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Microsatellite instability (MSI) is a genomic alteration in which microsatellites,

usually of one to four nucleotide repeats, accumulate mutations corresponding to

deletions/insertions of a few nucleotides. The MSI phenotype has been extensively

characterized in colorectal cancer and is due to a deficiency of the DNA mismatch repair

system. MSI has recently been shown to be present in most types of cancer with variable

frequencies (from<1 to 30%). It correlates positively to survival outcome and predicts the

response to immune checkpoint blockade therapy. The different methods developed for

MSI detection in cancer require taking into consideration two critical parameters which

influence method performance. First, the microsatellite markers used should be chosen

carefully to ensure they are highly sensitive and specific for MSI detection. Second, the

analytical method used should be highly resolute to allow clear identification of MSI and of

the mutant allele genotype, and should present the lowest limit of detection possible for

application in samples with low mutant allele frequency. In this review, we describe all the

different molecular and computational methods developed to date for the detection of

MSI in cancer, how they have evolved and improved over the years, and their advantages

and drawbacks.

Keywords: microsatellite instability, MSI-H cancer, MSI detection method, next-generation sequencing,

computational biology, microsatellite genotyping

INTRODUCTION

Microsatellite instability (MSI/MSI-H) is characterized by the accumulation of mutations
(insertions or deletions of a few nucleotides) in microsatellites (also known as short tandem
repeats), which are continuous repetitions of 1–9 nucleotides. It has been shown that MSI is caused
by loss of function of amember of the DNAmismatch repair system (MMR), which normally allows
the repair and correction of DNA following DNAmismatches introduced by DNA polymerase (1).
TheMMR system comprises at least ten proteins includingMLH1,MSH2,MSH6, and PMS2, which
are the most frequent mutated or epimutated (MLH1) genes in cancer (1–6).

MSI has been described and extensively characterized in colorectal cancer in which 15–20%
of tumors present the MSI phenotype which is correlated with better patient survival (7–9).
In addition, 3% of MSI colorectal cancers arise in the context of an inherited syndrome
called Hereditary Non-Polyposis Colorectal Cancer (HNPCC) or Lynch syndrome, in which a
constitutional mutation of an MMR gene leads to an increased risk of cancer incidence requiring
specific management (10–12). A second, more severe syndrome called Constitutional Mismatch
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Repair Deficiency (CMMRD) is due to bi-allelic germline
mutations of one of the four MMR genes (MLH1,MSH2,MSH6,
or PMS2), and is characterized by the appearance of multiple
neoplasia including colorectal cancer in childhood (13, 14).

MSI has also been detected in other types of cancer including
gastric (6), endometrial (5), ovarian (15), and liver (16) cancer,
however it is only recently that MSI has been widely identified
across several types of cancer through studies based on the
analysis of whole genome/exome sequencing data (4, 17, 18).
The incidence of MSI in cancer correlates positively to survival
outcome (17) and can also predict the efficacy of immune
checkpoint blockade therapy in solid tumors (19, 20).

Different approaches have been developed for MSI detection
in cancer with the aim of providing the highest degree
of sensitivity and specificity. The first parameter influencing
the detection of MSI in cancer is the type of microsatellite
markers used. Different microsatellites and microsatellite panels
have been proposed for sensitive detection of MSI including
the Bethesda/NCI panel, which has been the gold standard
microsatellite panel for MSI detection for more than 20 years
(21–23). This gold standard method relies principally on PCR
followed by capillary electrophoresis fragment analysis, whereas
other methods also developed to improve the limit of detection
(LOD) of MSI, as required for some applications (e.g., to
detect MSI in blood and in tumors with a high level of
normal cell contamination or in precancerous lesions), rely
on the modification of standard procedures (24–26). Recently,
with the development of next-generation sequencing (NGS),
new computational algorithms have emerged which allow the
detection of MSI in thousands of microsatellite markers, a
discovery which could change the standard of MSI detection in
cancer (27–29).

In this review, we describe the different approaches developed
to date for the detection of MSI in cancer, and we highlight and
compare the advantages and drawbacks of each method.

EVOLUTION OF THE STANDARD
TECHNOLOGIES FOR MSI DETECTION
AND IDENTIFICATION IN CANCER

Although the methods used for MSI detection in cancer have
constantly evolved, they still rely on two constants: (i) the
amplification of one or several microsatellite markers with PCR-
based methods, and (ii) the detection of MSI by methods which
allow fragment length analysis (Figure 1).

MSI detection was initially performed in colorectal
cancer either by using PCR on specific markers followed
by polyacrylamide gel electrophoresis and autoradiography
(7, 30), or a fingerprinting method based on arbitrarily primed
PCR (AP-PCR) in which primers with arbitrarily chosen
sequences are used in a PCR characterized by a few low
stringency cycles followed by several higher stringency cycles,
and combined with electrophoresis for fragment separation
(9, 31). In some laboratories, MSI detection was performed with
silver or ethidium bromide staining of polyacrylamide gel after
electrophoresis rather than autoradiography (Figure 1A) (32).

These methods, which proved laborious and time-consuming
and presented a low sizing accuracy, were supplanted by a
newer approach which remains today the gold standard for
MSI detection. This approach combines a PCR with fluorescent
primers and capillary electrophoresis using a DNA sequencer
which allows fragment analysis at single base resolution
(Figure 1B) (33). This procedure has also been improved by the
multiplexing of PCR to allow amplification of 2–5 microsatellite
markers (34–40) and automatic identification of the allele size
(34).

Other read-outmethods have also been used forMSI detection
following PCR amplification of microsatellite markers, including
denaturing high-performance liquid chromatography (DHPLC)
(41–43) and high resolution melting (HRM) analysis (44).
DHPLC relies on the separation of DNA strands based on the
size and sequence, and presents the advantage of being free from
stutter peaks [undesirable frameshift products, multiples of the
repeated nucleotide sequence, and generally shorter than the
specific amplification product, which are formed due to slippage
of DNA polymerase during PCR amplification (45)]; DHPLC has
a limit of detection of 1% of mutated alleles (Figure 1C) (41). In
contrast, HRM is a rapid, closed-tube post-PCRmethod based on
the slow denaturation of the PCR products and the differences
in the denaturation curves between mutated and wild-type; its
drawback is that it allows the detection but not the identification
of MSI (Figure 1D) (44).

Recently, massive parallel next-generation sequencing (NGS)
has also been used to detect MSI in cancer (4, 17), with a limit
of detection evaluated at 1% of MSI in an MSS background
(Figure 1E) (46). The great advantage of NGS is that MSI can
be simultaneously detected in a large number of microsatellite
loci, ranging from five to several hundred thousand depending
on the protocol used for library preparation (4, 27, 47). Library
preparation is based on the standard procedures for whole
genome sequencing (WGS), whole exome sequencing (WES) and
targeted gene sequencing (TGS) of gene panels [e.g., ColoSeq,
UW-OncoPlex (27), BROCA (3), ColonCore NGS panel (48),
and smMIP panel (46)]; this last approach is based either
on amplicon sequencing (49), complementary RNA (cRNA)
biotinylated oligonucleotide sequence capture (50) or single-
molecule molecular inversion probe capture (51). A proof
of concept study using ultra-deep sequencing has also been
performed using the Bethesda/NCI panel. Five markers were
sequenced with a coverage of 5000–8000 x and gave similar
results to the gold standard method, thus demonstrating that
NGS can be used for MSI testing (47). However, MSI detection
by NGS requires the development of specific algorithms and
computational methods which will be described later in this
review.

THE CHOICE OF MICROSATELLITE
MARKERS IMPROVES THE SENSITIVITY
OF MSI DETECTION IN CANCER

MSI was initially described in 1993 in colorectal cancers in which
deletions in several amplicons of mono-, di- , and tri-nucleotide
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FIGURE 1 | Overview of the different methods used for MSI detection in cancer. (A) Polyacrylamide gel electrophoresis (PAGE). (B) Capillary electrophoresis fragment

analysis (FA). (C) Denaturing high performance liquid chromatography (DHPLC). (D) High resolution melting analysis (HRM). (E) Next-generation sequencing (NGS).
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repeats were shown to be present in 12% of the tumors, using
an AP-PCR approach (9). The same year, two other studies
detectedMSI in sporadic (13–28%) and hereditary non-polyposis
(79%) CRC, based on PCR and gel electrophoresis using four
dinucleotide (CA) microsatellite markers (Mfd 26, Mfd 27,
Mfd 41, and 635/636) (7) or 6 dinucleotide (CA) microsatellite
markers (D2S119, D2S123, D2S147, D10S197, D11S904, and
D13S175) and one trinucleotide (CTG) microsatellite marker
(CTG-B37) (30). The percentage of tumors with MSI, based
on each marker taken alone, varied greatly indicating that all
microsatellites present different sensitivities for MSI detection
as they probably display different stabilities for MMR deficiency
(2, 30, 32, 33, 52). Thus, a combination of the most sensitive
microsatellite markers should be used for MSI assessment in
cancer.

In order to standardize the panel of microsatellites used
for MSI detection in cancer across the different laboratories
in the world, a National Cancer Institute (NCI) workshop
held in Bethesda, (Maryland, USA) proposed a panel of two
mononucleotide (BAT-25 and BAT-26) and three dinucleotide
(D2S123, D5S346, and D17S250) repeat microsatellites called the
Bethesda/NCI panel for the detection of MSI in colorectal cancer,
and according to which tumors presenting two or more unstable
markers (or ≥30–40% if more markers are tested) should be
defined as MSI/MSI-H (21). The other tumors are classified as
MSS (microsatellite stable) or MSI-L (MSI-low) if no markers or
only one marker is unstable (or <30–40% if more markers are
tested) (21). Though still under debate, MSS and MSI-L tumors
are usually considered and treated clinically as a single group, and
it is generally agreed today that MSS andMSI-L tumors belong to
the same group, as mostMSS tumors can normally be classified as
MSI-L if a sufficient number of microsatellite markers are tested
(17, 23, 53–56).

Although the Bethesda/NCI panel is recommended again
in the revised Bethesda guidelines for Lynch syndrome and
MSI (22), and remains today the gold standard used in several
laboratories for MSI detection, several concerns have arisen
regarding this panel (57, 58). These concerns notably relate to
the presence of dinucleotide markers in the panel, which have a
lower ability to detectMSI-H tumors due to their lower sensitivity
compared to mononucleotide microsatellites, and they require
matched normal samples for MSI detection due to their natural
polymorphism in individuals, which can lead to MSS/MSI-L
tumors being misclassified as MSI-H (58–63).

Therefore, some researchers have claimed that
mononucleotide repeat microsatellites are the most appropriate
markers for MSI detection, as they are more sensitive and
almost monomorphic, thus requiring less use of matched
normal samples (57, 58, 60, 62, 63). The use of BAT-26, a
quasi-monomorphic microsatellite present in Caucasian but not
in African populations, has been proposed for MSI detection
(with no need to match normal DNA), either on its own (57, 60)
or in combination with BAT-25 (64), and has proved effective
in large cohort studies (10, 65). In 2002, the same authors
proposed a set of five quasi-monomorphic mononucleotide
repeat microsatellites (BAT-25, BAT-26, NR-21, NR-22, and
NR-24), known as the pentaplex panel, which allow the detection

of MSI without matching normal DNA, and offer better
performance compared to BAT-26 or BAT-25 alone (35), or
compared to the Bethesda panel (66). Most of these markers
have been combined in a new mononucleotide repeat pentaplex
panel (NR-21, NR-24, BAT-25, BAT-26, and NR-27/MONO-27),
optimized for MSI detection based on the screening of 266
mono- to penta-nucleotide repeat microsatellites. This panel has
out-performed the current Bethesda panel (36, 37, 63, 67), and
is currently marketed as the MSI Analysis System by Promega
Corporation (Madison, Wisconsin, USA) and is also considered
as a gold standard panel for MSI detection in cancer.

Several othermononucleotide repeatmicrosatellites have been
proposed as sensitive and specific markers for MSI detection
in cancer. Among these are CAT-25, a quasi-monomorphic
mononucleotide repeat microsatellite in all populations, which
has been put forward as a single marker for MSI detection in
CRC, offering improved performance compared to the Bethesda
panel, BAT-25 or BAT-26 (68, 69). CAT-25 has also been
proposed in combination with three mononucleotide repeat
microsatellites (BAT26, NR21, and NR27) in a tetraplex panel
which allows MSI detection in solid tumors, notably in MSH6-
deficent tumors where the pentaplex panel fails at times to
detect MSI (38). Another microsatellite, HT-17, has also been
proposed as a sole marker for MSI detection in CRC as it
presents better sensitivity compared to the pentaplex panel (70,
71). Moreover, HT-17 has been found to carry prognostic and
predictive information on the response to chemotherapy (5-FU
and oxaliplatin) in CRC patients where large deletions in HT-
17 indicate a better prognosis and better response to treatment
(70, 72). Recently, a panel of five long mononucleotide repeat
microsatellites (BAT-52, BAT-55, BAT-56, BAT-57, and BAT-
59), also evaluated for MSI detection in early colorectal lesions,
showed improved sensitivity compared to the Bethesda and
pentaplex panels (73).

Since the development of NGS, a greater number of
microsatellites, and potentially all microsatellites in the genome,
can now be analyzed for MSI detection, an advance which could
further improve the detection of MSI in cancer. However, two
studies based onWGS andWES NGS data have shown that most
microsatellites in the genome are stable and therefore would not
be informative in the case of MMR deficiency (4, 17). These
studies also showed that MSI frequently affects mononucleotide
repeat microsatellites, in particular those of 16 repeat units in
length as well as microsatellites located in intergenic, intronic,

and 3
′

UTR regions (4, 17). Both studies demonstrated that
some unstable microsatellites were intra- and/or inter-tumor-
type specific, and also identified the most frequently recurring
unstable microsatellites across all MSI-H cancers, a finding which
could further be used to define new pan-cancer panels for MSI
detection with improved sensitivity and specificity (4, 17). The
development of new specific cancer-type and pan-cancer panels
could be useful especially as the microsatellites in the Bethesda
and pentaplex panels, which are principally recommended for
CRC but used in all types of malignancies, have shown poor
performance in other types of cancer (46, 74–76).

To date, most studies on MSI detection in cancer that are
based on NGS experiments have either evaluated MSI in several
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types of microsatellites (mono- to penta-nucleotide repeat) or
refined their analysis to mononucleotide repeat microsatellites
using microsatellite sequencing data available on WGS, WES
or TGS of panels of genes implicated in cancer which were
not initially designed for MSI detection (4, 17, 18, 27, 28, 56).
Only three panels recently published are specifically designed
for MSI detection in cancer, namely the MSIplus panel which
evaluates mutations in 3 oncogenes (KRAS, BRAF, and NRAS)
and 17microsatellites (49), the ColonCore Panel which allows the
simultaneous detection of MSI and mutations in 36 CRC-related
genes principally proposed for CRC (48), and a pan-cancer panel
of 111 microsatellite loci highly informative in cancer (46). These
panels have shown either a comparable or better performance for
MSI detection in colorectal and non-colorectal cancers than the
pentaplex panel (46).

IMPROVING THE LIMIT OF DETECTION OF
MSI IN CANCER THROUGH
MODIFICATION OF THE STANDARD
PROTOCOL

Capillary electrophoresis fragment analysis is the standard
molecular method for MSI detection in cancer, however this
method presents a LOD which might not be sufficient for some
clinical applications such as the detection of MSI in blood,
plasma, precancerous lesions, and tumors with high levels of
normal cell contamination, or in tumor heterogeneity where only
a small subset of the tumor cells present MSI. The particularity of
the LOD of MSI is that it can vary (from 1 to 10%) according
to the length of the mutant alleles and the WT genotype, so that
large deletions present a lower LOD than small deletions due to
the presence of stutter peaks which mask mutant alleles (26).

Therefore, different approaches which modify a single step
of the standard fragment analysis protocol have been developed
to improve the LOD of MSI (Figure 2). A first such approach
proposed for diagnosis of CMMRD syndrome was based on MSI
detection in lymphoblastoid cell lines derived from CMMRD
patients rather than in blood, and which had developed ex vivo
MSI phenotype during in vitro culture (77). While this method
presents a clinical sensitivity and specificity of 100%, the time to
result is 120 days after immortalization (77).

Three other methods have been proposed for MSI detection,
all of which rely on a pre-PCR modification of the standard
procedure. In small-pool PCR, the DNA is diluted so that
the PCR is performed on 0–3 genome equivalents, thus
allowing the mutated alleles to be easily detected and quantified
(Figure 2A) (78–81). This method has allowed MSI detection
in non-tumoral colon mucosa, urinary tract epithelial cells,
PBL, saliva, and lymphoblastoid cell lines of HNPCC patients,
however it requires multiple replicate PCR experiments (at
least a hundred PCRs with one genome equivalent for a limit
of detection of 1%) (80–82). Nuclease-assisted minor allele
enrichment with either probe overlap (NaME-Pro) and nuclease-
assisted microsatellite instability enrichment (NaMSIE) are two
recently developed methods based on the use of DNA and
locked-nucleic-acid(LNA)-containing probes complementary to

WT microsatellite sequences, respectively, combined to the
preferential digestion of fully matched over mismatch-containing
double-stranded DNA by a duplex-specific nuclease (DSN),
which leads to the enrichment of mutant alleles prior to PCR
(Figure 2B) (24, 83). These methods present a limit of detection
of 0.5 and 0.01% of mutant alleles when combined to capillary
electrophoresis and HRM, respectively, and greatly improve MSI
detection in CRC samples with low tumoral cell content and
circulating DNA of plasma samples of CRC patients (24, 83).

One such method proposed to improve MSI detection
and derived from a modification of the PCR protocol, is
based on E-ice-COLD-PCR, a method previously developed for
enrichment of point mutations located in mutational hotspots
in oncogenes such as BRAF, NRAS, and KRAS (84–88). This
method relies on the use of a non-elongable poly T LNA blocker
probe complementary to the WT sequence which hybridizes
to the WT and mutant sequence, and on the preferential
denaturation of the mutant-probe heteroduplex compared to
WT-probe homoduplex at a critical temperature (Tc) to allow a
strong enrichment of mutant microsatellite alleles during primer
annealing/elongation steps (Figure 2C) (26). E-ice-COLD-PCR
lowers the limit of detection of MSI to 0.05% of mutant alleles,
allowingMSI detection in 100% of CRC samples with a high level
of normal cell contamination, however it requires the use of WT
control samples due to the enrichment of stutter peaks during
PCR amplification (26).

Finally, a post-PCRmethod called gMSI has been developed to
improve the sensitivity of MSI detection in blood from CMMRD
patients. This method relies on the analysis of the height of n+1
and n+2 stutter peaks compared to the n peak (where n is the size
of theWT allele) and uses freely available software (25). Although
gMSI is more sensitive than the standard method, it is unable to
detect MSI due to MSH6 deficiency (77).

COMPUTATIONAL METHODS FOR MSI
DETECTION IN CANCER

Before the advent of NGS, to our knowledge only two
mathematical prediction models had been developed for MSI
detection in colorectal and gastric cancers. These models used
six and seven microsatellites (mono- and di-nucleotide repeat),
respectively, and were based on a two-population (MSI vs. MSS)
model in which the binomial distributions mixture was estimated
by maximum likelihood using an expectation-maximization
algorithm (55, 89).

Several computational approaches based on WGS, WES, and
TGS data have been used to detect MSI, taking into account
the difficulties of microsatellite sequences including management
of stutter peak formation induced by PCR amplification
during NGS library preparation, sequencing errors induced by
homopolymers, and the shortcomings of sequencing read length
which limits the length of the microsatellites analyzed (Figure 3).

The first study on colorectal and endometrial cancer described
an MSI detection approach using WES and WGS data from
The Cancer Genome Atlas (TCGA) (90). This study used
mono- to tetra-nucleotide repeat microsatellites identified by
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FIGURE 2 | Strategies for improving the limit of detection of MSI in cancer. (A) Dilution of the DNA to 0–3 genome equivalent per PCR in small-pool PCR. (B) Mutant

allele enrichment in the DNA sample using sense and antisense probes complementary to WT DNA sequence and duplex specific nuclease (DSN) in NaME-Pro and

NaMSIE. (C) Mutant allele enrichment during E-ice-COLD-PCR using an LNA blocker probe complementary to WT DNA sequence. LNA, Locked nucleic acid.
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FIGURE 3 | Overview of the different NGS-based computational methods developed for MSI detection in cancer. (A) Methods based on comparison of repeat length

distribution of microsatellites including MSIsensor, mSINGs, MANTIS, Cortes-Ciriano method, and MSI-ColonCore. (B) Methods based on the total mutation burden in

all sequences and/or the indel burden in microsatellites including MSIseq Index, MSIseq/NGS classifier, and Nowak methods. The steps 1–3 can be performed in

different orders or in parallel depending on the method. The MSIseq/NGS classifier directly processes a list of somatic mutations and not raw NGS data.

Sputnik (91) to detect unstable microsatellites by comparing their
length distribution between tumor and matched normal samples
using the Kolmogorov-Smirnov statistic but without proposing a
MSI/MSS tumor classifier (56).

Subsequently, different methods were developed for MSI
detection in cancer, based on the comparison of the length
distribution of a selection of microsatellites obtained by read
count of all alleles (Figure 3A). For example, MSIsensor, a
method which uses paired tumor and normal WES data to

compare the allele length distribution of mono- to penta-
nucleotide repeat microsatellites, and applies the chi square
statistic for each locus analyzed, giving an MSI score that
corresponds to the percentage of unstable microsatellite loci with
a threshold of 3.5% for the MSI tumor phenotype (29). The
second method developed was mSINGs, which uses WES and
TGS data to investigate for MSI in 15–2957 mononucleotide
repeat microsatellites, and compares the allele length distribution
of each microsatellite in the MSI-negative control samples
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(baseline) with that of the tumor samples to detect unstable
microsatellites; it uses a Z-score approach and a threshold
of 20% of unstable markers to define MSI in tumors (27).
This method has notably allowed the detection of MSI in 14
out of 18 types of cancer using TCGA data (17). Another
method,MANTIS, uses a set of mono- to penta-nucleotide repeat
microsatellites from WES data to detect MSI, by individually
computing and aggregating the differences between the allele
length distribution of each locus of matched tumor and normal
samples to achieve an average distance score (0: fully stable and
2: fully unstable); a score threshold of 0.4 is recommended to
diagnose MSI in tumors (28). MANTIS presents a higher overall
sensitivity and specificity than MSIsensor and mSINGs, and has
been used for MSI detection in 39 cancer types from TCGA
(18). In a recent study based on WES and WGS data from
TCGA, 23 cancer types were analyzed and unstable mono- to
tetra-nucleotide repeat microsatellite loci were identified from
tumor and normal samples by Kolmogorov-Smirnov statistics;
the results were used to build a binary classifier based on the
random forest model to predict MSI status (4). Finally, the
MSI-ColonCore method was developed based on TGS data. In
this method, the allele length distribution of mononucleotide
repeat microsatellites from tumor samples are compared to a
baseline formed by normal MSS reference samples using a Z-
score approach to predict the MSI status of tumors, which are
then classified into three possible groups: MSI/MSI-H, MSI-L,
and MSS (48).

Other methods developed for MSI assessment in cancer use a
different approach based on the mutation burden in all sequences
and/or the burden of indels in microsatellites (Figure 3B). To
date, MSI-seq Index is the only MSI detection method that is
based on RNA sequencing data and the ratio of two measures,
called PI and PD, which correspond to the proportion of
insertions and deletions in mono- to hexa-nucleotide repeat
microsatellites among all insertions and deletions found in RNA
transcripts, respectively (92). When a threshold of 0.9 is applied,
the PI/PD ratio is able to distinguish between MSS and MSI
tumor samples without the use of matched normal samples (92).
The MSI-seq/NGS classifier software offers a classifier for MSI
assessment using WES somatic mutation data (small nucleotide
substitutions and indels) and based on four machine-learning
frameworks (logistic regression, decision tree, random forest,
and naïve Bayes)(93). This method uses the rate and ratio of
the small nucleotide substitutions in all sequences, and the
indels of mono- to tetra-nucleotide repeat microsatellites, to
classify the samples into “MSI” and “non-MSI”; it gives the best
results with the decision tree classifier (93). Finally, the latest
method to be developed uses targeted sequencing data from
275 genes implicated in cancer where the total mutation burden
(>40 per Mb) and the indels in mononucleotide microsatellites
(>5 per Mb) are used to define tumor samples such
as MSI-H (94).

If the main advantage of these NGS based computational
methods is that they allow a large number of microsatellite loci
to be screened simultaneously, it should be remembered that
NGS experiments are much more expensive to perform and
require more time to generate results due to the more complex

bioinformatics analysis required, and that they give similar or
only slightly better sensitivity compared to standard capillary
electrophoresis procedures (27, 46, 48).

Among the computational methods for MSI detection
in cancer, MSIsensor (https://github.com/ding-lab/msisensor,
v0.5, last updated on September 18, 2018) (29), mSINGs
(https://bitbucket.org/uwlabmed/msings, v3.4, last updated on
August 10, 2018) (27), MANTIS (https://github.com/OSU-
SRLab/MANTIS, v1.0.4, last updated on June 19, 2018) (28), and
MSIseq/NGS classifier (https://CRAN.R-project.org/package=
MSIseq, v1.0.0, last updated on June 15, 2015) (93) are available
online for download.

CONCLUSION

Although the discovery of MSI in cancer is a quarter of a
century old, it is relatively recent compared to the discovery
of point mutations, epimutations, and copy number variations
in cancer. The different methods developed so far for the
detection and identification of MSI in cancer are mostly
derived from methods created initially for the study of natural
variations/polymorphisms present in the human genome or for
point mutations present in cancer. These methods still appear to
be in their infancy since to date only a small number have been
developed for MSI detection, and of these very few are applicable
to potential clinical applications of interest such as the detection
of MSI in plasma, circulating tumor cells, blood, heterogeneous
tumors, or tumors with a high level of normal cell contamination.
In contrast, these methods have already been implemented for
other types of alterations in cancer.

Numerous difficulties could explain these delays in
technological development, notably the high polymorphism
levels of microsatellite sequences in the different human
populations and the errors induced by PCR slippage during
amplification of microsatellite sequences, which increases the
complexity not only of the analysis ofmicrosatellite profiles but of
the MSI detection and the identification of mutant alleles. More
recently, several factors such as the errors induced during the
sequencing-by-synthesis of homopolymers by next-generation
sequencing, the difficulties of alignment of repetitive DNA
sequences due to the short read length, and the low accuracy
of indel calling, have also created a computational challenge for
MSI detection by NGS-based computational methods, due to
the high risk of interperation errors, a problem which requires a
longer duration for the development of algorithms.

Given the recent discovery ofMSI in dozens of types of cancer,
which correlates in a positive dose-effect manner to survival
outcome, and the demonstration that MSI is a major predictive
biomarker for the efficacy of immune checkpoint blockade
therapy in solid tumors, there is undoubtedly a need for the
development of new sensitive tools for MSI detection, including
clinical applications for MSI diagnosis. Future perspectives
should include (i) the development of pan-cancer panels of
highly sensitive and specific microsatellite markers for the
detection of MSI in cancer, and (ii) the development of combined
methods to improve the limit of detection of MSI, as required
for certain types of clinical samples (i.e., tumors with high
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normal cell contamination, blood, and plasma); the latter could
include the enrichment of mutant alleles prior to massively
parallel NGS. These methods could then be rapidly implemented
in routine clinical applications for the diagnosis of MSI in
cancer.
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