(l)

– action transition: (l, v, w)
a−→ (l′, v′, w′) if and only if there exists a transition

(l, f, g, ca, u,R, l′) ∈ Tr:
• v ⊕ w |= f ∧ g,
• a = v(ca)
• v′ ∈ JuK(v)
• w′ = w[clk → 0 , clk ∈ R].

In the following, we introduce a network of XTA which exchange data using
broadcast communication.

A network of extended timed automata. A network of XTA denoted by A =
((Ai)i∈{1,...,n},K) is defined as follows:

– (Ai)i∈{1,...,n} a family of XTA Ai = (Li, l
i
0, Vi, Cli, Pi, T ri, Invi) which do

not share variables and clocks, i.e., for all i, j ≤ n we have that Vi ∩ Vj = ∅,
Cli ∩ Clj = ∅, and Pi ∩ Pj = ∅,

– a total function K : PN → 2PN specifying connections between ports.

The set of all ports of N is denoted by PN =
⋃

i≤n Pi. Besides, the set of
all variables (resp. clock variables) of N is denoted by VN =

⋃
i≤n Vi (resp.

ClN =
⋃

i≤n Cli).
We make the hypothesis that latent data issued (potentially by different sources)
and targeting some internal port in delivered on that port in the order they were
sent, i.e., we will implement this using queues with a policy of first-in-first-out
(fifo). In the following, we denote by the function q : PN → D∗ the pending data
in the network as being the content of queues associated with receiving ports.
The semantics of a network of XTA is a labeled transition system in which: states
are tuples of the form S = ((l1, v1, w1), . . . , (ln, vn, wn), q) with initial states S0

verify for all i ≤ n, li = li0; and transitions are defined as follows:

– delay transition:

((l1, v1, w1), . . . , (ln, vn, wn), q)
d−→ ((l1, v1, w

′
1), . . . , (ln, vn, w

′
n), q)

iff for all i ≤ n there exists (li, vi, wi)
d−→ (li, vi, w

′
i)

– internal output transition:
((l1, v1, w1), . . . , (li, vi, wi), . . . , (ln, vn, wn), q)

a−→

((l1, v1, w1), . . . , (l′i, v
′
i, w
′
i), . . . , (ln, vn, wn), q′)

iff there exists (li, vi, wi)
a−→ (l′i, v

′
i, w
′
i) with a = p!m, q′ is such that for all

port p1 either p1 ∈ K(p) then q′(p1) = q(p1).m otherwise q′(p1) = q(p1),

7

– internal input transition:
((l1, v1, w1), . . . , (li, vi, wi), . . . , (ln, vn, wn), q)

a−→

((l1, v1, w1), . . . , (l′i, v
′
i, w
′
i), . . . , (ln, vn, wn), q′)

iff there exists (li, vi, wi)
a−→ (l′i, v

′
i, w
′
i) with a = p?m, q(p) is not empty and

is of the form q(p) = m.q1, and q′ is such that q′(p) = q1 and for all p1 6= p
we have q′(p1) = q(p1),

– silent or external action transition:
((l1, v1, w1), . . . , (li, vi, wi), . . . , (ln, vn, wn), q)

a−→

((l1, v1, w1), . . . , (l′i, v
′
i, w
′
i), . . . , (ln, vn, wn), q)

iff there exists (li, vi, wi)
a−→ (l′i, v

′
i, w
′
i) with a = ε or a = p!m (resp. a = p?m)

such that K(p) = ∅ (resp. for all p1, p 6∈ K(p1)).

In a nutshell, the above definition shows that time advances in the same way for
all clocks of XTA forming the network. Besides, an internal emission p!m on a
port p has the effect of filling all the fifo associated to the ports of K(p) and an
internal reception p?m on port p consumes the first message stored in its fifo.
When a silent action or an external action (reception or an emission) occurs on
a port which is not connected to other XTA ports, it is executed with no effect
on fifo queues, since it is assumed be connected to some implicit environment.
A run of the network is derived from the labelled transition system as a path
starting in an S0 and alternating delay transitions and action transitions. The
property we are interested in is the reachability of states S. A state S is reachable
iff there exists a run in which S occurs. In practice, such states are those which
satisfy some user-specified formula φ = f ∧ g on data and clocks.
Let us denote by tr-seq(r) the sequence of (syntactic) transitions in

⋃
i≤n Tri

covered by a run r. We recall that such sequence intertwines transitions of dif-
ferent automata composing the network based on induced fifo-communications
causalities discussed above.

Two runs r1 and r2 are said to be coverage equivalent if and only if tr-seq(r1) =
tr-seq(r2), i.e., they cover the same (syntactic) transitions sequence.
The equivalence classes characterized by this relation guide the symbolic exe-
cution to search for all runs of a given class (as a symbolic path together with
its path condition). On the other hand, model-checking will be used to com-
pute some representative runs of the class that satisfy a reachability property φ.
In practice, from the latter, we extract the transition sequence that guides the
exploration performed by the symbolic execution.

3 Trickle models

Trickle node behavior. We propose the XTA (L, Init, V, Cl, P, Tr, Inv) which
specifies Trickle behaviour of each node in the network, the automaton is de-
picted in Figure 1. The XTA has 5 locations L = {Init, Listen1, Listen2, Check1, Check2}
in which Init is the initial location. The clocks set is a singleton Cl = {clk}

8 Boutheina Bannour, Arnault Lapitre, and Pascale Le Gall

containing one clock used to implement the Trickle timer. The set of variables
contains 5 variables V = {I, t, c,myv, rcv}: the former three variables I, t and c
are Trickle variables which respectively represent the value of the current inter-
val, the instant of transmission and the counter value (whereas Imin, Imax, k are
Trickle constants). Without loss of generality, in this automaton, Trickle is used
to maintain consistency of version number across the network, the variable myv
stores the most recent version the node holds and rcv is used to store received
versions from the neighbourhood.

Init

Listen1

Listen2 Check2Check1

[c < k] [clk = t]
Version ! myv

[c ≥ k] [clk = t]

[clk = I]
doubleInterval
{clk}

re
se
tIn

te
rv
a
l

{
c
lk}

doubleInterval :
if (2 · I ≤ Imax)
I := 2 · I

else
I := Imax ;

I/2 ≤: t :< I ;
c := 0

updateVersion :
if (myv ≤ rcv)
myv := rcv

else
skip ;

resetInterval :
I := Imin ;
I/2 ≤: t :< I ;
c := 0

[clk ≤ t]

[true]

[clk ≤ I]

[¬isConsistent]
updateVersion
resetInterval

[¬isConsistent]
updateVersion
resetInterval

[isConsistent]
[isConsistent]
c := c + 1

Version ? rcv
isConsistent :=

rcv = myv ;

Version ? rcv
isConsistent :=

rcv = myv ;

[clk ≤ 0][clk ≤ 0]

Fig. 1. An extended timed automaton (XTA) of a Trickle node behavior

The automaton has 9 transitions composing the set Tr, that we will overview
next together with meaning associated with state invariants defined by mapping
Inv. A node can be started at any time; this is captured by state invariant
Inv(Init) : true in location l0, which means that any duration can elapse in
this location. The transition Init → Listen1 is fired to start the Trickle be-
haviour. It sets I to Imin, assigns counter c and clk with 0, and finally chooses
a the transmission time I/2 ≤: t :< I within the second-half of the interval
current interval I. The state invariant Inv(Listen1) : clk ≤ t constrain time
elapsing to be bounded by t. When clk reaches t, there two possible behav-
iors: either the transmission occurs given c < k is fulfilled (horizontal transition
Listen1 → Listen2 with action V ersion?rcv), otherwise the transmission is sup-
pressed (curved transition Listen1 → Listen2 with action ε). A first reception
handling is defined by transition Listen1 → Check1. Once started, the automa-
ton satisfies the input enableless property: in every state (Listen1 or Listen2),
it is possible to receive every input (action V ersion?rcv). Each time, a version is
received, it is compared to the current version of the node: in case of consistency

9

(same version rcv = myv), the counter c is incremented (c := c + 1), we recall
that the latter counts redundant versions; otherwise (case of inconsistency) a
new interval is started, and the node updated its version if it is older.

Listen1
Listen2 ExtCheck2ExtCheck1

[myv < rcv]
myv := rcv
resetInterval[myv < rcv]

myv := rcv
resetInterval

[myv ≥ rcv]

[myv ≥ rcv]

[clk ≤ 0][clk ≤ 0]

ExtVersion ? rcvExtVersion ? rcv

node1 node2

node3 node4

external

source

gateway

range

Fig. 2. Setting a network of XTA for a Trickle dissemination

State invariant Inv(Listen2) : clk ≤ I constrains time elapsing to be at most
of the value denoted by current interval length I. Subsequently, a new interval is
started by doubling I (until Imax) and a new t is chosen as previous (transition
Listen2 → Listen1). Similar reception handling as in location Listen1 is defined.

Network modelling. A transmission can be associated with several receivers,
which are exactly those situated within the broadcast range of the node, i.e.,
they are its neighbours. A typical Trickle topology contains some gateway node
node1 in Figure 2, which can receive versions to be disseminated across the net-
work from an external source. A network of XTA one per node can be naturally
designed for such topology. Among those, XTA of gateway nodes are extended
with extra transitions which allows the reception of new versions from the ex-
ternal source (transitions Listen1 → ExtCheck1 and Listen2 → ExtCheck2
with input ExtV ersion?myv). The connections between XTA ports, defined by
function K, are inferred from topology connections: e.g., K(node1.V ersion) =
{noed2.V ersion, node3.V ersion} for the four-nodes topology depicted by the
bidirectional graph in Figure 2. Note that ports of gateway nodes are implicitly
connected to external source and can receive any value.

Illustration of network runs. Figure 3 depicts a simple sequence diagram
together with a run of a simple two-nodes network of XTA. The run shows that
both nodes exchange a version of value 0, that they both initially hold (see
data valuations in initial state S0). As the redundancy constant k is set to 1, the
receiver node gets its counter saturated, i.e., c reaches k. Therefore, it suppresses
its transmission. This is a typical trickle behaviour which reduces the number of
transmissions (gossip) when the neighbourhood is up-to-date.

10 Boutheina Bannour, Arnault Lapitre, and Pascale Le Gall

v20 : I → 0

t → 0
c → 0
myv → 0
rcv → 0

w2
0 clk → 0

v10 : I → 0

t → 0
c → 0
myv → 0
rcv → 0

w1
0 : clk → 0

v11 : I → 8

t → 13/2

w1
1 : clk → 10

w2
1 : clk → 10

0

q0 : node2.V ersion → ε

S0 : (s10, s
2
0, q0)

S1 : (s11, s
2
1, q0)

S2 : (s12, s
2
1, q0)

S3 : (s13, s
2
2, q0)

S4 : (s13, s
2
3, q0)

S5 : (s14, s
2
4, q0)

S6 : (s15, s
2
4, q1)

S7 : (s16, s
2
5, q1)

S8 : (s17, s
2
5, q1)

S8 : (s18, s
2
6, q1)

S8 : (s18, s
2
7, q2)

ε

10

s10 : (node1) s20 : (node2)

Init, Init

Listen1, Init

Listen1, Init

Init, Init

Listen1, Listen1

Listen1, Listen1

Listen2, Listen1

Listen1, Listen1

Listen1, Listen1

Listen1, Listen1

Listen1, Check1

s12 : (node1)

V ersion!0 V ersion?0

node1 node2

10

t = 13/2
15

5

ε

s21 : (node2)

q1 : node2.V ersion → 0

q2 : node2.V ersion → ε

I
=

8
I

=
1
6

suppress transmission

c = 1

c = 0

c ≥ k

3/2

V ersion!0

V ersion?0

Imin = 8
Imax = 16
k = 1

time

3/2

ε

5/2

18

t = 7

clk = 11/2

Fig. 3. A run of a two-nodes network of XTA.

4 Exploring Trickle with UPPAAL and DIVERSITY

UPPAAL model. We have created a model in UPPAAL, which corresponds to the
network of XTA presented in Section 3. The UPPAAL model has a very similar
structure in terms of states and transitions. Locations Check1 and Check2 have
been declared as Committed (marked with a ”C”) which means that time cannot
elapse in this location as intended in the original model. Also, such locations have
a higher priority to be taken than non-committed ones. This reduces interleaving
between automata if the latter are not executing on their turn transitions from
committed locations. To implement asynchronous communication actions, we
have created c-like functions in UPPAAL which implement fifo operations on
queues. Unlike XTA which uses unbounded queues, those are arrays of fixed
parameter size QUEUE SIZE.

Fig. 4. UPPAAL transitions.

In UPPAAL, clocks are only compared to integer
expressions, and clock guards are essentially con-
junctions. This does not allow the specification
of guards of the form clk ≤ t where t can take
any random value in the dense interval [I/2, I[. In
XTA, those values are (isomorphic to) positive ra-
tionals (Q+). In Figure 4, we propose a UPPAAL
pattern so that values assigned with t are positive
integers (Z+). This is compliant with the nature

11

of clock constraints supported by UPPAAL, i.e.,
clocks in guards are bounded by integer expres-
sions. On the other hand, UPPAAL provides a se-
lect statement s : [L,U] on transition which selects
a random value for an integer variable s within a
specified integer interval. Interval bounds L and
U are necessarily constants. It is equivalent to an
update L ≤: s :≤ U in XTA. The pattern allows
the selection of at most N values for t within the
current interval [I/2, I[: first an integer s is selected in the interval [0, N−1], s is
then used to assign t with a value denoted by the expression e = (N+s)·I/(2·N),
however t is an integer variable, so t will be assigned exactly by the greatest in-
teger less than or equal to the valuation of e. For instance, for I = 8 (resp. for
I = 16) and N = 4, t can be assigned with the four integers 4, 5, 6 and 7 (resp.
8, 10, 12 and 14). The variable t can have an infinite number of possible values
within the second half of I; the pattern allows exploring with UPPAAL just
a few (at most N integers, we experiment with small values). But since we are
interested in reachability, if a solution exists for those, the verification concludes.

Model exploration in UPPAAL. The tool uses the notion of zone to represent
the set of valuations of clocks symbolically. A zone is defined by the conjunction
of difference constraints of the form clk ≺ s or clk − clk′ ≺ s where s is an
integer. The simulation graph in UPPAAL is composed of nodes of the form
((l1, v1), . . . , (ln, vn), Z, v) where li is the location (resp. vi is the data valuation)
for the ith automaton, Z is a zone over clocks of the n involved automata, and
v is the valuation of global or shared data variables. An example of such node
is ((Listen1, v

1
0), (Init, v20), node1.clk ≤ 4, v0) with notation of Figure 3, v0 as-

sociates Trickle constants to their values, it sets queues to empty at start. The
exploration of the graph uses inclusion on zones which checks whether a zone
of a successor node in the graph is already covered by some zones of previously
explored nodes. In case of inclusion, data valuations must coincide in order to
prune the search. This helps master the search when infinite cycles exist. Intu-
itively, a typical cycle is when all nodes reach Imax, share the same version and
the content of the queues coincides, then same behaviours will start over again.
To enable detect this situation: i) we choose small values for Imax and ii) we
stop increment the counter c once it reaches k (see transition Check1 → Listen1
in Figure 4). Note that saturation is an extra clock of the node that will be
discussed later; obviously, this has no effect on Trickle behaviour since the deci-
sion to suppress transmission depends only on reaching exactly k. In fact, after
exchanging k or many more redundant versions is similar concerning subsequent
behaviours. Otherwise, counter c will be assigned differently depending on the
number of received versions. In which case, matching data valuations fails de-
spite zone inclusion, and the cycle never exit. UPPAAL provides classical search
strategies Depth-First Search (DFS) and Breadth-First Search (BFS), as well as
Random Depth-First Search (RDFS). As we consider reachability, so one solu-
tion is wanted, DFS or RDFS are typically the most efficient option according to

12 Boutheina Bannour, Arnault Lapitre, and Pascale Le Gall

the tool documentation. When applying a DFS (or RDFS), inclusion on zones
is of practical use as is it avoids getting lost in an infinite cycle.

Reachability properties in UPPAAL. The tool supports a subset of Computa-
tion Tree Logic (CTL) [9]. As we are interested in reachability, we propose to use
CTL formulae of the form E♦φ where φ = f ∧ g is a formula on data variables
and clocks. The satisfaction of such formula is defined on the tree with root an
S0 extracted from the labelled transition system of the network (see Section 2).
The operator E quantifies over paths (or runs) of such a tree: it checks if there
exists a path (with root S0) in the tree satisfying the sub formula ♦φ, the latter
on the other hand is satisfied by that path if a state S satisfying φ occurs in the
path. A simple property is E♦(node2.c ≥ k∧node2.clk = node2.I). The property
is satisfied by the run discussed in Figure 3, in which the node node2 suppresses
its transmission. Let us discuss the following two properties (expressed for the
four-nodes topology of Figure 2.

Updated: E♦((node1.myv = NEW) ∧ (node2.myv = NEW)∧
(node3.myv = NEW)∧(node4.myv = NEW))

Outdated: E♦((node4.isStarted) ∧ (node4.myv = OLD)∧
(node2.myv = NEW)∧ (n2.c ≥ k)∧ (node3.myv = NEW)∧ (n3.c ≥ k))∧

((n2.saturation ≥ D)∧ (n3.saturation ≥ D))

The first property states that it is possible that all the nodes are updated. The
second property states that there exists a node which is still outdated (hols an
old version) while its neighbours are all updated, yet they have suppressed their
transmissions. We use an extra clock saturation per node which is reset when
the counter c reaches k (see Figure 4). The clock measures the delay elapsed
since then, and the formula requires that such delay is bounded by a parameter
D>0. This situation is not desirable, especially after having observed numerous
exchanges of messages in the networks.

Init

true

Listen1

clk <= t

I := Imin;
newfresh(t);
guard(I/2<= t <I);
c := 0;
clk := 0;

ec< id:0 , eval 1 , height:0 , width:1 >
(node1:Init , node2:Init)

PC: (z_1 >= 0)

Imin = Imin, Imax = Imax, k = 1
node1.myv = node1.myv_0

node1.clk = z_1
node1.I = node1.I_0
node1.t = node1.t_0
node1.c = node1.c_0

node1.consistent = node1.consistent_0
node1.rcv = node1.rcv_0

node2.myv = node2.myv_0
node2.clk = z_1

node2.I = node2.I_0
node2.t = node2.t_0
node2.c = node2.c_0

node2.consistent = node2.consistent_0
node2.rcv = node2.rcv_0
node1.queue = fifo { }
node2.queue = fifo { }

ec< id:1 , eval 2 , height:1 , width:1 >
(node1:Init , node2:Init)

PC: (z_1 >= 0)

ec< id:2 , eval 3 , height:2 , width:2 >
(node1:Listen1 , node2:Init)

PC: (((Imin / 2) <= node1.t_1 < Imin)
&& (z_3 <= node1.t_1) && ((z_1 + z_3) >= 0) &&

(node1.t_1 >= 0) && (z_1 >= 0) && (z_3 >= 0))

node1.clk = z_3
node1.I = Imin

node1.t = node1.t_1
node1.c = 0

node2.clk = (z_1 + z_3)

fired node1.init

Fig. 5. Symbolic execution of a DIVERSITY transition.

DIVERSITY models and Symbolic execution. DIVERSITY [25] tools provides
symbolic execution for state-based models(e.g., [4]) involving data expressions,
data and clock guards. Input parameters or fresh symbols (they are used only
once) can substitute uninitialized variables, reception variables used in commu-
nication with the external environment or any variable using a dedicated explicit

13

newfresh statement. The latter is of the form newfresh(x); it associates the vari-
able x with a new fresh symbol. We have developed a DIVERSITY model of the
XTA network for Trickle, as the UPPAAL model it has a similar structure in
terms of states and transitions. DIVERSITY provides communication over un-
bounded fifo queues. We declare a single queue per node as each node owns only
one port for internal communications. Those are initially empty, and their size
is automatically adjusted by the tool as communication actions are evaluated.
Figure 5 depicts a DIVERSITY transition (Init→ Listen1). It suggests a pat-
tern in DIVERSITY which allows to assign the variable t with a random value
within current interval [I/2, I[: newfresh(t) associates with t with a new fresh
symbol, the latter is constrained by subsequent guard statement I/2 ≤ t < I.
It is possible in DIVERSITY to declare Imin, Imax, I and t to be typed as a
positive rational numbers (Q+) so as to be compatible with clock clk. DIVER-
SITY computes the so-called symbolic tree in which nodes are called execution
contexts ec: they store pieces of information about the execution including the
current location, about the transition which allows reaching the context, and
importantly about Path Conditions and Substitutions of data variables, clocks,
queue places, ... by arithmetical expressions over input parameters. Figure 5 de-
picts the symbolic execution step of the previous transition (being of node1) from
ec1. The context ec2 is reached, the transmission variable t is substitutes by a
new symbol node1.t1 (substituted by t0 in initial context ec0), t1 is constrained
by the PC sub-formula ((Imin/2) ≤ node1.t1 < Imin). Note that sub-formula
(z3 ≤ node1.t1) shows that time elapsing in ec2 (denoted by duration symbol
z3) is bounded by the value denoted by node1.t1. This condition corresponds to
the evaluation of clock invariant clk ≤ t in location Init for node1 (node1.clk
is substituted by z3 in ec2). Symbolic execution techniques characterize all in-
tended runs. DIVERSITY provides different classical search strategies which can
be used to unfold the symbolic tree from the initial context ec0 up to criteria on
tree size (depth, width or number of nodes). Naturally, this results in a huge tree.
DIVERSITY provides heuristic search [25] guided by a user-specified sequence
of transitions, possibly non-consecutive as it is difficult in general to guess strict
sequencing when it comes to automata network. We use UPPAAL to find such
a sequence corresponding to some runs satisfying a user-specified property. Let
us now overview the connection between both tools.

14 Boutheina Bannour, Arnault Lapitre, and Pascale Le Gall

V ersion!myv0

V ersion?myv0

node1 node2

suppress transmission at t1

node1.myv0 = node2.myv0

UPPAAL DIVERSITY

Network of XTA for Trickle

property E♦φ

an initial

reachability

concrete S0

Nupp Ndiv

runs from
a given S0

tr-seq

parameters:

N values for
transmission instant t

max. QUEUE SIZE

N

Imin, Imax,
t ∈ Q+

Imin, Imax,
t ∈ Z+

all runs from any S0

(Imin/2) ≤ node2.t1 < Imin

Path Condition (PC)

@z1 + . . . + z6

z1 + . . . + z6 = t1

timestamp

. . .

transitions
sequence

tr-seq coverage:

Fig. 6. Workflow UPPAAL-DIVERSITY.

Tools workflow and experiments. The workflow is given in Figure 6. UPPAAL
takes as input a user-specified property Eφ. The aim is to check the property
from an initial state S0. Parameters on the number N of transmission instants
t to be selected within the Trickle interval have to be given together with a
bound QUEUE SIZE on communication queues. The property is assessed on
the UPPAAL model Nupp. In case of the property is verified, i.e., there exists
at least a run from S0 which satisfies φ (such runs are schematically depicted
by a blue ellipse), then the sequence of covering transitions tr-seq is derived
from the UPPAAL solution. The idea now is to compute the equivalence classes
composed by all runs from any sates S0 which are covered by the sequence tr-
seq. For this, a symbolic exploration guided by the sequence is conducted on
the DIVERSITY model Ndiv, a symbolic path together with its Path Condition
(PC) is obtained then. The path is naturally feasible (satisfiability of its PC is
assessed with SMT solvers). It identifies all runs covered by tr-seq with dense
domain for Imin, Imax and t as being positive rationals (those are schematically
depicted by a green ellipse). Since the path often represents pairwise communi-
cation actions from different automata, it can be depicted in a natural manner as
a Sequence Diagram (SD). Figure 7 depicts an SD which highlights an outdated
node situation, that of node4. It has been computed by DIVERSITY for the
four-nodes grid topology given in Figure 2. The situation is atypical: neighbours
of node4, that is node2 and node3 are first updated by gateway node1 with a
new version (green messages), they hence reset their interval to Imin; right away,
node4 gets them to reset their interval again by transmitting its old version (blue
messages), their transmissions are postponed; this somehow gives node1 time to
retransmit the new version and saturate them (orange messages); therefore they
suppress their transmissions for node4. This unfortunate circumstance for node4
can be prevented by increasing the redundancy constant so that its neighbours,
node2 and node3, can still transmit, yet this comes at a cost, the number of
messages increases for the entire nodes lifetime. Or node4 can still be updated
later because it together with node1 will get their intervals doubled, and their
transmission instants are at least dephased of Imin of those of node2 and node3

15

which leaves them time to update node4. This is in favour of using Trickle, even if
a node is in such outdated situation, it will not remain for a long time, thanks to
the dynamic interval adjustment which avoids flood the network with messages.
We have experimented with more nodes in the grid (up to 9), Table 1 reports
on those. Updated and Outdated properties were successfully checked, which is
satisfactory given the non-trivial kind of interactions in case of outdated nodes.

Updated Outdated
Nodes UPPAAL DIVERSITY Messages UPPAAL DIVERSITY Messages

3 1ms 1s542ms 7 12ms 4s156ms 8
4 3ms 2s731ms 16 984ms 9s796ms 12
5 4ms 9s395ms 12 168ms 11s828ms 12
6 7ms 32s750ms 21 7s621ms 1m28s953ms 23

7(2) 6ms 29s453ms 29 5s772ms 2m5s375ms 26
7(3) 5ms 49s375ms 29 3s227ms 1m42s718ms 24
8 8ms 59s640ms 41 8m9s503ms 9m36s375ms 42
9 9ms 2m58s408ms 64 9m19s22ms 15m36s11ms 62

The nodes graph is bidirectional in the form of a grid topology (See Figure 2), 7(2) (resp. 7(3))
denotes that node7 is two blocks (resp. three blocks) from the gateway node1. Results measured on
an Intel Core i7-7920HQ processor with RAM 32GB, the redundancy constant k was set to 1 the

minimum transmission case in Trickle. DIVERSITY time includes PC check with CVC4.
UPPAAL concluded in few more trials inline with the exponential growth in running time.

Table 1.

5 Conclusion

We have developed first models for desynchronized Trickle network. Those mod-
els use data to express adjustable transmission intervals and abstract transmit-
ted information. To assess reachability properties, we combine model checking
and symbolic execution. If the property is verified on the model in which data
is concrete, we derive from the returned solution a sequence of transitions that
guides the symbolic execution to compute the corresponding symbolic path. The
latter is a compact representation of the equivalence class of behaviours for the
transitions coverage and can be depicted in the user-friendly format of sequence
diagrams to enable their understanding. For future work, we plan to extract
from the model-checking solution more information about structural coverage of
the mini-language of updates on transitions to refine the equivalence classes by
symbolic execution. We also plan to experiment with other gossip protocols. We
believe that our approach can be of practical use to highlight for those non-trivial
nodes interactions and give hints on their benefit for transmissions control.

16 Boutheina Bannour, Arnault Lapitre, and Pascale Le Gall

node1

node1

node2

node2

node3

node3

node4

node4

PATH 1 ec< id:316 , eval 19, height:18 >

((Imin / 2) <= t_1 < Imin)
&& (z_5 <= t_1) ((Imin / 2) <= t_2 < Imin)

&& ((z_5 + z_8) <= t_1)
&& (z_8 <= t_2)

((Imin / 2) <= t_3 < Imin)
&& ((z_12 + z_5 + z_8) <= t_1)
&& ((z_12 + z_8) <= t_2)
&& (z_12 <= t_3)

((Imin / 2) <= t_4 < Imin)
&& ((z_12 + z_16) <= t_3)
&& ((z_12 + z_16 + z_5 + z_8) <= t_1)
&& ((z_12 + z_16 + z_8) <= t_2)
&& (z_16 <= t_4)

((node1.myv_0 < node1.rcv_1) && ((Imin / 2) <= t_5 < Imin)
&& ((z_12 + z_16 + z_24) <= t_3)
&& ((z_12 + z_16 + z_24 + z_8) <= t_2)
&& ((z_16 + z_24) <= t_4) && (z_24 <= t_5))

ExtVersion ? node1.rcv_1
@ (z_1 + z_12

+ z_16 + z_5 + z_8)

((z_24 == t_5) && ((z_12 + z_16 + z_24 + z_30) <= t_3)
&& ((z_12 + z_16 + z_24 + z_30 + z_8) <= t_2)
&& ((z_16 + z_24 + z_30) <= t_4) && ((z_24 + z_30) <= Imin))

Version ! node1.rcv_1 @ (z_1 + z_12
+ z_16 + z_24 + z_5 + z_8)

(node2.myv_0 < node1.rcv_1) && ((Imin / 2) <= t_4 < Imin)
&& ((z_12 + z_16 + z_24 + z_30 + z_34) <= t_3)
&& ((z_12 + z_16 + z_24 + z_30 + z_8) <= t_2)
&& ((z_16 + z_24 + z_30 + z_34) <= t_4)
&& ((z_24 + z_30 + z_34) <= Imin) && (z_34 <= t_4)

Version ? node1.rcv_1
@ (z_1 + z_12 + z_16
+ z_24 + z_5 + z_8)

((node3.myv_0 < node1.rcv_1) && ((Imin / 2) <= t_7 < Imin)
&& ((z_12 + z_16 + z_24 + z_30 + z_34) <= t_3)
&& ((z_16 + z_24 + z_30 + z_34 + z_39) <= t_4)
&& ((z_24 + z_30 + z_34 + z_39) <= Imin)
&& ((z_34 + z_39) <= t_4) && (z_39 <= t_7))

Version ? node1.rcv_1
@ (z_1 + z_12
+ z_16 + z_24
+ z_5 + z_8)

(((z_16 + z_24 + z_30 + z_34 + z_39) == t_4)
&& ((z_16 + z_24 + z_30 + z_34 + z_39 + z_49) <= Imin)
&& ((z_24 + z_30 + z_34 + z_39 + z_49) <= Imin)
&& ((z_34 + z_39 + z_49) <= t_4) && ((z_39 + z_49) <= t_7))

Version ! node4.myv_0 @ (z_1 + z_12 + z_16
+ z_24 + z_30 + z_34 + z_39 + z_5 + z_8))

(((z_24 + z_30 + z_34 + z_39 + z_49) == Imin)
&& (Imin <= t_14 < (2 * Imin))
&& ((z_16 + z_24 + z_30 + z_34 + z_39 + z_49 + z_70) <= Imin)
&& ((z_34 + z_39 + z_49 + z_70) <= t_4)
&& ((z_39 + z_49 + z_70) <= t_7) && (z_70 <= t_14))

(((z_16 + z_24 + z_30 + z_34 + z_39 + z_49 + z_70) == Imin)
&& (Imin <= t_9 < (2 * Imin))
&& ((z_101 + z_34 + z_39 + z_49 + z_70) <= t_4)
&& ((z_101 + z_39 + z_49 + z_70) <= t_7)
&& ((z_101 + z_70) <= t_14) && (z_101 <= t_9))

((node4.myv_0 < node1.rcv_1)) && ((Imin / 2) <= t_21 < Imin)
&& ((z_101 + z_137) <= t_9) && ((z_101 + z_137 + z_39 + z_49 + z_70) <= t_7)
&& ((z_101 + z_137 + z_70) <= t_14)
&& ((z_101 + z_34 + z_39 + z_49 + z_70) <= t_4) && (z_137 <= t_21))

Version ? node4.myv_0
@ (z_1 + z_12
+ z_16 + z_24
+ z_30 + z_34
+ z_39 + z_5 + z_8)

((node4.myv_0 < node1.rcv_1) && ((Imin / 2) <= t_35 < Imin)
&& ((z_101 + z_137 + z_164) <= t_9)
&& ((z_101 + z_137 + z_164 + z_70) <= t_14)
&& ((z_101 + z_137 + z_39 + z_49 + z_70) <= t_7)
&& ((z_137 + z_164) <= t_21) && (z_164 <= t_35))

Version ? node4.myv_0
@ (z_1 + z_12
+ z_16 + z_24
+ z_30 + z_34
+ z_39 + z_5 + z_8)

(((z_101 + z_137 + z_164 + z_70) == t_14)
&& ((z_101 + z_137 + z_164 + z_202) <= t_9)
&& ((z_101 + z_137 + z_164 + z_202 + z_70) <= (2 * Imin))
&& ((z_137 + z_164 + z_202) <= t_21) && ((z_164 + z_202) <= t_35))

Version ! node1.rcv_1 @ (z_1 + z_101 + z_12
+ z_137 + z_16 + z_164 + z_24 + z_30
+ z_34 + z_39 + z_49 + z_5 + z_70 + z_8)

(((z_101 + z_137 + z_164 + z_202 + z_258) <= t_9)
&& ((z_101 + z_137 + z_164 + z_202 + z_258 + z_70) <= (2 * Imin))
&& ((z_137 + z_164 + z_202) <= t_21)
&& ((z_137 + z_164 + z_202 + z_258) <= t_21) && ((z_164 + z_202 + z_258) <= t_35))

Version ? node1.rcv_1
@ (z_1 + z_101 + z_12
+ z_137 + z_16 + z_164
+ z_24 + z_30 + z_34

+ z_39 + z_49 + z_5
+ z_70 + z_8)

(((z_101 + z_137 + z_164 + z_202 + z_258 + z_301) <= t_9)
&& ((z_101 + z_137 + z_164 + z_202 + z_258 + z_301 + z_70) <= (2 * Imin))
&& ((z_137 + z_164 + z_202 + z_258 + z_301) <= t_21)
&& ((z_164 + z_202 + z_258) <= t_35) && ((z_164 + z_202 + z_258 + z_301) <= t_35))

Version ? node1.rcv_1
@ (z_1 + z_101 + z_12
+ z_137 + z_16 + z_164
+ z_24 + z_30 + z_34
+ z_39 + z_49 + z_5
+ z_70 + z_8)

(((z_137 + z_164 + z_202 + z_258 + z_301) == t_21)
&& ((z_101 + z_137 + z_164 + z_202 + z_258 + z_301 + z_311) <= t_9)
&& ((z_101 + z_137 + z_164 + z_202 + z_258 + z_301 + z_311 + z_70) <= (2 * Imin))
&& ((z_137 + z_164 + z_202 + z_258 + z_301 + z_311) <= Imin)
&& ((z_164 + z_202 + z_258 + z_301 + z_311) <= t_35))

(((z_164 + z_202 + z_258 + z_301 + z_311) == t_35)
&& ((z_101 + z_137 + z_164 + z_202 + z_258 + z_301 + z_311 + z_315) <= t_9)
&& ((z_101 + z_137 + z_164 + z_202 + z_258 + z_301 + z_311 + z_315 + z_70) <= (2 * Imin))
&& ((z_137 + z_164 + z_202 + z_258 + z_301 + z_311 + z_315) <= Imin)
&& ((z_164 + z_202 + z_258 + z_301 + z_311 + z_315) <= Imin))

Fig. 7. Outdated node situation - Sequence Diagram generated by DIVERSITY.

17

References

1. RPL: Ipv6 routing protocol for low-power and lossy networks, request for com-
ments: 6550. Technical report, Cooper Power Systems and Cisco Systems and
Stanford University, March 2012.

2. R. Alur and D. Dill. A theory of timed automata. Journal Theoretical Computer
Science, 1994.

3. R. Alur and D. Dill. A theory of timed automata. Journal Theoretical Computer
Science, Volume 126 Issue 2, April 25, 1994, Pages 183 - 235, 1994.

4. Bannour B., Escobedo J. P., Gaston C., and Le Gall P. Off-line test case gener-
ation for timed symbolic model-based conformance testing. In Int. conf. ICTSS.
Springer, 2012.

5. Clark W. Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanovic, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Ganesh
Gopalakrishnan and Shaz Qadeer, editors, Computer Aided Verification - 23rd
International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Pro-
ceedings. Springer, 2011.

6. M. Becker, K. Kuladinithi, and C. Görg. Modelling and simulating the trickle
algorithm. In MONAMI. Springer.

7. Michael J. Breza and Julie A. McCann. Lessons in implementing bio-inspired
algorithms on wireless sensor networks. In NASA/ESA Conference on Adaptive
Hardware and Systems, AHS 2008, Noordwijk, The Netherlands, June 22-25, 2008,
pages 271–276. IEEE Computer Society, 2008.

8. Z. Chen, D. Zhang, R. Zhu, Y. Ma, P. Yin, and F. Xie. A review of automated
formal verification of ad hoc routing protocols for wireless sensor networks. CoRR,
abs/1305.7410, 2013.

9. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In 25 Years of Model Checking - History,
Achievements, Perspectives, 2008.

10. E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT Press, 2001.
11. T. Coladon, M. Vucinic, and B. Tourancheau. Multiple redundancy constants with

trickle. In PIMRC. IEEE, 2015.
12. L. Mendonça de Moura and N. Bjørner. Z3: an efficient SMT solver. In C. R. Ra-

makrishnan and Jakob Rehof, editors, International Conference, TACAS. Springer,
2008.

13. D. L. Dill. Timing assumptions and verification of finite-state concurrent systems.
In Automatic Verification Methods for Finite State Systems, International Work-
shop. Springer, 1989.

14. J. Dong, J. Sun, J. Sun, K. Taguchi, and X. Zhang. Specifying and verifying sensor
networks: an experiment of formal methods. International Conference on Formal
Engineering Methods, 2008.

15. A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a lightweight and flexible operating
system for tiny networked sensors. In IEEE ICLCN, 2004.

16. J. Hui and R. Kelsey. Multicast protocol for low-power and lossy networks, request
for comments: 7731. Technical report, Silicon Labs, February 2016.

17. C.King J. Symbolic execution and program testing. Communications of the ACM,
Volume 19, July 1976.

18. H. R. Kermajani, C. Gomez, and M. H. Arshad. Modeling the message count
of the trickle algorithm in a steady-state, static wireless sensor network. IEEE
Communications Letters, 2012.

18 Boutheina Bannour, Arnault Lapitre, and Pascale Le Gall

19. M. Z. Kwiatkowska, G. Norman, and D. Parker. Analysis of a gossip protocol in
PRISM. SIGMETRICS Performance Evaluation Review, 2008.

20. M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of
probabilistic real-time systems. In Computer Aided Verification - 23rd Interna-
tional Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings.
Springer, 2011.

21. B. Lee, H. K. Song, Y. Suh, K. H. Oh, and H. Y. Youn. Energy-efficient gossiping
protocol of wsn with realtime streaming data. In 2014 IEEE 12th International
Conference on Dependable, Autonomic and Secure Computing, 2014.

22. P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay,
J. Hill, M. Welsh, E. Brewer, and D. Culler. TinyOS: An Operating System for
Sensor Networks. Springer, 2005.

23. P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A self-regulating algorithm
for code propagation and maintenance in wireless sensor networks. In Int. Symp.
NSDI. USENIX Association, 2004.

24. Y. Liu, J. Sun, and J. S. Dong. PAT 3: An extensible architecture for building multi-
domain model checkers. In T. Dohi and B. Cukic, editors, IEEE 22nd International
Symposium on Software Reliability Engineering, ISSRE 2011, Hiroshima, Japan,
November 29 - December 2, 2011. IEEE Computer Society, 2011.

25. Arnaud M., Bannour B., and Lapitre A. An illustrative use case of the DIVERSITY
platform based on UML interaction scenarios. Electr. Notes Theor. Comput. Sci.,
2016.

26. T. Meyfroyt. Modeling and analyzing the trickle algorithm. Master’s Thesis,
Eindhoven University of Technology, The Netherlands, 2013.

27. T. Meyfroyt, Sem C. Borst, Onno J. Boxma, and Dee Denteneer. On the scalability
and message count of trickle-based broadcasting schemes. Queueing Syst., 2015.

28. T. M. M. Meyfroyt. An analytic evaluation of the trickle algorithm: Towards
efficient, fair, fast and reliable data dissemination. In WoWMoM. IEEE.

29. X. Nan, M. Fei, and T. Yang. Randomized and efficient time synchronization in
dynamic wireless sensor networks: a gossip-consensus-based approach. Vol 2018
Complexity, 2018.

30. N. M. T. Nguyen, B. Bannour, A. Lapitre, and P. Le Gall. Behavioral models
and scenario selection for testing iot trickle-based lossy multicast networks. In
VVIoT@ICST workshop. IEEE, 2019.

31. M. Vucinic, M. Król, B. Jonglez, T. Coladon, and B. Tourancheau. Trickle-D: High
fairness and low transmission load with dynamic redundancy. IEEE IoT Journal,
2017.

32. M. Webster, M. Breza, C. Dixon, M. Fisher, and J. A. McCann. Formal verification
of synchronisation, gossip and environmental effects for wireless sensor networks.
ECEASST, 2018.

33. M. Woehrle, R. Bakhshi, and M. Mousavi. Mechanized extraction of topology
anti-patterns in wireless networks. In John Derrick, Stefania Gnesi, Diego Latella,
and Helen Treharne, editors, Integrated Formal Methods. Springer, 2012.

34. M. Zheng, J. Sun, Yang Liu, Jin Song Dong, and Yu Gu. Towards a model checker
for nesc and wireless sensor networks. In Shengchao Qin and Zongyan Qiu, editors,
Formal Methods and Software Engineering. Springer, 2011.

