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Traditional culture techniques usually retrieve a small fraction of the marine microbial diversity, which mainly belong to the so-
called rare biosphere. However, this paradigm has not been fully tested at a broad scale, especially in the deep ocean. Here, we
examined the fraction of heterotrophic bacterial communities in photic and deep ocean layers that could be recovered by culture-
dependent techniques at a large scale. We compared 16S rRNA gene sequences from a collection of 2003 cultured heterotrophic
marine bacteria with global 16S rRNA metabarcoding datasets (16S TAGs) covering surface, mesopelagic and bathypelagic ocean
samples that included 16 of the 23 samples used for isolation. These global datasets represent 60 322 unique 16S amplicon
sequence variants (ASVs). Our results reveal a significantly higher proportion of isolates identical to ASVs in deeper ocean layers
reaching up to 28% of the 16S TAGs of the bathypelagic microbial communities, which included the isolation of 3 of the top 10
most abundant 16S ASVs in the global bathypelagic ocean, related to the genera Sulfitobacter, Halomonas and Erythrobacter. These
isolates contributed differently to the prokaryotic communities across different plankton size fractions, recruiting between 38% in
the free-living fraction (0.2–0.8 µm) and up to 45% in the largest particles (20–200 µm) in the bathypelagic ocean. Our findings
support the hypothesis that sinking particles in the bathypelagic act as resource-rich habitats, suitable for the growth of
heterotrophic bacteria with a copiotroph lifestyle that can be cultured, and that these cultivable bacteria can also thrive as free-
living bacteria.

ISME Communications; https://doi.org/10.1038/s43705-023-00290-0

INTRODUCTION
Isolation of bacteria in pure culture is challenging. Traditionally, it
has been said that only a small fraction of the natural bacterial
communities can be cultivated, a phenomenon that has been
called “the great plate count anomaly” [1]. The recovered
proportion of cells using selective media and standard plating
techniques when compared to microscopy counts by direct
staining is thought to represent only among 0.001–1% of the
community [1–4]. This phenomenon led to the known paradigm
that “less than 1% of the microbial cells can be cultured” [1, 5–7].
In fact, most of the marine bacterial strains growing under
laboratory conditions belong to the rare biosphere [8, 9] with
some key exceptions such as Prochlorococcus and Synechococcus,
which represent the most abundant and widespread phytoplank-
ton taxa in the global ocean [10–12], and the most abundant
heterotrophic bacteria in the surface ocean like SAR11 isolated

using high-throughput dilution-to-extinction culture techniques
[13–18]. Moreover, when targeting the marine heterotrophic
culturable bacteria from marine ecosystems, most of the studies
have focused on the upper ocean (0–200 m depth) or on specific
oceanographic regions [16, 19–21], while studies covering
different depths are less frequent [22–24]. Efforts to culture
bacteria from the deep ocean (>200m) have focused mostly on
isolates from hydrothermal vents [25–27], whale carcasses [28],
trenches [29], and deep-sea sediments [30–33]. However, very few
studies have attempted to isolate bacteria from the mesopelagic
[34–36], or the bathypelagic waters [23, 37–39], and those
available were mainly done at a local or regional scale but not a
large scale. Therefore, the long-standing observation that tradi-
tional culture techniques only retrieve a small fraction of the
microbial diversity in marine environments still needs to be
properly tested in the pelagic deep ocean.
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On the other hand, the overlap between isolated microorgan-
isms and those belonging to the uncultured majority are relatively
low as proved by various studies comparing culture-dependent
and culture-independent techniques in marine ecosystems
[18, 21, 40–42]. Besides, some meta-analysis studies have analyzed
both the abundance and the diversity of the prokaryotic
community that can be isolated in different ecosystems, including
marine environments [43–45]. However, the deep ocean was
poorly examined, and the authors used different genetic thresh-
olds and methods for calculating which percentage of the
prokaryotic diversity could be isolated generating contrasting
results. Most importantly, they did not compare isolates and 16S
amplicon TAGs from exactly the same samples. Hence, the aim of
our study, far from isolating and describing novel bacteria, was to
use well established marine solid media to retrieve the fraction of
the bacterioplankton community than can be commonly isolated
under laboratory conditions (nutrient rich medium, standard
oxygen concentrations and atmospheric pressure), combining
both culture-dependent and -independent techniques including
the photic and the deep ocean from both mesopelagic and
bathypelagic zones in order to be able to compare results across
different oceanographic regions and depths.
Diversity of microbial communities from the bathypelagic ocean

across the tropical and temperate oceans had described the most
abundant operational taxonomic units (OTUs) [46] and interest-
ingly, some of these OTUs affiliated with well-known hetero-
trophic bacterial genera that can be easily retrievable in culture,
including Alteromonas, Alcanivorax and Halomonas [23, 46, 47].
Some of these deep-ocean marine bacteria, such as Alteromonas,
are well-known copiotrophs [48] and given that the bathypelagic
realm is fed by sinking particles [49], which are likely resource-rich
habitats for microbes [50, 51], and that has recently been proven
that a higher proportion of bacteria have been isolated from
particles compared to free-living communities [52], we hypothe-
size that: i) by using traditional culture-dependent techniques a
high proportion of the bacteria dwelling in the deep ocean would
be retrieved under laboratory conditions, and ii) particles in the
deep ocean are hotspots of copiotrophic bacteria that may be
more easily isolated in culture than the free-living ones, or than
those present at the surface.

RESULTS
We examined the fraction of heterotrophic microbial communities
that could be retrieved by isolation from both the photic and the
deep ocean, and explored how abundant are cultured bacteria in
different plankton size fractions. To that end, we combined results
from a large collection of heterotrophic cultured bacteria
(MARINHET_v2), covering a wide range of oceanographic regions
and depths, including the photic, the mesopelagic and the
bathypelagic ocean [47], with culture-independent results includ-
ing flow cytometry measurements and 16S metabarcoding
datasets obtained from simultaneous samples as the ones used
for isolation from global oceanographic expeditions, Tara Oceans
2009–2013 (including Tara Oceans Polar Circle samples) [53] and
Malaspina Circumnavigation Expedition 2010 [54]. Details regard-
ing all samples used in this study can be found in Fig. 1.

Description of the MARINHET_v2 culture collection
A total of 2003 isolates were retrieved from 23 marine stations,
twelve photic-layer (1041 isolates), four mesopelagic (374 isolates)
and seven bathypelagic (588 isolates) stations (Fig. 1) affiliating to
90 different genera (35 Alphaproteobacteria, 26 Gammaproteo-
bacteria, 17 Bacteroidetes, 10 Actinobacteria, and 2 Firmicutes).
Extensive description of the MARINHET culture collection includ-
ing 1561 isolates of the 2003 presented in this study has been
previously described [47] including diversity metrices, taxonomic
and phylogenetic description, as well as, biogeography of the

cultured bacteria. Therefore, in order to confirm some of the
patterns observed previously, rarefaction and accumulation curves
were performed with the isolates clustered at 100% (isolates
OTUs) (Supplementary Fig. S1), and results indicated that the
isolates dataset, even if not saturated, represents a reasonable
inventory of the culturable heterotrophic marine bacteria. In
addition, biogeography of the cultured dataset was explored
(Fig. 2) in order to detect how many genera occurred in all or most
of the 23 stations studied. Thus, Alteromonas sp. and Erythrobacter
sp. were the most abundant and recurrent genera regardless of
the oceanographic region or depth as they were isolated in more
than 80% of the stations; five genera including Marinobacter sp.,
Halomonas sp., Idiomarina sp., Pseudoalteromonas sp. and
Pseudomonas sp. were isolated in 50% of the samples, nine other
genera were retrieved regionally (>25% of the samples), while the
remaining cultured genera presented a local distribution (<25% of
the samples) (Supplementary Table S1).

Testing the “great plate count anomaly” in different oceanic
regions and depths
We calculated the percentage of isolated bacterial cells for ten
photic-layer, three mesopelagic and seven bathypelagic stations
where plate colony counts (cfu/ml) and flow cytometry values -as
a measure of total prokaryotic abundance/concentration- (cells/
ml) were available (Fig. 3). For this comparative analysis, flow
cytometry counts included only the abundance of all hetero-
trophic prokaryotes and excluded photosynthetic Cyanobacteria
since these taxa were not targeted by the media nor incubation
conditions selected. Considering that, we detected a higher
percentage of recovery in the mesopelagic and bathypelagic
samples (1.3%) compared to the photic layer (0.3%), although the
differences were not significant (ANOVA, P-value > 0.05). The
percentage of cultivability of heterotrophic bacterial cells ranged
from 0.01 to 1.3% in photic-layer samples, and from 0.9 to 2.5% in
mesopelagic samples, while percentages for bathypelagic samples
varied between 0.08% and 3.5%, indicating a higher success in
isolation in some samples from the deeper layers of the ocean
(Fig. 3).

Contribution of culturable bacteria to total prokaryotic
diversity in different ocean layers
The MARINHET_v2 culture collection was compared with two
global metabarcoding datasets (16S TAGs) amplified with the
same primer set (515F-Y-926R) [55] with a total of 38 700 ASVs
from Tara Oceans (15 426 Tara Oceans Surface and 23 274 Tara
Oceans Mesopelagic) and 15 348 ASVs from the Malaspina
Expedition (3528 Malaspina Surface and 11 820 Malaspina
Bathypelagic) (Supplementary Table S2, Fig. 1). We determined
the mean percentage of ASVs (diversity) as well as the mean
percentage of 16S TAGs (abundance) that were 100% identical to
our MARINHET_v2 culture collection isolates. A summary of the
results obtained from the rarefied ASVs-abundance tables is
shown in Supplementary Table S3.
The highest average number of ASVs that were 100% identical

to the isolates was observed in the Malaspina Surface dataset
(4.5%), followed by the Malaspina Bathypelagic (2.4%), Tara
Oceans Surface (2.3%) and Tara Oceans Mesopelagic datasets
(1.7%) (Fig. 4A). Even though these percentages do not seem to
vary greatly between datasets, significant differences were found
among them (Kruskal–Wallis, P-value < 0.01, Fig. 4A). Otherwise, if
we consider the abundances of these ASVs and we look at the
percentage of reads (16S TAGs) identical to the isolates, we
observed a significant increase in the deep ocean (Fig. 4B). Thus,
around 1.6–4.9% of the 16S TAGs were 100% identical to our
isolates in the photic ocean, this value increased up to 8.5% in the
mesopelagic ocean, and increased even more, up to 27.9%, in the
bathypelagic ocean. In this case, the differences between datasets
were also statistically significant (Kruskal–Wallis test, P-value <
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Fig. 1 World map showing the distribution of the samples used in this study per ocean layer. A Photic. Labeled samples correspond to
those stations where isolates were obtained from: Tara Oceans (39, 67, 72, 76, 84, 85, 151, 163, 175, 201), Blanes Bay Microbial Observatory
(BBMO), and ATP Arctic cruise (ATP_SRF, ATP_DCM). Stations with red asterisks correspond to amplicon 16S TAGs from eight vertical profiles
with five different microbial size fractions collected from the Malaspina Expedition. B Mesopelagic. Labeled samples correspond to those
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where isolates were obtained from: Malaspina (10, 17, 23, 32, 43) and MIFASOL. Circles connected with a blue line show the distribution of the
samples obtained from the Malaspina Expedition, while circles connected with an orange line show those from the Tara Oceans. Each pie
chart shows the presence or absence of samples from the different datasets: orange, isolates; and light-blue, metabarcoding 16S TAGs.
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0.01, Fig. 4B). The metabarcoding 16S TAGs dataset of Malaspina
Bathypelagic samples integrated free-living (0.2–0.8 µm) and
particle-attached (0.8–20 µm) microbial communities. However, if
we only used the data from the free-living fraction (to be fair with

the comparisons with the free-living bacteria analyzed from the
photic and mesopelagic samples), we still observed this trait of
higher proportions, with 22.9% of the 16S TAGs 100% identical to
isolates in the bathypelagic samples (Fig. 4C, D). Comparisons
where photic and aphotic zone isolates are compared separately
with all datasets is shown in Supplementary Fig. S2. The same
pattern was noticed and we detected a higher proportion of ASVs
and 16S TAGs identical to isolates when comparing aphotic zone
isolates only.
A fraction of the isolates did not match any ASV regardless of

the dataset inspected (Supplementary Table S4). Indeed, approxi-
mately 11% of our heterotrophic isolates did not match any of the
Tara Oceans ASVs, whereas this number increased up to 18% in
the Malaspina Bathypelagic ASVs and up to 28% in the surface
samples from Malaspina (Supplementary Fig. S3). Some interesting
taxonomic differences at the family level were observed between
the isolates that were identical to ASVs and those that did not
match any ASV (Supplementary Figs. S4 and S5). We found some
families that were identified in the Tara Oceans Surface and
Mesopelagic metabarcoding datasets but not in the Malaspina
Expedition Surface or Bathypelagic metabarcoding datasets, such
as Tistrellaceae, Nitrincolaceae or Colwelliaceae. In contrast,
Kangiellaceae was found in both Malaspina Expedition datasets
but not in Tara Oceans samples. Some families included isolates
that did not match any ASVs in any of the 16S metabarcoding
datasets, such as Dermabacteraceae, Balneolaceae or Psychromo-
nadaceae (Supplementary Figs. S4 and S5). Within those families
not detected by our sequencing data, we found some genera such
as Balneola sp., Nereida sp., Ruegeria sp. or Citreicella sp. We tested
if the primers used [55] presented a mismatch on their partial 16S
rRNA sequences, but the primers could potentially capture also
these organisms. All of these genera were only retrieved locally
(<25% of the stations studied), indicating that they were present
at very low abundances in the environment. Furthermore, based
on the accumulation plots (Supplementary Fig. S6) of the 16S
amplicon datasets, we can observe that the sequencing effort
used in Tara Oceans (~5 × 105 average reads per sample) and in
the Malaspina Expedition samples (surface samples ~5.1 × 104

average reads, bathypelagic ~9.7 × 105 average reads) was
satisfactory, reaching the plateau in most of the datasets except
for the Tara Mesopelagic. Therefore, the percentages of 16S TAGs
identical to isolates would remain more or less the same in all
datasets. However, an increasing sequencing effort could help us
to detect the proportion of the isolates which may belong to the
extremely rare biosphere that could not be detected by this
sequencing technique.

Bacterial isolates among the most abundant ASVs of the deep
ocean
To test whether isolates belonged to the abundant or rare
biosphere, rank abundance plots were done for each of the Tara
Oceans and Malaspina Expedition metabarcoding datasets, with
the ASVs mean abundances extracted from rarefied ASVs-
abundance tables (Fig. 5). The rank abundances were plotted
based on either the global comparison of all isolates (Fig. 5) or by
comparing photic and aphotic zone isolates separately against
photic 16S TAGs datasets, or photic and aphotic zone isolates
separately versus mesopelagic and bathypelagic 16S TAGs
datasets (Supplementary Fig. S7) giving similar results in all of
them. Each rank abundance plot showed a similar pattern of few
abundant ASVs (relative abundance >1%), relatively few mid-
abundant ASVs (<1% and >0.01%) and a long tail of rare or low-
abundant ASVs (relative abundance <0.01%). We colored the ASVs
that were 100% similar to at least one isolate to test for differences
between depths (Fig. 5). In photic layers, we did not have any
isolate within the abundant taxa of the Tara Oceans Surface
dataset (Fig. 5A), whereas only one belonging to the abundant
biosphere was found in the Malaspina Surface dataset,
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taxonomically related to Sulfitobacter with 1.7% of the total reads
or 16S TAGs (Fig. 5B). The rest of the isolates in these two large-
scale photic datasets appeared in the mid-abundant biosphere (38
in Malaspina and three in Tara Oceans) or in the rare biosphere (54
in Malaspina and 151 in Tara Oceans). In the mesopelagic layer
(Tara Oceans Mesopelagic) we only found one ASV identical to
isolates classified into the abundant biosphere (associated with
Alteromonas with 1.1% of the reads), although more isolates were
identical to ASV with medium abundances (87 ASVs) (Fig. 5C).
Interestingly, the most abundant bathypelagic ocean taxon
according to the 16S TAGs matched at 100% identity with one
of our isolates. This organism was related to Sulfitobacter and
represented 4.6% of the reads. In total, seven ASVs identical to
isolates belonged to the abundant biosphere in Malaspina
Bathypelagic, affiliating with the genera Sulfitobacter, Halomonas,
Erythrobacter, Alteromonas and Sphingobium, and the first three
were included into the top 10 most abundant ASVs detected.
These, together with a relatively large proportion of isolates that
matched organisms of the mid-abundant biosphere (78 ASVs), and
those matching within the rare biosphere (52 ASVs), recruited 28%
of the environmental reads from the temperate and tropical
global bathypelagic oceans (Fig. 5D). Thus, abundant ASVs could
be retrieved by culture-dependent techniques, especially in the

bathypelagic layer. Curiously, some of the most abundant ASVs in
the bathypelagic dataset where also the most abundant genera
retrieved in the culture collection. Alteromonas and Erythrobacter
were the most commonly isolated genera with more than 350
isolates recovered from more than 90% of the samples studied
(Fig. 2), while Sulfitobacter sp. which is the most abundant ASVs of
the Malaspina Bathypelagic dataset presented a regional distribu-
tion in our culture collection because it was retrieved from more
than 25% of the samples but less than 50% of them. Interestingly,
it was isolated from a higher number of aphotic stations (6 samples
with 52 isolates in total) than photic stations (3 stations with 7
isolates) (Supplementary Table S1).
Altogether, we found that the ASVs that were 100% identical to

our isolates affiliated mostly with classes Alphaproteobacteria
(average 39% ASVs) and Gammaproteobacteria (average 47.7%
ASVs) followed by phyla Bacteroidetes (average 11.5%), Actinobac-
teria (average 1.5%) and Firmicutes (average 0.3%) (Fig. 5 and
Supplementary Table S5). We noticed that despite finding
relatively similar proportions of isolates belonging to Alphapro-
teobacteria and Gammaproteobacteria in all ocean layers, the
proportion of reads within these isolates identical to ASVs of these
classes differed between the Tara Oceans and Malaspina
Expedition datasets regardless of the sampling depth. In Tara
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Oceans samples, Gammaproteobacteria dominated (72%–61%),
while Alphaproteobacteria dominated in the Malaspina datasets
(72%–48%) (Fig. 5). These differences could be explained partially
due to the different ocean regions, latitudes and seasons sampled
by each expedition. Thus, more coastal regions were sampled in
Tara Oceans, and the Malaspina Expedition reached deeper layers
(up to 4000m depth) compared to Tara Oceans.

Increase of cultured isolates sequences at larger plankton size
fractions
We also aimed to elucidate whether a higher proportion of
isolates could be retrieved from bacteria developing on particles
(PA: particle-attached bacteria) in the deep ocean representing
hotspots of copiotrophic bacteria than those living as free-living
bacteria (FL). We observed a significant increase (Wilcoxon test,
P-value < 0.01) of isolates 100% identical to ASVs and of reads in
the PA communities (0.8–20 µm, average 32.6%, sd:13.3%) versus
the FL fraction (0.2–0.8 µm, average 22.99%, sd: 10.2%) (Fig. 4C, D)
in the Malaspina Bathypelagic samples. However, the PA
community analyzed in the Malaspina Bathypelagic dataset
corresponded to particles of many different sizes from 0.8 to

20 µm plankton size fraction. Therefore, to explore the effect of
the particle size range on the percentage of ASVs recovery, we
also compared our isolates with samples from five different
plankton size fractions (0.2–0.8 µm -considered FL; or PA in sizes:
0.8–3.0 µm, 3.0–5.0 µm, 5.0–20 µm, and 20–200 µm) in eight
vertical profiles from the Malaspina Expedition.
Our analysis revealed that the isolates were present across all

size fractions and depths, yet the proportions varied (Fig. 6 and
Supplementary Fig. S8). First, when looking at the differences
between layers (surface, DCM, mesopelagic and bathypelagic), we
confirmed again the highest average diversity (% of ASVs) and
abundance (% of 16S TAGs) of isolated bacteria in the
bathypelagic. The 16.3% of ASVs 100% identical to isolates from
the bathypelagic (Fig. 6A) recruited an average of 40% of 16S
TAGs (Fig. 6B). Among surface, DCM and mesopelagic samples, a
similar number of isolates were detected (∼8% average) and also
similar proportions of identical 16S TAGs were identified (∼20%
average) (Fig. 6). Interestingly, the DCM was the layer with the
smallest number of ASVs identical to isolates (~6% average) and
16S TAGs recruited (~17.3% on average). Given the notable
proportion of ASVs identical to isolates in the bathypelagic
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samples, statistically significant differences were found between
this deeper layer and the other depths in the different size
fractions (Kruskal–Wallis test, P-values < 0.01), but not between
surface, DCM or mesopelagic samples (Supplementary Figs. S8
and S9).
Additionally, the proportion of sequences identical to isolates

across different plankton size fractions, revealed that our isolates
were prevalent in the larger plankton size fractions, those
associated with particles (≥3.0 μm) (Fig. 6). In samples from the
photic zone (surface and DCM) higher mean abundances of ASVs
and 16S TAGs (10% and 26% on average, respectively) were
recovered by isolation in the largest size fractions (3.0 μm, 5.0 μm
and 20 μm) but not in the FL bacterial communities (0.2 μm, 2.9%
average ASVs, and 1.5% average 16S TAGs) or in the smallest
particles (0.8 μm, 6% average ASVs, and 12% average 16S TAGs)
(Supplementary Tables S6 and S7). In the mesopelagic samples,
the number of ASVs identical to isolates (7%) in the 0.8 μm size
fraction recruited up to 23% of the 16S TAGs, but not in the FL
fraction (0.2 μm), which still presented lower values (4% of reads).
Finally, in the bathypelagic samples, all plankton size fractions
displayed similar percentages of ASVs identical to isolates,
including the FL bacteria (average 16%), and uniform proportions
of 16S TAGs (40% on average). In addition, the highest values were
found from the largest particles (>20 μm, 21% of ASVs and 45% of
the 16S TAGs).

DISCUSSION
Culturing studies are still fundamental for microbial ecologists to
fully understand the physiology and ecology of microorganisms in
marine ecosystems and test hypothesis that with sequencing
techniques alone cannot be fully answered. In this study,
combination of culture-dependent and culture-independent
techniques have allowed us to test the great plate count anomaly
paradigm in the deep ocean including mesopelagic and bath-
ypelagic zones, and to test the hypothesis weather bathypelagic
bacteria and those bacteria associated to particles are more prone
to be isolated in pure culture.
The precise meaning of the traditional paradigm that only 1% of

microbes are culturable has a difficult interpretation as discussed

in Martiny’s study (2019) [45]. Our comparative analyses between
the number of colonies retrieved in pure culture and the cell
abundances calculated with flow cytometry provided information
about the proportion of cells (abundance) than could be
recovered by isolation using a specific set of culture and
incubation conditions that were focused on the retrieval of
commonly culturable heterotrophic bacteria but not in the
discovery of novel microorganisms. Our results for mesopelagic
and bathypelagic samples reflected a certain degree of variability,
with a mean percentage of cultivability between 1.5% and 3.7%.
This variability was highlighted in previous culture-dependent
surveys covering a wide variety of environments: lakes, seawater,
soils or sediments, and also human host-associated communities
[43, 44]. However, none of these studies included open ocean
samples deeper than 200m. We can confirm that this variance can
also be observed across the mesopelagic and the bathypelagic
oceans, and that more than 1% of the cells and up to
approximately 4% of them (Fig. 3) could be cultivated in some
samples from the deep ocean. Therefore, the traditional paradigm
that less than 1% of the microbial cells can be retrieved in culture
still applies in the photic layers but should not be literally
interpreted for the deep ocean. However, related but different
questions are: which fraction of the microbial community diversity
can be cultured?, and are the isolates abundant or rare members
of the biosphere? To get these answers we compared the 16S
rRNA sequences of the isolates at the maximal resolution possible
(at 100% identity) with metabarcoding 16S TAGs from the same
ocean samples.
The rank abundance curves of microbial communities are

composed by some high-abundant and moderately abundant
taxa but many low abundant taxa, the so called rare biosphere
[56, 57]. We confirmed this structure for both expeditions datasets
and different depth levels in the ocean, in agreement with
previous studies [9, 46, 58, 59]. The common idea that cultivation
mainly captures members of the rare biosphere seems to be the
rule for bacteria in the photic layer, as the majority of the isolates
from Tara Oceans and Malaspina (an average 81% isolates)
recruited less than 1% of the total 16S rRNA sequences at 100%
identity in datasets from the photic zone. These results were also
observed in a single station in the northwestern Mediterranean
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Sea, in which 24% of the isolates from surface seawater were
found in the amplicon data (454 TAGs), yet all belonged to rare
taxa representing globally less than 1% of the total reads [9].
Similarly, a high-throughput sequencing study with >5000
bacterial strains isolated during a spring phytoplankton bloom
in the North Sea pointed out that the 30 most frequently cultured
operational phylogenetic units (OPUs) were represented with
abundances below 0.6% in the 16S rRNA gene data [42].
More interestingly, we found that 2.4% of the isolates from the

bathypelagic ocean recruited up to 28% of the reads of the total
microbial community in the deep ocean realm identified by
amplicon 16S TAGs (Fig. 4B) reflecting that we are capturing some
of the abundant taxa of the deep ocean. Our isolation strategy was
focused only on the heterotrophic marine bacteria and we are
aware that the photosynthetic bacterial community in the surface
samples is not captured with our isolation strategy nor are the
Archaea, which could represent an important fraction of the
bathypelagic ocean [46]. We tested what occurred when removing
Cyanobacteria and Archaea TAGs from the datasets, and we
obtained a similar trend with a slight increase, and identifying a
similar average of the amplicon 16S TAGs reads identical to
isolates in the surface, mesopelagic and bathypelagic datasets
(Supplementary Table S8).
On the other hand, the 16S metabarcoding datasets used in this

study are obtained with a PCR-dependent method, which could
have influenced the results obtained given that isolated organisms
usually have a higher rRNA operon copy number, and thus,
overestimating the abundance of TAGs recruited by the ASVs
identical to our isolates. This bias can be corrected by dividing our
results by 3.5, which is the median rRNA operon copy number of
the isolated genera in this study (Supplementary Table S9). Then,
the proportion of TAGs recruited by ASV 100% identical to isolates
is reduced in Tara Oceans Surface from 1.6% to 0.5%, in Malaspina
Surface from 4.8% to 1.4%, in Tara Oceans Mesopelagic from 8.5%
to 2.4% and in Malaspina Bathypelagic from 27.9% to 8 %. Even
though the abundance of the isolated community diminishes, still
higher proportions are found in the deeper layers and within
those organisms we found some of the top 10 ASV detected
among our culture collection, such as the most abundant ASV in
the bathypelagic ocean affiliating to Sulfitobacter genera. Sulfito-
bacter is a well-recognized taxa involved in the degradation of the
algal dimethylsulfoniopropionate (DMSP) [60], which is the major
source of organic sulfur in the world’s oceans [61]. Other
Sulfitobacter species, such as Sulfitobacter D7, can shift its lifestyle
from coexistence to being pathogenic during its interaction with
the bloom-forming phytoplankter Emiliania huxleyi [62], or
Sulfitobacter profundii [63] isolated from deep ocean waters,
which indicate the widespread distribution of this genus.
Additionally, the closest relative based on the partial 16S rRNA
gene is Sulfitobacter pontiacus [64] an ecologically relevant taxa
involved in the sulfur cycle [65] and detected in different
oceanographic regions and depths, including the deep ocean.
Interestingly, we recovered one metagenome assembled genome
(MAG) related to Sulfitobacter pontiacus (MAG0295) from our Deep
Malaspina MAGs Dataset [66] reflecting that this genome is indeed
abundant in the bathypelagic deep ocean, especially in some
stations of the North Atlantic Ocean, and detected in both
plankton size fractions (FL and PA, see Supplementary Fig. S10).
Our research also highlights that the recruitment of isolates was

higher in the particle-attached fraction of all layers compared to
free-living communities, and especially in the largest size fractions
of the bathypelagic ocean (Fig. 5B). These results are consistent
with a recent study describing a larger cultivability from particle-
attached communities from surface samples in the North Sea [52].
However, to the best of our knowledge, this is the first study to
test the cultivability of communities attached to different size
fractions in the deep ocean and in comparison with the photic
layers. It is already well-know that marine microbial communities

attached to particles are very different from the free-living ones
both, taxonomically [67–71], and at the functional level
[66, 72, 73]. A previous study that analyzed the same Malaspina
size fractionated vertical profiles dataset [71] determined the
importance of sinking particles as promoters of vertical con-
nectivity in the ocean microbiome, and observed that bacteria
associated with particles in the surface belonging to the rare taxa
became dominant in the deep ocean. Our results for the
culturable bacteria also confirmed that. Besides, the observed
similarities in terms of proportion of 16S TAGs identical to isolates
between size fractions in the bathypelagic ocean could be due to
the presence of isolates with dual lifestyles (i.e. the same isolate is
capable of living in particles and as a free-living bacteria), as has
been reported for some marine Flavobacteria [74]. Additionally, a
recent study on the globally active bathypelagic microbiome that
combined 16S rRNA and 16S rDNA metabarcoding revealed the
dominance of prokaryotes with dual lifestyles [75]. Furthermore,
the isolates that were abundant (>1% relative abundance) in both
free-living and particle-attached bacterial communities in the
bathypelagic samples were also present in the largest size
fractions of the surface layers, but appeared in the mid-
abundant and rare biosphere of the free-living fraction (Supple-
mentary Fig. S11 and Supplementary Table S10). Surface bacteria
could thus act as a seed bank for bathypelagic communities, a
hypothesis that has also been proposed in other studies
[71, 76–78]. While our isolates likely belonged to the part of the
bacterial community that prefers a particle-attached lifestyle, our
results support the idea that they could live attached to particles
in surface waters and sink with the particles to deeper layers
where they would develop and finally become abundant
members of the planktonic community (Fig. 7) with some of
them presenting a dual lifestyle.
Particles are resource-rich habitats for microbes [50] where a

copiotroph lifestyle could be the rule. Our findings support this
theory given the fact that we found a higher proportion of isolates
identical to the ASVs detected in the particle-attached commu-
nities compared to the free-living ones, especially in the
bathypelagic communities. Also genomic comparisons between
cultured isolates and uncultured genomes retrieved by single
amplified genomes (SAGs) from marine environments showed
that the genomes of the cultured bacteria had larger sizes, with a
predominant copiotrophic lifestyle [79], which could have favored
us in the recovery of the particle-attached bacteria using the
culture and incubation conditions selected. Some of the most
abundant ASVs identical to isolates detected in the bathypelagic
ocean and affiliating to Sulfitobacter, Halomonas and Alteromonas
display higher growth rates (>4 day−1) than other heterotrophic
bacteria [80], which may also aid the isolation in pure culture.
However, our MARINHET_v2 culture collection still misses most of
the free-living bacteria adapted to oligotrophic conditions in the
photic and the mesopelagic layers. Different reasons can be given
to explain why still a high percentage of the ASVs were not
recovered in our study. Firstly, DNA sequencing techniques usually
do not differentiate between live and dead cells, which can lead to
an overestimation of the presence of metabolically active cells in
the ecosystem [81, 82]. In addition, among the active bacteria, we
can found the so-called viable but non culturable (VBNC) bacteria,
which are unable to form colonies in solid media [83]. As a result, it
is possible that some of the ASVs we detected belong to these
dead cells or the VBNC bacteria, which we would not be able to
recover through isolation. On the other hand, the culturing
conditions used were focused on the retrieval of heterotrophic
bacteria commonly isolated under laboratory conditions from
different oceanographic regions and depths in order to be able to
compare between samples. Future isolation efforts using dilution-
to-extinction [13, 84], microdroplets or cultivation chips [85],
methods combining cell sorting with isotopic labeling [86], or the
use of metagenomes and metatranscriptomes data to predict the
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metabolic requirements of certain bacterial groups and adapt
culture media accordingly [87], may help us to bring to the
laboratory some other abundant and biogeochemically key taxa of
the free-living microbial communities that remain mostly uncul-
tured. Nevertheless, the genome sequencing of these deep ocean
cultured abundant taxa in combination with transcriptomic
analyses under different experimental scenarios of temperature,
pressure, or particles association would enhance our under-
standing of key taxa of the deep ocean.

MATERIAL AND METHODS
Isolates culture collection database
Water samples from a total of 12 photic-layer stations and 11 deep-ocean
stations (including four from the mesopelagic in oxygen minimum
zone (OMZ) regions and seven from the bathypelagic) were collected

from global oceanographic expeditions including the Malaspina Expedition
[88] and the Tara Oceans (Tara Oceans 2009 and Tara Oceans Polar Circle
2013) [53]. Additionally, we used seawater samples collected in other
cruises, such as ATP09 in the Arctic Ocean [89], MIFASOL in the NW
Mediterranean, as well as from the Blanes Bay Microbial Observatory
(BBMO, http://www.icm.csic.es/bio/projects/icmicrobis/bbmo), covering a
wide latitudinal range, with different oceanographic regions. Seawater
samples collected for isolation were prefiltered through 200 µm and 20 µm
mesh in succession in order to keep free-living bacteria but also the
prokaryotic community attached to particles <20 µm. Further details
regarding sample collection in all these cruises have been previously
described [47]. Geographical coordinates of the stations, sampled depth,
in situ temperature, number of isolates sequenced, total prokaryote cell
abundances, and colony forming units (cfu) per mL are listed in
Supplementary Table S11. Prokaryote cell abundance was determined
using flow cytometry (in a Becton Dickinson FACSCalibur) of SYBR Green I
stained samples [90].

Fig. 7 Conceptual representation of the heterotrophic culturable bacteria along the ocean water column. Free-living bacteria from photic
ocean, which present a small fraction of heterotrophic culturable bacteria and mainly belonging to the rare biosphere, can attached to
particles, where this culturable fraction is higher. These particles serve as a hotspot for growing and sink into the deep ocean where
heterotrophic culturable bacteria become more abundant, specially in larger particles. Once in the deep ocean, mainly in the bathypelagic,
bacteria can detach from particles and present a dual lifestyle. In the bathypelagic, some of the most abundant bacteria are culturable and
they are present both in the free-living and in the particle-attached fraction.
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Our culturing strategy was focused on retrieving heterotrophic marine
bacteria that could easily grow under laboratory conditions (nutrient rich
media, standard oxygen concentrations and atmospheric pressure)
(Supplementary Table S12). Therefore, we used nutrient rich media
including Zobell Agar, Marine Agar 2216 and modified Marine Agar,
where disodium phosphate was autoclaved separately from the rest of the
media and added as a separate solution before solidification [47, 91]. We
are aware that the use of the modified Marine Agar only from some
stations could bias our results due to the possibility to isolate different
strains. Accordingly, some of the analyses were also performed excluding
the isolates obtained from this specific medium. The results generated
(Supplementary Fig. S12) agreed whether we included those isolates or
not, which allowed us to keep them for the remaining analyses. Further
details regarding isolation of bacterial strains has been already described in
Sanz-Sáez et al. (2020) [47].
A total of 2003 bacterial isolates (MARINHET_v2 culture collection) were

randomly selected based on different colony morphology for DNA
amplification and partial sequencing of their 16S rRNA gene (more details
in ref. [47]). Similar number of isolates were selected from photic layers
(1041; average: 70.6 isolates per station) and from the deep ocean (962;
average: 67.6 isolates per station).

Metabarcoding 16S rRNA datasets
We used metabarcoding 16S rRNA sequences obtained from several
datasets and expeditions: Malaspina Surface (124 samples) [54], Malaspina
Bathypelagic (41 samples, average depth: 3731m ± 495; standard devia-
tion) [46], Tara Oceans Surface (80 samples), Tara Oceans Mesopelagic
(39 samples) (this study and Ibarbalz et al., 2019 [92]) (Fig. 1), and eight
vertical profiles generated in the Malaspina Expedition that included five
different size fractions for four depths corresponding to surface (3m), the
depth of the deep chlorophyll maximum (DCM, 48–150m), mesopelagic
(250–670m), and bathypelagic waters (3105–4000m) (Fig. 1A) [71]. These
samples covered most tropical and temperate ocean regions but also
some polar oceanic regions (Tara Oceans Polar Circle expedition Fig. 1A, B).
All samples were collected with 20 L Niskin bottles and were prefiltered

through 200 µm and 20 µm mesh in succession. Volumes filtered and filters
used for collecting prokaryotic DNA for analyses of the bacterial
community using 16S amplicon Illumina TAGs are specified in Supple-
mentary Table S13 for each cruise and type of sampling. Filters were then
flash-frozen in liquid nitrogen and stored at −80 °C until DNA extraction.

DNA extraction and sequencing for metabarcoding datasets
The samples for 16S metabarcoding sequencing were extracted with a
phenol-chloroform protocol as previously described [46, 93, 94]. Prokaryotic
barcodes for each of the datasets were generated by amplifying the V4 and
V5 hypervariable regions of the 16S rRNA gene using primers 515F-Y (5’-
GTGYCAGCMGCCGCGGTAA-3’) and 926 R (5′-CCGYCAATTYMTTTRAGTTT-3′)
described in Parada et al. (2016) [55]. The Malaspina bathypelagic DNA
samples originally from Salazar et al. (2016) [46] were re-sequenced again
using 515F-Y-926R primers [55] to be comparable with the rest of the
analyzed 16S metabarcoding datasets in this study. Sequencing for Tara
Oceans, Tara Oceans Polar Circle and Malaspina Bathypelagic datasets was
performed at Genoscope using an Illumina MiSeq platform (TAGs) with the
2 × 250 bp paired-end approach. The Malaspina Surface and Malaspina
vertical-size fraction profiles datasets were sequenced at the Research and
Testing Laboratory facility (https://rtlgenomics.com) also with Illumina
MiSeq platform and the 2 × 250 bp paired-end approach.

Metabarcoding sequence data processing
All metabarcoding 16S rRNA amplicons (16S TAGs) were processed de novo
through the bioinformatic pipeline described in the GitHub repository
(https://github.com/SushiLab/Amplicon_Recipes) regardless they were
previously analyzed and published. Dereplication, definition of zero-
radius OTUs or amplicon sequence variants (ASVs) were performed with
USEARCH v.10.0.240 [95] using UNOISE3 algorithm. ASVs were taxonomi-
cally annotated against the SILVA database v.132 (2018) with the lowest
common ancestor (LCA) approach. Further details can be found
in Supplementary Material and Methods. Each ASV table was randomly
sampled down to lowest sampling effort using the function rrarefy.perm
with 1000 permutations from the R package EcolUtils [96]. A summary of
the total number of reads per dataset, sample with the lowest number of
reads and total ASVs before and after rarefication is described in
Supplementary Tables S2 and S3.

Comparison between 16S amplicon TAGs and cultured
isolates
The primers used to obtain the 16S rRNA genes of the isolates were
different from the ones used to obtain the 16S rRNA gene TAGs, although
both amplified the V4 and V5 hypervariable region of the 16S rRNA gene.
Therefore, comparisons between isolates and 16S TAGs were performed by
selecting this common region (Supplementary Fig. S13).
All isolate sequences were compared to the ASVs at 100% similarity in

order to have the strictest comparison possible. Comparisons were done
by running global alignments using the usearch_global option from the
USEARCH v10.0.240 [95]. The results were filtered by coverage of the
alignment at 100% (i.e. all the ASVs sequences must align without any gaps
in the sequence with the partial sequences of the isolates). We are aware
that these comparisons sometimes result in more than one sequence hit
per isolate. Nevertheless, all datasets contained similar proportions of
isolates with more than one sequence match, and the % of reads recruited
by these extra hits was minor (approximately 1.2% in each dataset),
making comparisons between datasets possible (Supplementary Fig. S3).

Data analysis
All data analyses were done with the R Statistical Software [97] using
v.3.4.3 and the following packages: vegan [98], ape [99], EcolUtils [96], stats
[97], tidyverse [100]. For the MARINHET_v2 culture collection accumulation
curves and rarefaction curves were performed with OTUs (isolated OTUs)
obtained after clustering of the 16S rRNA sequences at 100% similarity
using the USEARCH v10.0.240 [95]. For metabarcoding 16S TAGs datasets,
we calculated the mean abundance and relative abundance of ASVs across
samples in order to rank the organisms detected. Moreover, we calculated
the mean percentage of 16S TAGs reads (how much the isolates represent
the bacterial community in terms of abundance?) and the ASVs (how much
the isolates represent the bacterial community in terms of diversity or
richness?) of the bacterial community that matched at 100% similarity with
the 16S rRNA gene sequences of the strains isolated by traditional culture
techniques. These percentages were calculated from the rarefied ASV-
abundance tables. In order to test the significance of the differences
between datasets we used non-parametric Kruskal–Wallis followed by post
hoc pairwise Wilcox test. To assess significance, the statistical analyses
were set to an alpha value of 0.05.
We used the 16S TAGs dataset from the Malaspina size fractionated

vertical profiles to investigate whether our isolates were enriched in the
free-living microbial fraction (0.2–0.8 μm), or in the particle-attached
community, considering that this last category can be divided into four
different size-fractions (0.8–3 μm, 3–5 μm, 5–20 μm and 20–200 μm).
Hence, we also calculated the percentage of reads or 16S TAGs, and ASVs
that matched at 100% similarity with our isolates. The differences between
size fractions were also tested with the non-parametric Kruskal–Wallis test
followed by the post hoc pairwise Wilcox test. Again, the significance was
set at an alpha value of 0.05.

Nucleotide accession numbers
The isolates sequences are deposited in GenBank under accession
numbers MH731309 - MH732621 and MK658870-MK659428. Amplicon
16S rRNA TAGs from the different datasets used are available in the
European Nucleotide Archive (ENA). Those from the Malaspina Surface
dataset are available under accession number PRJEB25224, those from the
Malaspina Bathypelagic dataset under PRJEB45011, those from Malaspina
size fractions under PRJEB27154 and those from Tara Oceans and Tara
Oceans Polar Circle under accession numbers PRJEB36282, PRJEB36283
and PRJEB36439.

DATA AVAILABILITY
All isolates data is available in GenBank under accession numbers MH731309 -
MH732621 and MK658870-MK659428; and amplicon 16S TAGs in the European
Nucleotide Archive (ENA) under accession numbers PRJEB25224, PRJEB45011,
PRJEB27154, PRJEB36282, PRJEB36283 and PRJEB36439.
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