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FEATURE SPACE DATA AUGMENTATION FOR VIEWPOINT-ROBUST ACTION
RECOGNITION IN VIDEOS

Carla Geara, Aleksandr Setkov, Astrid Orcesi, Bertrand Luvison

Université Paris-Saclay, CEA, List, 91120, Palaiseau, France

ABSTRACT
The ongoing research on human action recognition models
is achieving very promising results, and the existing models
reach very high performances. However, they still suffer from
one major challenge: their performance decreases on view-
points not seen in the training step of the model. In this pa-
per, we introduce a new approach based on virtual viewpoint
augmentation in the feature space to increase the robustness
of the action recognition models to different camera view-
points. This approach was evaluated on two action recogni-
tion datasets: DAHLIA and Toyota SmartHome. Our model
shows promising results, with a significant performance in-
crease on both datasets for viewpoints not seen during the
training step.

Index Terms— Action Recognition, Viewpoint Robust-
ness, Data Augmentation

1. INTRODUCTION

Visual recognition methods (object detection, segmentation
of objects and instances, etc.) have grown rapidly in recent
years, achieving a very good performance in a lot of differ-
ent applications. However, they suffer from a great challenge
which is the decrease in performance when it comes to view-
point changes. Indeed, the same scene, object, or action have
different appearances when captured from two different view-
points. This is especially problematic for action recognition
because the datasets are often small and do not cover many
different viewpoints while the semantic level of analysis is
large.

One possible solution to this problem is to use a very rich
dataset such as Kinetics [1], which would contain a large
number of videos, taken from different viewpoints. How-
ever, such datasets do not always exists for all contexts and all
action ontologies. For ambiant living analysis, for example,
available datasets, such as Toyota SmartHome [2], DAHLIA
[3], and NTU RGB+D [4], are made from a few cameras and
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are not large enough to provide a broad variability in view-
points for training. Another approach consists in applying
data augmentation to increase the model’s robustness to view-
point changes. However, the known data augmentation meth-
ods are not efficient against strong camera viewpoint changes.
Therefore, we decided to focus on designing approaches that
are robust to changes in camera positions.

In this paper, we introduce a new approach based on vir-
tual viewpoint data augmentation in feature space that deals
with the view-invariance problem. We call virtual viewpoint,
a virtual camera pointing toward the scene from another point
of view. We show that a significant performance increase is
achieved by our method when evaluated on two multi-view
human action recognition datasets, DAHLIA and Toyota
SmartHome. Finally, we present an extensive ablation study
to show the impact of each parameter on our method.

2. RELATED WORKS

Human Action Recognition: Video action recognition is
the task of understanding human actions and behavior in
videos, by associating each timestamp with an activity la-
bel. It can be accomplished using multiple modalities: RGB
videos, the skeleton of the person performing the action in
the video, the depth map, or even the optical flow. Most
video action recognition models can be categorised into 5
main categories: 2D-CNNs [5, 6], 3D-CNNs [7, 1, 8, 9],
RNNs [10, 11], GNN/GCN [12] and Transformers [13, 14].
Our approach focuses on 3D-CNN models, because of their
simplicity and efficiency.

View-invariant action recognition methods: Some of
the view-invariant approaches rely on the skeleton of the per-
son performing the action [15, 16], where the 3D human pose
is represented in a global and common space in order to cre-
ate an invariant representation. The main drawback of these
methods is that 3D pose estimation in videos is a challenging
problem, and it becomes even harder when there are multiple
people in the scene.

Another approach described in [16] refrains from using
the human skeleton, and focuses instead on learning a latent
3D representation of the scene in order to perform a view-
invariant action recognition. The method learns 3D video fea-
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Fig. 1. View Robust Action Recognition Approach. CNN1 takes the RGB video as input and generates 2D feature maps. These
2D feature maps are then transformed to point clouds using the input’s depth map. These point clouds are then rotated and
projected back to 2D to generate virtual viewpoints which are used for classification, along with the original 2D feature maps.

tures together with the camera extrinsic parameters which are
then used to project the 3D features from the camera to the
world space, thus creating a global invariant 3D representa-
tion of the video. The model then learns multiple virtual cam-
eras parameters to generate 2D multi-view projections used
for classification. However, learning the extrinsic parameters
is not a simple task, especially if only few fixed views with lit-
tle variability are available in the training dataset. In addition
to that, the learned virtual cameras are fixed, and common be-
tween all the videos. In the case of a dataset with few fixed
viewpoints, these fixed projections will not provide enough
variability for the view-invariance.

Unlike the aforementioned method, in this paper we ad-
dress the view-point problem differently. Instead of learning
fixed 3D to 2D projections, we apply random transformations
in 3D feature space during training, simulating different view-
points for each input and increasing variability.

3. OUR METHOD

In order to increase an action recognition model’s robustness
to viewpoint changes, we introduce a new data augmentation
protocol, insprired from [16], to simulate new viewpoints dur-
ing training. Our method is illustrated in Figure 1. From
an RGB image, we extract intermediate features using a first
CNN (CNN1) and then bring them from the pixel space to
the 3D camera space thanks to the corresponding depth map
given in input. To simulate different viewpoints, we apply ro-
tation operations to the 3D feature map and then project them
back in the 2D space. The generated 2D projections are fed
to the remaining part of the model (CNN2) and the classi-
fier, along with the original 2D feature maps, to perform the
action recognition task. The applied rotations are generated
randomly for every batch, which provides a better viewpoint
variability.

To move from pixel to camera space, we apply the follow-
ing transformation:

[
X Y Z

]T
= Z K−1

[
x y 1

]T
,

where (x, y) are the pixel coordinates, (X,Y, Z) the 3D cam-
era coordinates, K is the intrinsic matrix, and Z is the depth
value. Therefore, to perform this operation, we need the in-
trinsic parameters of the cameras, and the depth maps of the
videos. While the former are assumed to be provided by the
datasets, the latter are computed using the MiDaS [17] depth
estimation model. In fact, generating depth maps of ordinary
scenes is now a common task which is significantly easier
than predicting extrinsic camera parameters.

Despite our approach being inspired by [16], it differs
from this work in several main aspects.

• While Piergiovanni and Ryoo [16] use two input
videos, our approach takes only one. This allows
us to avoid learning the extrinsic parameters, reducing
the model’s complexity.

• Unlike the reference approach, in which the transfor-
mations are learnt and are fixed for all the videos, we
generate random transformations for each batch.

• Instead of learning the 3D feature map as in [16], we
apply classical transformations using the generated
depth maps.

• Piergiovanni and Ryoo [16] use 3D volumes to repre-
sent 3D feature maps. Our formulation allows to store
them as point clouds instead, which is more efficient
regarding memory consumption.

4. EXPERIMENTS AND RESULTS

4.1. Datasets

Our model is evaluated on two multi-view action recognition
datasets: DAHLIA [3] and Toyota SmartHome [2].

The DAily Home LIfe Activity dataset [3], or DAHLIA,
consists of 51 different subjects, performing 7 different home
activities in the kitchen. These actions are captured from three



different viewpoints (see figure 2). In our experiments, we
train on one viewpoint, and then evaluate the model on the
three viewpoints in the dataset.

The Toyota Smart Home dataset (TSH) [2] consists of
16115 trimmed videos of 18 different subjects performing
various home activities in an apartment. These videos are
captured from 7 Kinect v1 cameras, positioned to capture the
dining room, the kitchen and the living room. The subjects are
filmed performing 31 actions in total. These actions are di-
vided into 19 activities. Some of them contain sub-activities,
which makes 31 activities in total. In our case, we decided to
focus only on the 19 main activities. In our experiments, we
train our model on videos captured from cameras 1,3,5 and 7.
The videos taken from cameras 2, 4 and 6 are used to evaluate
the performance of our model on viewpoints not seen during
training. This camera split ensures that each scene is covered
in both the training and evalution set (see figure 3).

Fig. 2. Cameras configuration for DAHLIA
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Fig. 3. Cameras configuration for TSH.

4.2. Implementation details

To simplify the virtual viewpoint projections step, we decided
to restrict the transformations to rotations of the point cloud
before projecting into pixel space. These rotations are applied
around the x and y axis only, since rotations around the z axis
(depth) seemed unnatural. Moreover, in order to limit the dis-
tortions created by the random rotations, we decided to limit
the rotation angles generated inside the range [-max angle,
+max angle]. We also decided to evaluate the model with
one virtual viewpoint 2D projection, as it requires less com-
putational and memory resources. For the action recognition
model, we use X3D [9] as it is very efficient and performant
while having a much lower complexity than other models.

Additionally, we applied data augmentation transforma-
tions to the input videos: random horizontal flip, random

color jittering, and random crops in random positions. We
train the model for 50 epochs using a batch size of 5 for
DAHLIA and 8 for TSH. We start by training the model in
a warm up phase for the first 3 epochs, where the learning
rate increases linearly from 10−6 to 10−5 for DAHLIA and
to 10−3 for TSH. We then decrease the learning rate expo-
nentially for the remaining 47 epochs. The metric used for
evaluation is the mean per-class precision.

In the following, “Baseline” results refer to the supervised
training without our virtual viewpoint data augmentation.

4.3. Quantitative results

Results on DAHLIA: Table 1 shows the quantitative results
obtained when training the model on each of the three views,
and evaluating on the different views in the dataset. During
training, we perform the data augmentation step on the output
of the third block of X3D, and we perform one virtual view-
point projection with a rotation angle range of [-60°,60°]. The
choice of parameters used is explained in section 4.4.

Training Testing View
View View 1 View 2 View 3

View 1
Baseline 0.71 0.33 0.29

[-60°,60°] 0.72 0.47 0.46
Increase +1 p.p. +14 p.p. +17 p.p.

View 2
Baseline 0.36 0.72 0.62

[-60°,60°] 0.45 0.73 0.67
Increase +9 p.p. +1 p.p. +5 p.p.

View 3
Baseline 0.38 0.62 0.75

[-60°,60°] 0.54 0.62 0.77
Increase +16 p.p. +0 p.p. +2 p.p.

Table 1. Mean per-class precision on DAHLIA with rota-
tion of one projection with rotation range of [-60°,60°] at 50
epochs. Increase is measured in percentage points (p.p.)

We observe the biggest performance increase when we
train on the first view and test on the second and third, or
when we test on the first viewpoint after training the model
on the second or third view. This is due to the fact that the
first view is furthest from the other two (see figure 2). In
addition to that, when we train on the second view and test on
the third and vice versa, we see no important improvement.
This can be explained by the fact that the two viewpoints
are already too close to each other, and a rotation range of
[-60°,60°] might be too important in this case.

Results on TSH: For TSH, we decided to crop the
videos around the person performing the action (more de-
tails about our choice of video preprocessing can be found
in section 4.4). To perform the person-centered crops, we
used Faster-RCNN [18] to detect the person’s bounding box
in each frame, which is used to specify the cropping window



of the video, with a margin of 10% around the Faster-RCNN
bounding box.

Training Views 1,3,5,7
Testing Views 1,3,5,7 Testing Views 2,4,6

Baseline 0.89 0.50
[-60°,60°] 0.91 0.62

Table 2. Mean per-class precision on person-centered
cropped TSH videos.

As we can see in table 2, adding the virtual viewpoint data
augmentation step increased the performance of the model by
12 p.p. on the viewpoints not seen in training.

4.4. Ablation Studies

Effect of rotation angle range: As mentioned in section 4.2,
the angle of the randomly generated rotations is constrained
in the range of [-max angle, +max angle]. We ran multiple
experiments, varying the range and studying its effect on the
model performance. We trained on the first view and tested on
all the views in DAHLIA. We fixed the position of the virtual
viewpoint data augmentation step after the third block in the
X3D pipeline, using only one virtual viewpoint projection.
The table 3 summarizes the results with 3 different ranges.

View 1 View 2 View 3
(training view)

Baseline 0.71 0.33 0.29
[-20°,20°] 0.73 0.42 0.43
[-40°,40°] 0.72 0.44 0.46
[-60°,60°] 0.72 0.47 0.46

Table 3. Mean per-class precision on DAHLIA with different
rotation angle ranges.

As can be seen in table 3, model accuracy is improved
on the views not seen during training (views 2 and 3) for
DAHLIA even with a range of [-20°,20°], while maintaining
a good performance on the training viewpoint. The improve-
ment becomes larger as we increase the range of the rotation
angle up to [-60°,60°].

Effect of the data augmentation step position in the
X3D pipeline: In this experiment, we show the results ob-
tained when varying the position of the data augmentation
step in the X3D pipeline. We train on the first view of
DAHLIA, with one virtual viewpoint projection, and a ro-
tation range of [-60°, 60°]. We run 3 experiments, placing
the virtual viewpoint data augmentation step after the second,
third and fourth block of the X3D model.

As we can see in table 4, the highest increase in perfor-
mance is when the data augmentation step is applied after
the third X3D block. One assumption is that after the fourth

View 1 View 2 View 3
(training view)

Baseline 0.71 0.33 0.29
Block 2 0.76 0.47 0.42
Block 3 0.72 0.47 0.46
Block 4 0.72 0.41 0.29

Table 4. Mean per-class precision on DAHLIA with different
X3D block positions.

block, the spatial resolution of the feature maps is too small,
and therefore the impact of the data augmentations is not
as high as for the third block. As for the second block, the
features are of high resolution, and they mostly contain infor-
mation about the gradients of the scene, rather than semantic
information. Therefore, applying the virtual viewpoint data
augmentation step might create more distortions at this level,
than after the third block.

Effect of video crops on TSH: We tested the effect of
the rotation range on TSH with the projection applied after
the third X3D block. The results are shown in table 5.

Training Views 1,3,5,7
Testing Views 1,3,5,7 Testing Views 2,4,6

Baseline 0.90 0.47
[-20°,20°] 0.89 0.45
[-40°,40°] 0.89 0.47
[-60°,60°] 0.89 0.43

Table 5. Mean per-class precision on TSH with different ro-
tation angle ranges.

The model seems to have an unstable performance on
TSH. One explanation could be that the resolution on the per-
son may be too small in comparison to the whole video. The
model is not able to focus on the person’s features. Therefore,
we repeated the experiments after cropping the videos around
the person performing the action. This approach significantly
improved the model performance, as seen in table 2.

5. CONCLUSION

We presented a new simple approach that increases the ro-
bustness of human action recognition models to camera view-
point changes, by inserting a virtual viewpoint data augmen-
tation step in the action recognition model pipeline, ensuring
a vast variability in viewpoints. Our approach, evaluated on
two challenging multi-view human action datasets, shows a
performance increase on viewpoints not seen during training.

For future perspective, it would be interesting to extend
our approach to other datasets and action recognition models
but also to address other tasks than classification ones where
the ground truth management is more subtle.



6. REFERENCES

[1] João Carreira and Andrew Zisserman, “Quo vadis, ac-
tion recognition? a new model and the kinetics dataset,”
in Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2017, pp. 4724–
4733.

[2] Srijan Das, Rui Dai, Michal Koperski, Luca Minciullo,
Lorenzo Garattoni, Francois Bremond, and Gianpiero
Francesca, “Toyota smarthome: Real-world activities
of daily living,” in Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV), 2019,
pp. 833–842.

[3] Geoffrey Vaquette, Astrid Orcesi, Laurent Lucat, and
Catherine Achard, “The daily home life activity dataset:
A high semantic activity dataset for online recognition,”
in Proceedings of the 12th IEEE International Con-
ference on Automatic Face Gesture Recognition (FG
2017), 2017, pp. 497–504.

[4] Jun Liu, Amir Shahroudy, Mauricio Perez, Gang Wang,
Ling-Yu Duan, and Alex C Kot, “Ntu rgb+d 120:
A large-scale benchmark for 3d human activity under-
standing,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 42, no. 10, pp. 2684—2701,
October 2020.

[5] Andrej Karpathy, George Toderici, Sanketh Shetty,
Thomas Leung, Rahul Sukthankar, and Li Fei-Fei,
“Large-scale video classification with convolutional
neural networks,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
2014, pp. 1725–1732.

[6] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao,
Dahua Lin, Xiaoou Tang, and Luc Van Gool, “Tem-
poral segment networks: Towards good practices for
deep action recognition,” in Computer Vision – ECCV
2016, Bastian Leibe, Jiri Matas, Nicu Sebe, and Max
Welling, Eds., Cham, 2016, pp. 20–36, Springer Inter-
national Publishing.

[7] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and
M. Paluri, “Learning spatiotemporal features with 3d
convolutional networks,” in 2015 IEEE International
Conference on Computer Vision (ICCV), Los Alamitos,
CA, USA, dec 2015, pp. 4489–4497, IEEE Computer
Society.

[8] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh,
“Learning spatio-temporal features with 3d residual net-
works for action recognition,” in Proceedings of the
IEEE International Conference on Computer Vision
(ICCV) Workshops, Oct 2017.

[9] Christoph Feichtenhofer, “X3d: Expanding architec-
tures for efficient video recognition,” in 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2020, pp. 200–210.

[10] Lin Sun, Kui Jia, Kevin Chen, Dit Yan Yeung,
Bertram E. Shi, and Silvio Savarese, “Lattice long short-
term memory for human action recognition,” in Pro-
ceedings of the IEEE International Conference on Com-
puter Vision (ICCV), 2017, pp. 2166–2175.

[11] Wenbin Du, Yali Wang, and Yu Qiao, “Rpan: An
end-to-end recurrent pose-attention network for action
recognition in videos,” in 2017 IEEE International Con-
ference on Computer Vision (ICCV), 2017, pp. 3745–
3754.

[12] Sijie Yan, Yuanjun Xiong, and Dahua Lin, “Spatial tem-
poral graph convolutional networks for skeleton-based
action recognition,” Proceedings of the AAAI Confer-
ence on Artificial Intelligence, vol. 32, no. 1, Apr. 2018.

[13] Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao
Li, Zhicheng Yan, Jitendra Malik, and Christoph Fe-
ichtenhofer, “Multiscale vision transformers,” in Pro-
ceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2021, pp. 6804–6815.

[14] Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang,
Stephen Lin, and Han Hu, “Video swin transformer,”
in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2022, pp.
3192–3201.

[15] Lingling Gao, Yanli Ji, Gedamu Alemu Kumie, Xing
Xu, Xiaofeng Zhu, and Heng Tao Shen, “View-invariant
human action recognition via view transformation net-
work,” IEEE Transactions on Multimedia, vol. 24, pp.
4493–4503, 2021.

[16] AJ Piergiovanni and Michael S. Ryoo, “Recognizing
actions in videos from unseen viewpoints,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2021, pp. 4122–4130.
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