
HAL Id: cea-04485122
https://cea.hal.science/cea-04485122v1

Submitted on 1 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

From user stories to models: A machine learning
empowered automation

Takwa Kochbati, Shuai Li, Sébastien Gérard, Chokri Mraidha

To cite this version:
Takwa Kochbati, Shuai Li, Sébastien Gérard, Chokri Mraidha. From user stories to models: A
machine learning empowered automation. MODELSWARD 2022 - 9th International Conference on
Model-Driven Engineering and Software Development, Feb 2021, Online Streaming, France. pp.28-40,
�10.5220/0010197800280040�. �cea-04485122�

https://cea.hal.science/cea-04485122v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

From User Stories to Models: A Machine Learning Empowered
Automation

Takwa Kochbati, Shuai Li, Sébastien Gérard and Chokri Mraidha
Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

Keywords: User Story, Machine Learning, Word Embedding, Clustering, Natural Language Processing, UML Use-case.

Abstract: In modern software development, manually deriving architecture models from software requirements ex-
pressed in natural language becomes a tedious and time-consuming task particularly for more complex sys-
tems. Moreover, the increase in size of the developed systems raises the need to decompose the software
system into sub-systems at early stages since such decomposition aids to better design the system architecture.
In this paper, we propose a machine learning based approach to automatically break-down the system into
sub-systems and generate preliminary architecture models from natural language user stories in the Scrum
process.
Our approach consists of three pillars. Firstly, we compute word level similarity of requirements using
word2vec as a prediction model. Secondly, we extend it to the requirement level similarity computation,
using a scoring formula. Thirdly, we employ the Hierarchical Agglomerative Clustering algorithm to group
the semantically similar requirements and provide an early decomposition of the system. Finally, we imple-
ment a set of specific Natural Language Processing heuristics in order to extract relevant elements that are
needed to build models from the identified clusters.
Ultimately, we illustrate our approach by the generation of sub-systems expressed as UML use-case models
and demonstrate its applicability using three case studies.

1 INTRODUCTION

In order to improve their performance, organizations
tend to shift to Agile methodologies (Lindvall et al.,
2002). A key feature of their success is that they em-
power the customer-developer relationship in order to
develop quicker, better and higher-quality products.
In order to meet this goal, Agile methodologies such
as Scrum (Schwaber, 1997) rely on incremental, it-
erative and adaptive processes. The first objective in
the Scrum process is to define the product backlog,
that is, a list of elicited and prioritized requirements
that should be implemented. Then, Scrum processes
in sprints. Each sprint contains the tasks to achieve by
the developer teams.

Requirements analysis is essential for the suc-
cess of this process as developers need to understand
requirements before moving to the implementation
phase (Verner et al., 2005). In this context, user sto-
ries are increasingly adopted to express requirements
in Scrum (Kassab, 2015; Lucassen et al., 2016a).
They represent a high-level definition of requirements
expressed in semi-structured natural language nota-

tion. Many textual templates have been proposed for
user stories. The one that is most used by practitioners
has the form of: ” As a <type of user> I want <some
goal> so that <some reason>” (Cohn, 2004).

Since the size of the developed systems increases
due to the increasing number of partners involved in
the process, the number of user stories consequently
grows. This growth in number raises the need to
break-down the system into a set of sub-systems, each
covering a set of semantically similar user stories.
Such early decomposition helps the developers to bet-
ter understand and realize the target software and it
may be a basis to build the product backlog. Eventu-
ally, each sub-system needs to be expressed in a semi-
formal manner such as visual models in order to keep
stakeholders involved in the requirements engineering
tasks (Alexander and Maiden, 2004).

In this context, the Unified Modeling Language
(UML) (Booch et al., 2015) has been employed as a
visual language that supports requirements engineer-
ing. It has been widely used to specify the features
of software systems, and to reduce the ambiguity be-
tween the requirement specifications and the design,

28
Kochbati, T., Li, S., Gérard, S. and Mraidha, C.
From User Stories to Models: A Machine Learning Empowered Automation.
DOI: 10.5220/0010197800280040
In Proceedings of the 9th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2021), pages 28-40
ISBN: 978-989-758-487-9
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

on the basis of models. Among these models, use-
cases have been widely used to capture the require-
ments from the user’s point of view. In addition, they
are easy to understand and provide an excellent way
for communicating (Bittner, 2002).

However, manually grouping similar user sto-
ries and generating UML models is a tedious and
time-consuming task especially for large scale sys-
tems. Furthermore, the integration of model-based
approaches in Scrum process has been hard to per-
form due to the lack of powerful automation tools
as well as the focus of teams on the implementation
rather than analysis or documentation (Löffler et al.,
2010).

Several studies found in literature have focused on
automating models generation from natural language
software requirements (Elallaoui et al., 2015), (Elal-
laoui et al., 2018), (Arora et al., 2016). Other works
focused on the clustering of natural language require-
ments with the goal of decomposing the target sys-
tem at early stages (Barbosa et al., 2015), (Amanne-
jad et al., 2014). On the one hand, we observed that
current requirement clustering approaches are lacking
accuracy and fail to achieve a high degree of automa-
tion. On the other hand, using requirement clustering
as a first step to automatically derive models has never
been considered in the literature.

In order to overcome these limitations, we pro-
pose a machine learning based approach to automati-
cally break-down the target system into a set of sub-
systems as a first step towards architecture models
generation. The core of our approach is a cluster-
ing solution that groups natural language user sto-
ries based on their semantic similarity. Accordingly,
our work promotes the integration of model-based ap-
proaches in Scrum.

Specifically, in this paper we make the follow-
ing contributions: 1) we employ a word embedding
model, word2vec, as a prediction model to compute
word level semantic similarity as it has shown to out-
perform traditional counting models (Baroni et al.,
2014). Then, we extend it to the requirement level
using a scoring formula for text similarity; 2) we use
the Hierarchical Agglomerative Clustering algorithm
(HAC) to cluster natural language user stories based
on their semantic similarity. As the selection of the
number of clusters is not straightforward and requires
manual intervention, we implement an operation to
automatically estimate the optimal number of clusters
; 3) finally, we implement a set of specific Natural
Language Processing (NLP) heuristics in order to ex-
tract relevant elements that are needed to build the re-
quired UML use case models from the identified clus-
ters of user stories.

We illustrate our approach on three complemen-
tary case studies. Through these case studies, we pro-
pose several Key Performance Indicators (KPIs) in or-
der to assess the performance of our approach, and
demonstrate its added value in automating the tran-
sition from user stories to models in Scrum. The re-
mainder of the paper is structured as follow: Section 2
provides the background and the assumptions.Section
3 describes the proposed approach and Section 4 dis-
cusses the results as well as the evaluation of the ap-
proach. Section 5 raises the limitations and the threats
to validity. Section 6 discusses the related works and
finally, Section 7 concludes the paper.

2 BACKGROUND AND
ASSUMPTIONS

In this section we discuss and clarify the key concepts
underpinning this work as well as the considered as-
sumptions.

2.1 User Stories and Use-Cases

A user story is a structured natural language descrip-
tion of requirements. It follows a compact template
that describes the type of user, what they want and
(optionally) why (Wautelet et al., 2014). User stories
help to capture the description of the software features
to be implemented from an end-user perspective.

Although many different templates exist, 70%
of practitioners use the template (Lucassen et al.,
2016a): “As a « type of user » , I want « goal », [so
that « some reason »]”. In our approach, we assume
that the considered user stories rely on the following
templates:

• “As a « type of user », I want « goal », [so that/so
« some reason »]”.

• “As a « type of user », I’m able to « goal », [so
that/so « some reason »]”.

Use-cases are on their side used to describe one
specific interaction between the stakeholders and the
system. For each user story, we consider that the «
goal » part corresponds to the use-case.

However, the identified use-case can be either a
whole use-case or a partial use-case, having inclusion
or extension relationships to other use-cases (Sasse
and Johnson, 1999). In our work, we assume that the
« goal » part in each user story represents a whole
single use-case.

From User Stories to Models: A Machine Learning Empowered Automation

29

2.2 Novel Approaches to Semantic
Similarity

Semantic similarity plays a major role in various
fields such as information retrieval, data integration
and data mining (Varelas et al., 2005; Rodriguez and
Egenhofer, 2003).

As we aim to group textual requirements in order
to decompose the target system, we need to identify
textual requirements that are semantically similar or
related to one another.

Traditionally, semantic text matching have been
defined using lexical matching and linguistic analysis
(Lapata and Barzilay, 2005). Going beyond these tra-
ditional methods, finding semantic similarity between
words is a fundamental part of text similarity. Then,
it can be used as a primary stage to text similarity.

Word embedding allows to capture the context of
a word in a document, semantic and syntactic similar-
ity, as well as its relations with other words (Lebret
and Collobert, 2014).

In this context, the vector-based approach of
word2vec (Mikolov et al., 2013), a two-layer neural
network for word embedding, enables predicting se-
mantically similar words. As a prediction model, it
has shown to outperform common traditional count
models (Baroni et al., 2014).

Using the word2vec model, words with similar
meaning end up lying close to each other. Thus, it
gives best word representations. Moreover, it allows
to use vector arithmetic to work with analogies, e.g.,
vector (king) - vector (man) + vector (woman) = vec-
tor (queen).

Although these new methods have not yet been ap-
plied in the requirements engineering literature, they
are steadily being adopted in industry thanks to their
excellent performance. Therefore, we rely on them in
our approach to go from word-level to requirement-
level semantic similarity.

2.3 Clustering

Textual requirements clustering refers to the process
of taking a set of requirements and grouping them so
that, requirements in the same cluster are similar and
requirements in different clusters are different. In this
context, we aim to adopt the clustering of user stories
on the basis of their semantic similarity.

Clustering methods can be classified either as hi-
erarchical or partitional (Hotho et al., 2005).
Hierarchical clustering algorithms work iteratively by
joining, or dividing, clusters that are organized as a
tree. These algorithms don’t require any input param-
eters, they require only a similarity measure.

Partitional clustering algorithms such as k-means re-
quire the number of clusters to start running. Thus,
they rely heavily on the analyst’s knowledge as they
require the identification of the number of clusters to
be generated in advance (Perner, 2002).

In our case, we don’t have any condition on the
number of clusters to be generated. Therefore, we
use the hierarchical clustering methods, as they don’t
require us to pre-specify the number of clusters in
advance. We employ the HAC algorithm (Zepeda-
Mendoza and Resendis-Antonio, 2013). HAC algo-
rithm works in a bottom-up manner, each object is
initially considered as a single-element cluster (leaf).
At each step of the algorithm, the two clusters that are
the most similar are combined into a new bigger clus-
ter (node). This procedure is iterated until all points
are member of just one single big cluster. Moreover,
using the HAC algorithm we can visualize a dendro-
gram, which represents the arrangement of the gen-
erated clusters in a hierarchical tree structure and it
may help to graphically identify the hierarchy of the
clusters.

In the next section, we explain in more details how
we applied our clustering solution as well as how we
generated UML use-cases from each cluster.

3 THE PROPOSED APPROACH

In this section, we present how our approach how our
approach automatically generates UML models from
natural language user stories. First, an overview of the
process is given, then each subsection gives details on
its implementation.

As shown in Figure 1, the user stories document
is initially preprocessed. Text preprocessing is an es-
sential step in the pipeline of a NLP system as this
transforms the text into a form that is predictable and
analyzable for machine learning tasks.

Then, we implement a semantic similarity module
that computes the semantic similarity between each
pair of the requirements. It takes as input the prepro-
cessed requirements generated in the first step.

The similarity computation module includes two
levels: (i) word level similarity, in which we use a pre-
trained word embedding model, word2vec, to com-
pute word-to-word semantic similarity as mentioned
in Section 2.2, then we extend it to the (ii) requirement
level similarity by means of the Mihalcea scoring for-
mula for documents similarity computation (Mihalcea
et al., 2006). The output of this module is a require-
ment similarity matrix.

Subsequently, in step 3, we feed the obtained re-
quirements similarity matrix into the HAC algorithm.

MODELSWARD 2021 - 9th International Conference on Model-Driven Engineering and Software Development

30

Word level similarity
computation

Clustering

Labelled Clusters

Requirements
Similarity

Computation

Preprocessing

UML Use Case
Model Generation

Requirement
Similarity Matrix

Step 2

Labelling

	administrator

	user

Manage	site

UseCase1

UseCase2

Search	event

UseCase1

UseCase2

	visitor

Step 3

Step 1

Step 4

Natural language user
stories

UML use case model

Figure 1: Architecture of the approach.

Step 4 illustrates the generation of UML use-cases
from each identified sub-system. It takes as input the
generated clusters of the semantically similar require-
ments from which we extract the relevant use case
model elements using a set of specific NLP heuris-
tics.
Finally, the extracted elements are programmatically
mapped into UML use case model using the UML2
SDK of Eclipse.
More details on each of these steps are found in the
following subsections.

3.1 Step 1: Preprocessing

This step is needed for transferring text from natural
language to a machine-readable and analyzable for-
mat for further processing. Words should be trans-
formed into numerical vectors that work with ma-
chine learning algorithms.

First, we start by normalizing requirements
through four steps: (i) tokenization, i.e., the decom-
position of a sentence into a set of individual words;
(ii) stop-words removal, i.e., the elimination of com-
mon English words; (iii) punctuation removal ; (iv)
stemming, i.e., the transformation of each word to its
root (e.g: "adding" becomes "add").

Then, we use the word2vec model, a two-layer
neural network that is used to produce word embed-
dings (i.e., vectors). Since a word embedding model
is supposed to be of high quality when trained with
large corpus, we use the pretrained word2vec model
on 100 million words of Google News dataset1.

However, even if the used corpus is too large
(Google News), some domain-specific words did not
exist in the corpus. In this case we assign to the miss-
ing word a random vector (Kim, 2014).

The resulting vectors are used for semantic sim-
ilarity computation, which is explained in the next
step.

3.2 Step 2: Semantic Similarity
Computation Module

In this section, we explain in details how we com-
puted the semantic similarity of each pair of require-
ment statements, taking into account both word level
and requirement level.
• Word Level Similarity.

At first level, we measure the semantic similarity
between each pair of word vectors belonging to
two different requirement statements using cosine
similarity. The cosine similarity measure consists
of computing the cosine of the angle between two
words vectors. The cosine similarity of two simi-
lar words vectors is close to 1, and close to 0 oth-
erwise.

• Requirement Level Similarity.
Traditional approaches to find the semantic simi-
larity between two text segments is to use lexical
matching method, and produce a similarity score
based on the number of lexical units that occur in
both input segments. However, these lexical sim-
ilarity methods cannot always identify the seman-
tic similarity of texts (Mihalcea et al., 2006).

1https://code.google.com/archive/p/word2vec

From User Stories to Models: A Machine Learning Empowered Automation

31

Thus, going beyond the simple lexical matching
methods used for this task, we were inspired by
the work of Mihalcea et al. (Mihalcea et al.,
2006), to derive the requirement level semantic
similarity from the word level semantic similar-
ity. Consequently, we used the Mihalcea scoring
formula for text similarity computation (Equation
1).

Sim(R1,R2) =
1
2
×

(
∑w∈R1 maxSim(w,R2)× id f (w)

∑w∈R1 id f (w)
+

∑w∈R2 maxSim(w,R1)× id f (w)

∑w∈R2 id f (w)
)

(1)

First, we identify for each word w1 in text re-
quirement R1, the word w2 in the text require-
ment R2 that have the highest semantic similar-
ity maxSim(w1,R2) (Equation 2), according to
the word-to-word semantic similarity computa-
tion stated in the previous subsection. Next, the
same process is applied to determine the most
similar word in R1 starting with words in R2.

maxSim(w1,R2) = max
w2∈R2

wordSim(w1,w2) (2)

In addition to the similarity of words, we also take
into account the specificity of words using the in-
verse document frequency id f . The specificity of
a word w, id f (w) (Equation 3) has been defined
as the log of the total number of documents in the
corpus divided by the total number of documents
including that word (Jones, 1988).

id f (w) = log(Total number o f documents/
Number o f documents with word w in it) (3)

The word similarities are then weighted with the
corresponding word specificity. Thus, given two
text requirement units R1 and R2, Mihalcea scor-
ing formula combines word-to-word similarity
and word specificity to derive text-to-text seman-
tic similarity that is a potentially good indicator of
the semantic similarity of two input texts.
The resulting requirement similarity has a value
between 0 and 1, with a value of 1 indicating iden-
tical requirement text segments, and a value of 0
indicating no semantic overlap between the two
segments. Therefore, given a document contain-
ing N requirements, the output of this step is a
N×N semantic similarity matrix that contains the
semantic similarity of each pair of requirements.

3.3 Step 3: Clustering Module

The semantic similarity matrix is fed into the HAC
algorithm as stated in Section 2.3.

When the dendrogram is cut off at a specific point,
a set of clusters is obtained which can represent a clus-
tering solution of the system.

However, identifying the optimal number of clus-
ters is not a trivial task. It can be either graphically
identified by the analyst, then he can cut-off the den-
drogram according to the desired number of the soft-
ware sub-systems.

In order to reduce the need for manual interven-
tion, we implement an operation that identifies auto-
matically the best number of clusters using the Dunn
index (Dunn, 1974) since a higher Dunn index indi-
cates better clustering solution. Therefore, we com-
pute the Dunn index each time, while varying the
number of clusters.

The generated clusters are then labelled using the
Gensim library for text summarization2. Gensim is a
free Python library designed to automatically extract
semantic topics from documents.

This summarizer is based on the ranks of text sen-
tences using a variation of the TextRank algorithm
proposed by Mihalcea et al. (Mihalcea and Tarau,
2004) and it summarizes a given text, by extracting
one or more important sentences from the text. In a
similar way, it can also extract keywords, i.e., the set
of terms that best describe the document.

Thus, we label each generated cluster using Gen-
sim’s summarizer by extracting the best representa-
tive keywords embedded in the cluster.

3.4 Step 4: UML Use Case Model
Generation Module

In this section we will explain how we automatically
generate UML use case models from the resulting
clusters that express early sub-systems. We define a
set of specific NLP heuristics in order to extract use
case model elements then, we programmatically cre-
ate UML use case models on Eclipse Papyrus using
the Eclipse UML2 tool SDK plugin.

NLP Heuristics. The extracted use case model el-
ements are actors, use cases, and their associations.
They are extracted using text chunking i.e., breaking
the text down into smaller parts, with a set of specific
NLP heuristics.

2https://radimrehurek.com/gensim/auto_examples/
tutorials/run_summarization.html

MODELSWARD 2021 - 9th International Conference on Model-Driven Engineering and Software Development

32

We implement the proposed NLP heuristics using
the Spacy library3, a free and open-source library for
advanced Natural Language Processing (NLP). The
rules used to extract relevant elements from each user
story, are the following:

• Actor is the first noun phrase chunk that exists af-
ter the pattern "as a". It can be a noun, noun plural
or compound noun.

• Use case is the chunk that always exists between
the patterns: "I’m able to" / "I want" and "so
that/so" if it exists.

• In each user story, there is an association between
the two elements resulting from the two previous
rules.

UML2 Tool SDK Plugin to Automatically Gener-
ate Models. In order to illustrate our approach, we
implemented a translator using the Eclipse UML2
SDK. The tool takes as input the extracted use case
model elements, as well as the cluster to which they
belong to. Then, it programmatically generates UML
use case models.

The generated clusters are mapped into UML
packages and each user story is mapped into a triplet
actor, use case and their association.

4 EVALUATION

In order to demonstrate the applicability of our ap-
proach, we conduct three case studies. In this section,
we present the Key Performance Indicators (KPIs) to
be evaluated and the evaluation metrics. Moreover,
we present the description of the case studies as well
as the results.

4.1 Key Performance Indicators (KPIs)

• KPI1: Accuracy of the Clustering Solution.
The aim of this KPI is to measure how much the
identified clustering solution is accurate.

• KPI2: Accuracy of the Generated Use Case
Models.
For this KPI, we aim at identifying the accuracy of
the use case models generated from each cluster.

• KPI3: End-to-end Execution Time.
For this KPI, we aim to establish whether our ap-
proach runs within reasonable time in realistic set-
tings.

3https://spacy.io/

In order to evaluate our approach w.r.t. the KPIs, we
consider two metrics in our technique to be evaluated.
• Clustering Evaluation Metric for KPI1.

In clustering theory, a wide range of metrics ex-
ist in order to evaluate the accuracy of clustering,
each with its own advantages and limitations.
We employ the Dunn index (Dunn, 1974) as an
internal validity index. This internal index is used
to evaluate the goodness of a clustering structure
without reference to external information. It can
be also used for estimating the number of clusters
and the appropriate clustering algorithm without
any external data. Subsequently, we compute this
index for different number of clusters. The num-
ber of clusters for which we have the higher Dunn
index value is the optimal number of cluster and
indicates a better clustering solution.
To the best of our knowledge, there is no baseline
in the literature to compare our clustering results
with. Consequently, we estimate whether a rea-
sonable clustering is selected based on how well
the clusters match the ground truth that is man-
ually created by the team experts. To this end,
we use precision, accuracy and F-measure metrics
(Manning et al., 2005) to evaluate clustering re-
sults with respect to the manually identified clus-
ters.
True Positive (TP) elements are similar require-
ments assigned to the same cluster. False Positive
(FP) elements are dissimilar requirements as-
signed to the same cluster. False Negative (FN)
are similar requirements assigned to different
clusters. Thus, the evaluation metrics are com-
puted as follow:

Precision = TP / (TP + FP)
Recall = TP / (TP + FN)
F-measure = 2 * Precision * Recall / (Precision
+ Recall)

• UML Use Case Models Evaluation Metric for
KPI2.
This evaluation is based on a comparison of the
UML use case models, generated from our pro-
posed approach, and the UML use case models
manually created by experts from the user stories.
We use the same metrics stated in clustering eval-
uation; precision, recall and F-measure (Manning
et al., 2005), to evaluate the accuracy of the gen-
erated UML use case models.
For each generated use case model, True Posi-
tive (TP) elements are the elements identified both
manually and by the automatic approach. False
Positive (FP) elements are the elements identified

From User Stories to Models: A Machine Learning Empowered Automation

33

by the automatic approach but not manually. False
Negative (FN) are those identified manually but
not by the automatic approach.
Furthermore, we compare our results with the ap-
proach proposed by Elallaoui et al. (Elallaoui
et al., 2018). We consider the work in (Elallaoui
et al., 2018) as our baseline because it closely re-
lates to our work (extracting use case models from
user stories) although authors didn’t consider the
clustering of user stories as a preliminary step to-
wards model generation.

4.2 Description of Case Studies

We evaluated our approach on three real-world case
studies available in the University of Bath’s Institu-
tional Repository (IRDUS1). The three case studies
belong to different domains presenting different writ-
ing styles and different number of user stories. In the
following, we introduce each in more detail:

• CMS Company Case Study:
This case study involves a company develop-
ing complex Content Management System (CMS)
products for large enterprises. 34 user stories are
supplied. The user stories follow the template pro-
posed by Cohn (Cohn, 2004) defined as follows
‘As a [type of user], I want to [some goal] so
that [some reason]’. Despite the smaller size,
this case study contains lengthy user stories with
non-trivial sentence structuring.

• Web Company Case Study:
This case study comes from a Dutch company
that creates tailor-made web applications for busi-
nesses. The Web Company supplied 84 user sto-
ries covering the development of an entire web ap-
plication focused on interactive story telling. The
user stories in this case study rely on the template:
‘As a [type of user], I’m able to [some goal] so
that [some reason]’.
However, the structure of the user stories in this
case study is more complex than in the CMS
Company case study.

• Archive Space Case Study:
Archive Space is an open-source software prod-
uct created by archivists. The user stories of this
project are available online4. It contains 51 user
stories that rely on the template ’As a [type of
user], I want [some goal]’. All user stories in
this collection omit the ’so that’ token. Moreover,
many user stories contain unnecessarily capital-
ized words, compound nouns, and idiosyncratic

4archivesspace.atlassian.net

phrases such as ’...either the [creator | source |
subject] of an [Accession | Resource | Resource
Component]...’

4.3 Results and Discussions

In this section, we present the results of applying our
approach to the case studies.

4.3.1 Assessing KPI1: Accuracy of the
Clustering Solution

For KPI1, the accuracy of the clustering solution de-
pends on the choice of the number of clusters (i.e.
clusters). We automated the identification of the opti-
mal number of clusters by means of Dunn index as
stated in Section 4.1. We run the HAC algorithm
with different number of clusters for each run and
we check Dunn index of the outcome. Thus, we car-
ried out 6 runs for each case study. The best number
of clusters is the number of clusters with the largest
Dunn index value.

Figure 2: Dunn index bar graph of CMS Company case
study.

For example, the best clustering result for the
CMS Company case study was achieved in the fourth
run, followed by the fifth, third and second ones.
Thus, as shown in Figure 2 the optimal number of
clusters for CMS Company case study is four clus-
ters.

Moreover, it is possible to graphically verify the
conformance of the distribution of the user stories
and the optimal number of clusters that we identified
based on the dendrograms as shown in Figure 3.

The output of this step is a set of labelled clusters
of semantically similar user stories. Table 1 shows an
example of a cluster labelled "page, URL, attribute" in
the case of CMS Company case study which perfectly
matches with the ground truth.

In Figure 4, we show results for precision, recall
and F-measure metrics for the three case studies. Val-

MODELSWARD 2021 - 9th International Conference on Model-Driven Engineering and Software Development

34

Figure 3: CMS Company case study dendrogram.

Table 1: Cluster: "page, URL, attribute".

1- As a marketeer, I want to set the title attribute
of a link so I can improve the SE ranking of the
website.
2- As a marketeer, I want to switch URLs when
URL duplication occurs between pages so that I
can solve conflicts between pages easily without
having to search all pages in the tree.
3- As a marketeer, I want to create friendly URLs
for my nested product pages so I can improve the
SE ranking of the product section of my website.
4- As a marketeer, I want to set the rel attribute
of external links so I can make sure that SE bots
do no affect SE rankings for pages with many
external links.
5- As a marketeer, I want to set canonical tags to
individual pages so I can avoid duplicate content
easily without having to set permanent redirects
and thereby will improve the SE ranking of the
website.
6- As a marketeer, I want to be solve URL con-
flicts immediately so I avoid not-friendly URLs
and thereby will positively influence the overall
SE ranking of the website.
7- As an editor, I want to assign page sections to
pages using the current page section structure so
I can easily and efficiently manage page sections
assigned to pages.

ues are around 0.8 which is close to 1, and thus, indi-
cate a relatively accurate clustering result. Moreover,
the result reveals that the majority of the requirements
is assigned to the correct cluster, which matches the
ground truth accurately. Thus, the evaluation shows
results with relatively high quality that can be appli-
cable. Moreover, in spite of the fact that user stories
of the three case studies belong to different domains,
our experiments show that the clustering solution pro-

Figure 4: Bar graph of the clustering evaluation.

cessed the same for the three case studies with the
same parameter settings. What’s more, we success-
fully avoid manual intervention by recommending an
optimal number of clusters.

4.3.2 Assessing KPI2: Accuracy of the
Generated Use Case Models

In order to evaluate KPI2, we specified True Positive
(TP), False Negative (FN) and False Positive (FP) el-
ements applied to actors, use cases and their relation-
ships for each case study. Tables 3, 4 and 5 summarize
the evaluation of the generated UML use case models
in terms of precision, recall and F-measure.

Table 2: Example of the extracted elements for the cluster
"page URL attribute".

Actor Use case
marketeer set the title attribute of a link
marketeer switch URLs when URL duplication

occurs between pages
marketeer create friendly URLs for my

nested product pages
marketeer set the rel attribute of external links
marketeer set canonical tags to individual pages
marketeer solve URL conflicts immediately

editor assign page sections to pages using
the current page section structure

Table 3: Accuracy of the generated UML use case model
for the "Web Company" case study.

Actors Use Cases
Relation-

ships
TP FP FN TP FP FN TP FP FN

84 0 0 84 2 7 69 17 10
Precision 100% 97% 97%

Recall 100% 92% 90%
F-measure 100% 94% 93%

From User Stories to Models: A Machine Learning Empowered Automation

35

Figure 5: Overview of the generated UML use case model
for the "CMS Company" case study.

Table 4: Accuracy of the generated UML use case model
for the "CMS Company" case study.

Actors Use Cases
Relation-

ships
TP FP FN TP FP FN TP FP FN

34 0 0 32 2 2 28 4 4
Precision 100% 94% 88%

Recall 100% 94% 88%
F-measure 100% 94% 88%

Table 5: Accuracy of the generated UML use case model
for the "Archive Space" case study.

Actors Use Cases
Relation-

ships
TP FP FN TP FP FN TP FP FN

56 0 0 51 1 6 33 11 6
Precision 100% 98% 75%

Recall 100% 89% 84%
F-measure 100% 93% 79%

The accuracy of the generated UML use case
models is reasonable for the three case studies.

For actors, F-measure value is equal to 100% as
we succeeded to extract all the actors even actors
with compound nouns such as "read Only user" and
"repository Manager".

For use cases and relationships, F-measure values
take high-range (93%-94%) and (79%-93%) respec-
tively. In relationships detection, these values are due
in particular to inclusion or extension relationships
between use-cases that are not supported by our ap-

proach.
Moreover, we compare our results to the work in

the baseline (Elallaoui et al., 2018) which has been
evaluated only for the Web Company case study. Re-
sults indicate that our approach succeeded in extract-
ing all the actors while the approach in the baseline
(Elallaoui et al., 2018) failed to extract actors with
compound nouns such as "newly registered user".
Moreover, for use-cases and relationships, our ap-
proach achieves better F-measure results than the
baseline (Elallaoui et al., 2018) by 8 and 10 percent-
age points respectively.

As an illustration, Figure 5 shows the generated
UML use case model based on the extracted elements
presented in Table 2 for the cluster "page, URL, at-
tribute" (Table 1).

4.3.3 Assessing KPI3: Execution Time

For KPI3, table 6 shows the execution time for the
different steps of our approach measured on a laptop
with a 2.10 Ghz Intel (R) Core (TM) i7-4600U CPU
and a 8GB of memory.

Table 6: Execution time.

Case Study Phase Execution
Time

CMS preprocessing 5s
Company Clustering (similarity

computation+HAC 28s
+labelling)

UML use case 2s
generation

Total 35s
Web preprocessing 11s

Company Clustering (similarity
computation +HAC 56s

+labelling)
UML use case 5s

generation
Total 1m12s

Archive preprocessing 7s
Space Clustering (similarity

computation +HAC 35s
+labelling)

UML use case 3s
generation

Total 45s

For the three case studies, the execution time is
dominated by the clustering step as well as the in-
ferring of the words vectors in the semantic similar-
ity computation step. Figure 6 shows a linear growth

MODELSWARD 2021 - 9th International Conference on Model-Driven Engineering and Software Development

36

trend for the impact of the number of user stories on
the execution time. Given such linear relation and the
fact that the end-to-end execution time takes few sec-
onds to few minutes, we anticipate that our approach
should be practical for much larger user stories docu-
ments.

Figure 6: Impact of the number of user stories on the exe-
cution time.

5 THREATS TO VALIDITY

In this section, we discuss the limitations of our pro-
posal in terms of internal threats, construct threats and
external threats. These threats are as follows:

Internal Validity. With regard to computing word
similarity, some domain-specific words don’t occur in
the corpus used to train the word vector space which
might slightly affect the efficiency of word similarity
computation. To mitigate this limitation, we map such
words to a random vector.

Construct Validity. With regard to assessing the
accuracy of the clustering, the definition of what a
"better" cluster is might be a subjective procedure
since there is no baseline in the literature to compare
our clustering results with. Although this may lead to
bias of evaluating clusters, we still achieve relatively
accurate results compared with ground truth.

External Validity. We evaluate the applicability of
our approach on three case studies. Although the eval-
uation gives promising results, we need to evaluate
the approach on further case studies including indus-
trial case studies.

Ultimately, as mentioned above, there are several
threats to our approach that have to be considered in
order to improve our proposal.

6 RELATED WORK

Many work found in the literature aim at deriving
models from early requirements expressed in natural
language.

Fabian et al. (Gilson and Irwin, 2018) propose
an automatic transformation from user stories to ro-
bustness diagrams. The approach aims at helping re-
quirements engineers and users to validate user stories
and to perform structured analysis. Thus, the work
consists in identifying loosely defined or ambiguous
stories, extracting core concepts as well as relations
between them using NLP techniques.

Ellaoui et al. (Elallaoui et al., 2015), propose an
approach that helps engineers to reduce ambiguity in
requirements specifications in scrum processes. The
approach consists in generating sequence diagrams
from user stories in order to generate test cases. It is
based on a set of rules that are used to extract model
elements. Then, an XMI file for each user story defin-
ing the corresponding sequence diagram is generated.

In (Elallaoui et al., 2018), the authors propose an
automatic transformation of user stories into UML
use case diagrams to assist the work of the develop-
ment team and the Product Owner. The approach is
based on a set of NLP heuristics that allows to extract
use-case elements. However, the proposed approach
is unable to detect actors with compound nouns as
well as inclusion and extension relations between use-
cases.

In a similar approach, Arora et al. (Arora et al.,
2016) developed a domain model extractor from nat-
ural language requirements. They are able to identify
classes, relations and attributes with a variable suc-
cess rate.

These works commonly employ a syntactic trans-
formation to bridge the gap between natural language
requirements and models. Although there are multi-
ple approaches that transform requirements to mod-
els, decomposing the target system into a set of sub-
systems from early requirements is also needed as the
number of requirements grows. Hence, the usage of
clustering techniques in the early phases of software
engineering has gained a lot of attention in recent
years.

In (Amannejad et al., 2014), the authors developed
a tool based on hierarchical clustering of requirements
in order to propose a packaging solution for software
engineers. They defined a similarity measure that
aims to cluster classes with high number communi-
cation in the same package. However, the optimal
number of clusters is manually selected by software
engineers based on the hierarchical tree generated by
the clustering algorithm.

From User Stories to Models: A Machine Learning Empowered Automation

37

Lucassen et al. (Lucassen et al., 2016b) present
an approach based on concepts clustering to visualize
requirements at different levels of granularity. They
employed word2vec as a prediction model to compute
similarity between concepts.

Agustin et al. (Casamayor et al., 2012) propose
an initial clustering of responsibilities from require-
ments, in order to detect architecture components.
The approach is validated using four different clus-
tering algorithms and several validity metrics. The
similarity function is computed according to the verb
phrase each responsibility contains and the direct ob-
ject it is related to.

Barbosa et al. (Barbosa et al., 2015) present an
approach to cluster and sequence user stories in or-
der to assist software engineers in the implementation
phase. They employed a clustering algorithm and the
silhouette score to identify the best clustering solu-
tion.

In (Jalab and Kasirun, 2014), the authors propose
an approach that clusters similar requirements in or-
der to reuse them in software product lines (SPLs).
They compared the performance of two clustering al-
gorithms based on a distance measure in order to iden-
tify similar requirements.

In (Salman et al., 2018), the authors demonstrate
the use of the HAC algorithm to break-down the
project into a set of sub-projects based on related
functional software requirements. They use tradi-
tional vector space models to vectorize text require-
ments. The clustering framework that they propose
is dynamic and can be extended to include different
clustering algorithms and distance measures.

All these techniques inspire our work. However,
some of these approaches suffer from a lack of au-
tomation when defining the optimal number of clus-
ters (Amannejad et al., 2014), others rely on the simi-
larity between words or concepts in each requirement
(Lucassen et al., 2016b), (Casamayor et al., 2012).

Moreover, some of them utilize traditional count
models, for instance, Vector Space Model (VSM)
(Salman et al., 2018), Latent Semantic Analysis
(LSA) (Jalab and Kasirun, 2014), and TF-IDF (Bar-
bosa et al., 2015) to calculate the similarity. Mean-
while these count models can not achieve synonymy
and polysemy, which decreases the similarity accu-
racy. Consequently, they usually achieve worse re-
sults than prediction models (Baroni et al., 2014).

The main novelty of our proposal is that we benefit
from using word2vec as prediction model, to compute
word level similarity and then, derive the requirement
level similarity using a scoring formula for text simi-
larity. Then, we automatically generate clusters from
natural language user stories using HAC algorithm

and we implement an operation that recommends the
optimal number of clusters in order to avoid the man-
ual intervention. Finally, we implement a set of spe-
cific NLP heuristics to extract relevant use case model
elements in order to instantiate our approach in UML
use case models and hence, foster the integration of
model-based approaches in Scrum process.

7 CONCLUSION

In this paper, we proposed a machine learning based
approach to automatically derive preliminary UML
behavioral models from early natural language user
stories in Scrum process. The core of the approach
is the clustering of the natural language requirements
with similar functionalities in order to break-down the
system into sub-systems.

Such automatic decomposition of the software
system is highly desired at early stages specifically
for large scale systems to facilitate the design process
and help in saving in cost and time.

Therefore, we employed the HAC algorithm to
group the semantically similar user stories. In or-
der to improve the accuracy of the generated clus-
ters, semantic similarity was computed taking into ac-
count both word level and requirement level similar-
ity. Word level similarity was firstly computed using
word2vec as prediction model, then it was extended to
the requirements level using the Mihalcea scoring for-
mula for text similarity computation. Then, we imple-
mented a set of specific NLP heuristics to extract rele-
vant use case model elements from each cluster. Sub-
sequently, our approach was illustrated by the genera-
tion of sub-systems expressed as UML use case mod-
els and hence, it promotes the integration of model-
based methodologies in Scrum.

Our approach was evaluated through three case
studies and a set of KPIs. For the clustering solu-
tion, we succeeded to avoid manual intervention by
recommending an optimal number of clusters. Fur-
thermore, evaluation results of the generated clusters
against ground truth clusters made by experts reveals
reasonable F-measure values which are around 80%.
As for precision and recall values of the generated
UML use case models, they are equal to 100% for ac-
tors detection, up to 98% for use-cases detection and
up to 97% for relationships detection. Meanwhile,for
the same case study presented in the baseline (Elal-
laoui et al., 2018), we achieved a better F-measure
score. Our algorithm succeeded to detect all the actors
compared to (Elallaoui et al., 2018) and F-measure
values of use-cases and relationships detection, are
better by 8% and 10% respectively.

MODELSWARD 2021 - 9th International Conference on Model-Driven Engineering and Software Development

38

Given these promising results, we plan to extend
our work to support other templates of user stories.
Moreover, we plan to further assess the effectiveness
of the approach on larger software requirement doc-
uments, possibly taken from different domains using
a prediction model (word2vec) trained with domain-
specific corpus.

REFERENCES

Alexander, I. F. and Maiden, N. A. M. (2004). Scenar-
ios,stories, use cases: Through the systems develop-
ment life-cycle.

Amannejad, Y., Moshirpour, M., Far, B. H., and Al-
hajj, R. (2014). From requirements to software de-
sign: An automated solution for packaging software
classes. In Proceedings of the 2014 IEEE 15th Inter-
national Conference on Information Reuse and Inte-
gration (IEEE IRI 2014), pages 36–43.

Arora, C., Sabetzadeh, M., Briand, L. C., and Zimmer,
F. (2016). Extracting domain models from natural-
language requirements: approach and industrial eval-
uation. In MODELS ’16.

Barbosa, R., Januario, D., Silva, A. E., de Oliveira Moraes,
R. L., and Martins, P. (2015). An approach to clus-
tering and sequencing of textual requirements. 2015
IEEE International Conference on Dependable Sys-
tems and Networks Workshops, pages 39–44.

Baroni, M., Dinu, G., and Kruszewski, G. (2014). Don’t
count, predict! a systematic comparison of context-
counting vs. context-predicting semantic vectors. In
Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 238–247, Baltimore, Maryland.
Association for Computational Linguistics.

Bittner, K. (2002). Use Case Modeling. Addison-Wesley
Longman Publishing Co., Inc., USA.

Booch, G., Rumbaugh, J. E., Jacobson, I., and Hoberman,
S. (2015). The unified modeling language user guide
(2nd edition).

Casamayor, A., Godoy, D., and Campo, M. R. (2012).
Functional grouping of natural language requirements
for assistance in architectural software design. Knowl.
Based Syst., 30:78–86.

Cohn, M. (2004). User Stories Applied: For Agile Software
Development. Addison Wesley Longman Publishing
Co., Inc., USA.

Dunn, J. C. (1974). Well-separated clusters and optimal
fuzzy partitions.

Elallaoui, M., Nafil, K., and Touahni, R. (2015). Auto-
matic generation of uml sequence diagrams from user
stories in scrum process. In 2015 10th International
Conference on Intelligent Systems: Theories and Ap-
plications (SITA), pages 1–6.

Elallaoui, M., Nafil, K., and Touahni, R. (2018). Automatic
transformation of user stories into uml use case dia-
grams using nlp techniques. In ANT/SEIT.

Gilson, F. and Irwin, C. (2018). From user stories to use
case scenarios towards a generative approach. 2018
25th Australasian Software Engineering Conference
(ASWEC), pages 61–65.

Hotho, A., Nürnberger, A., and Paass, G. (2005). A brief
survey of text mining. LDV Forum, 20:19–62.

Jalab, H. A. and Kasirun, Z. M. (2014). Towards require-
ments reuse: Identifying similar requirements with la-
tent semantic analysis and clustering algorithms.

Jones, K. S. (1988). A statistical interpretation of term
specificity and its application in retrieval. Journal of
Documentation, 60:493–502.

Kassab, M. (2015). The changing landscape of require-
ments engineering practices over the past decade. In
2015 IEEE Fifth International Workshop on Empirical
Requirements Engineering (EmpiRE), pages 1–8.

Kim, Y. (2014). Convolutional neural networks for sentence
classification. In EMNLP.

Lapata, M. and Barzilay, R. (2005). Automatic evaluation
of text coherence: Models and representations. In IJ-
CAI.

Lebret, R. and Collobert, R. (2014). Word embeddings
through hellinger pca. In EACL.

Lindvall, M., Basili, V. R., Boehm, B. W., Costa, P., Dangle,
K. C., Shull, F., Tvedt, R. T., Williams, L. A., and
Zelkowitz, M. V. (2002). Empirical findings in agile
methods. In XP/Agile Universe.

Löffler, R., Güldali, B., and Geisen, S. (2010). To-
wards model-based acceptance testing for scrum.
Softwaretechnik-Trends, 30.

Lucassen, G., Dalpiaz, F., van der Werf, J. M. E. M., and
Brinkkemper, S. (2016a). The use and effectiveness
of user stories in practice. In REFSQ.

Lucassen, G., Dalpiaz, F., van der Werf, J. M. E. M., and
Brinkkemper, S. (2016b). Visualizing user story re-
quirements at multiple granularity levels via semantic
relatedness. In ER.

Manning, C. D., Raghavan, P., and Schütze, H. (2005). In-
troduction to information retrieval.

Mihalcea, R., Corley, C., and Strapparava, C. (2006).
Corpus-based and knowledge-based measures of text
semantic similarity. In AAAI.

Mihalcea, R. and Tarau, P. (2004). Textrank: Bringing order
into texts. In EMNLP 2004.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S.,
and Dean, J. (2013). Distributed representations of
words and phrases and their compositionality. ArXiv,
abs/1310.4546.

Perner, P. (2002). Data mining - concepts and techniques.
KI, 16:77.

Rodriguez, M. A. and Egenhofer, M. J. (2003). Deter-
mining semantic similarity among entity classes from
different ontologies. IEEE Trans. Knowl. Data Eng.,
15:442–456.

Salman, H. E., Hammad, M., Seriai, A.-D., and Al-Sbou,
A. (2018). Semantic clustering of functional require-
ments using agglomerative hierarchical clustering. In-
formation, 9:222.

From User Stories to Models: A Machine Learning Empowered Automation

39

Sasse, M. A. and Johnson, C. (1999). Human-computer
interaction interact ’99: Ifip tc. 13 - 1999 edinburgh.

Schwaber, K. (1997). Scrum development process.
Varelas, G., Voutsakis, E., Raftopoulou, P., Petrakis, E.

G. M., and Milios, E. E. (2005). Semantic similarity
methods in wordnet and their application to informa-
tion retrieval on the web. In WIDM ’05.

Verner, J. M., Cox, K., Bleistein, S. J., and Cerpa, N. (2005).
Requirements engineering and software project suc-
cess: an industrial survey in australia and the u.s. Aus-
tralasian J. of Inf. Systems, 13.

Wautelet, Y., Heng, S., Kolp, M., and Mirbel, I. (2014).
Unifying and extending user story models. In CAiSE.

Zepeda-Mendoza, M. L. and Resendis-Antonio, O. (2013).
Hierarchical Agglomerative Clustering, pages 886–
887. Springer New York, New York, NY.

MODELSWARD 2021 - 9th International Conference on Model-Driven Engineering and Software Development

40

