
HAL Id: cea-04480238
https://cea.hal.science/cea-04480238v1

Submitted on 27 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A semantics of structures, unions, and underspecified
terms for formal specification

Louis Gauthier, Virgile Prevosto, Julien Signoles

To cite this version:
Louis Gauthier, Virgile Prevosto, Julien Signoles. A semantics of structures, unions, and underspeci-
fied terms for formal specification. FormaliSE 2024 - International Conference on Formal Methods in
Software Engineering, Apr 2024, Lisbonne, Portugal. �10.1145/3644033.3644380�. �cea-04480238�

https://cea.hal.science/cea-04480238v1
https://hal.archives-ouvertes.fr

A Semantics of Structures, Unions, and
Underspecified Terms for Formal Specification

Louis Gauthier

Virgile Prevosto

Julien Signoles

firstname.lastname@cea.fr

Université Paris Saclay, CEA, LIST

France

ABSTRACT
ACSL is a behavioral interface specification language forC. It is used
by Frama-C, a framework including several formal methods-based

techniques for verifying C code with respect to ACSL annotations.

Currently, there is no formal definition of the ACSL semantics,

which may lead to different, possibly inconsistent, interpretations

of the semantics by developers and users. This paper is a first step

to solve this issue by formalizing a subset of the ACSL specification

language in Coq. This semantics is based on Krebbers’ semantics

of C. The paper focuses on two features: an equality for structures

and unions, which are comparable in ACSL, contrary to C, and
a logic for handling underspecified terms and predicates that the

total logic of ACSL let us manipulate. Finally, we also provide a few

properties of our formal semantics.

CCS CONCEPTS
• Software and its engineering→ Semantics; Formal methods;
Specification languages; • Theory of computation→ Program
semantics.

KEYWORDS
Formal Semantics, Formal Specification Language, Coq Proof As-

sistant

1 INTRODUCTION
Software-oriented formal methods offer various techniques for

mathematical reasoning on software. When applied on a program

written in a specific programming language, they require a for-

mal semantics for this language. For mainstream programming

languages such as C, defining such a formal semantics usually re-

quires a tremendous amount of error-prone work. To reduce the

risk of introducing errors, it is welcome to define such a semantics

in a formal setting like a proof assistant, typically Coq. Once the
semantics has been fully defined, it becomes possible to prove some

soundness properties over it, such as Milner’s famous statement

“well-typed programs cannot go wrong” [32]. In addition, it also

allows the users to prove the correctness of formal analysis tech-

niques with respect to this semantics of the language, as long as

those techniques are formally defined within the same setting.

FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal
2024. ACM ISBN 979-8-4007-0589-2/24/04. . . $15.00

https://doi.org/10.1145/3644033.3644380

Several works already define formal semantics of programming

languages. Among others, the K framework [25] provides a rewrite-

based executable semantic framework in which many semantics

have been defined, e.g., for C [14], Java [8], or JavaScript [36]. Sim-

ilarly, the Coq proof assistant has been used for C [24], Clight [6],
which is a large subset of C, or JavaScript [7]. However, fewer works
have been dedicated to define the formal semantics of specification
languages. Such languages are required by many formal method-

based techniques, such as deductive verification [16] or runtime

annotation checking [22], often referred to as runtime assertion

checking [13]. Yet, a few works exist, such as a formalization in

Coq of the semantics of JML [28], which is a formal specification

language for Java [26] or, more recently, a formal verification in

Isabelle of a monitoring framework for Metric First Order Temporal

Logic (MFOTL) [40].

This paper contributes to this line of work by proposing a formal

semantics written in Coq for a subset of the ACSL specification

language [2]. Our long-term goal is to provide a formal semantics

for the whole language. Like JML for Java, ACSL is a Behavioral

Interface Specification Language (BISL) [17] forC. Notably, it is used
by Frama-C [1], a framework for analyzing source code written

in C, which provides several techniques for verifying C code with

respect toACSL annotations, such as deductive verification, abstract
interpretation, and runtime annotation checking.

Providing a formal semantics of ACSL would help to better de-

fine and understand this language. Indeed, its reference manual [2]

is not always completely clear about the (informal) semantics of

every construct. This may lead to different, possibly inconsistent,

interpretations when developing tools or writing specifications.

For example, some issues from the Frama-C github show the need

of clarification of constructs like the \valid 1
or \initialized 2

predicates, which are supposed to denote the validity (resp. initial-

ization) of a pointer, but whose definitions in the ACSL manual

contain some ambiguities. This formalization would also help vali-

date the different formal method-based techniques used in Frama-C.
Actually, several works have already presented correctness proofs

of such Frama-C techniques for different subset of C and/or ACSL,
but all of them made different choices when simplifying or even

modifying the languages’ semantics in different incompatible ways

according to their needs. Namely, a simple arithmetic ACSL subset

for Clight has been introduced in [19] for certified deductive verifi-

cation. Similarly, a study about certified program slicing is focusing

on a While language extended with Boolean assertions [27]. This is

1
https://github.com/acsl-language/acsl/issues/74

2
https://github.com/acsl-language/acsl/issues/81

1

https://doi.org/10.1145/3644033.3644380

FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal Louis Gauthier, Virgile Prevosto, and Julien Signoles

also the case for a formalization of a method for verifying relational

properties [4]. Runtime annotation checking has been studied in [3]

on an arithmetic ACSL subset for simple C programs, and on an

ACSL subset restricted to some memory properties for a C subset

including pointers and addresses in [30].

This paper concentrates on a propositional logic, based on C
expressions as terms, including structures and unions, as well as un-

defined expressions, such as 1/0 and 1/0 == (2-1)/(1-1). These
constructs are of particular interest. First, ACSL allows the users

to compare structures or unions, while it is not possible in C. Such
a comparison is in particular not obvious for unions, which are

complicated semantic objects. As far as we know, this problem has

never been studied (in particular, the ACSL manual does not say

much beyond the fact that structs and unions can be “tested for

equality” [2, Sect. 2.2.7]). Second, ACSL’s logic is total [2, Sect. 2.2.2],
meaning that all terms and predicates are well defined. Therefore,

the ACSL counterparts of the above-mentioned C undefined ex-

pressions must have a well defined, yet underspecified, semantics.

Since ACSL relies on C, we based our ACSL formal semantics on

Krebbers’ formal semantics of C [24], written in Coq. The paper
also includes the proof of a few properties of our subset of the

ACSL language. To sum-up, our contributions constitute a first
step towards a formal semantics of ACSL, written in Coq.
They include a novel formal semantics of comparisons over struc-
tures and unions, as well a formal semantics for underspecified
terms and predicates. In addition, they also provide a proof for a
few properties of this semantics.

Related Works. As said earlier, several works propose formal

semantics of C: CompCert [6] has already been mentioned, but

M. Norrish [34], C. Ellison [14], and R. Krebbers [24] have also

proposed formal semantics of C respectively formalized in HOL,
K, and Coq. But as in C it is not allowed to compare structs or

unions, none of these works deal with this subject, which is one

of the main focus of our paper. Some works are focusing on C
deductive verification like AutoCorres [15] which is translating C
code into Isabelle before abstracting the low level representation.

It is based on the memory model defined by H. Tuch [39]. This

work doesn’t handle unions, which is one of our main focus in this

paper so we could not rely on this work. Others works consider

only specific parts of C. For instance, L. Li [29] introduces a formal

model of checked C, a language extending C with new pointer

types and annotations, to enforce the safety of memory. Similarly,

K. Memarian [31] explores a source-language semantics for memory

object and pointers, while D. Chisnall [12] focuses on the semantics

of pointer casts. On another topic, K. Nienhuis [33] proposes a

formal semantics of C for reasoning on concurrency. Similarly

to the works cited above, these formalizations neither introduce

structs and unions comparison normanipulate underspecified terms

as we need for ACSL.
Still, some works focus on underspecified or undefined behavior

of C. In particular, M. Norrish [35] has proposed a semantics with

constraints permitting to C expressions to have a deterministic

behavior even in the presence of under-specified behavior of the

code with respect to the C standard. Also, C. Hathhorn [18] has

introduced a formal semantics that rejects undefined behavior of

C. However, in ACSL underspecified terms can be manipulated

and compared for example, which is something that none of the

works cited earlier deal with. Some formalizations for languages

with dependent types or refinement types (refinement type is a

type linked to a predicate that must hold for any element of this

type) also exist, like MetaCoq [38], which has a Coq formalization,

and LiquidHaskell [9] which defines a metatheory based on refine-

ment calculus. These two languages are at a much higher level

than C, which implies very different problems. In particular They

do not address memory layout issues that are overwhelming in a

C formalization. Regarding the formalization of specification lan-

guages such as ACSL, as mentioned above, H. Lehner [28] proposes

a formalization of JML. As Java does not have the same constructs

as C, this work does not deal with structs or unions comparison.

P. Chalin [11] presents a sound assertion semantics for the Verify-

ing Compiler project [20], which detects errors such as undefined

behavior but, in contrary to what we want, does not allow manip-

ulating underspecified terms. Finally, some works have also been

done on the formalization on a subset of ACSL itself, in particular

P. Herms [19] or D. Ly [30]. The main focus of their work was not

to formalize ACSL, so they chose a subset of ACSL containing only

the elements they needed. Hence, structs and unions comparison

were not part of their formalization.

Outline. Section 2 introduces a small example of ACSL annota-

tions in a C program, with structs, union, and underspecified terms.

Section 3 presents the CH2O−
language, which is a subset of the

CH2O language introduced by R. Krebbers [24]. Sections 4 and 5 re-

spectively explains the syntax and the semantics of miniACSL, the
subset of ACSL we focus on in this paper. Last, section 6 concludes

and discusses future works.

2 MOTIVATING EXAMPLE
Fig. 1 presents a C program using a type simple_packet. It intro-
duces the most important notions of our work on structures, unions

and underspecified terms. A simple packet can either be defined by

its source, its destination, its identifier, the length of its content and

its content, or simply by a full packet containing all these pieces of

information.

The code contains three assertions at lines 32–39, expressed

in the ACSL specification language [2] and enclosed in special

comments /*@...*/.
The first assertion, on line 32, checks that the packets p1.packet

and p2.packet are not equal. These packets are structures. As men-

tioned in the previous section, such an equality is not allowed in

C, so no existing formal semantics of C deals with this construct.

However, comparing structures is possible in ACSL. Its reference
manual states that “equality amounts to recursively checking equal-
ity of fields [2, Sec. 2.2.7], so our formalized semantics of ACSL
for comparing structures presented in Section 5.1 is a field-based

comparison: two structures are equal if and only if all their fields

are equal. Accordingly, the assertion at line 32 is valid since the

two packets have no fields with the same value.

The second assertion at Line 33 compares two unions p1 and p3.
As a reminder, unions inC are field containers but, unlike structures,

all fields of a union share the same memory space, as presented

in Fig.2. Therefore, changing the value of a field of a given union,

change the value of all fields of this union accordingly. Similarly

2

A Semantics of Structures, Unions, and
Underspecified Terms for Formal Specification FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal

1 struct pack {

2 char src;

3 char dest;

4 char packet_id;

5 char length;

6 unsigned char content [255];

7 };

8 union simple_packet {

9 struct pack packet;

10 unsigned char full_packet [259];

11 };

12

13 int main(){

14 int nb_pack = 0;

15 union simple_packet p1 = {. packet ={

16 .src = 1,

17 .dest = 2,

18 .packet_id = 0,

19 .length = 5,

20 .content = {1,2,3,1,4}}};

21

22 union simple_packet p2 = {. packet ={

23 .src = 2,

24 .dest = 1,

25 .packet_id = 1,

26 .length = 2,

27 .content = {6 ,9}}};

28

29 union simple_packet p3 = {

30 .full_packet = {1,2,0,5,1,2,3,1,4}};

31

32 /*@ assert(p1.packet != p2.packet);*/

33 /*@ assert(p1 == p3);*/

34 /*@ assert
35 ((p1.packet.length

36 + p2.packet.length

37 + p3.packet.length)

38 / nb_pack)

39 == (5+5+2) /0; */

40 return 0;

41 }

Figure 1: CodeUsing Structures, Unions andDivision by Zero.

Figure 2: Memory Representation of Structures and Unions.

to structures, unions cannot be directly compared in C, while it is
possible in ACSL. In addition to the above quote, the ACSL reference
manual warns that “Beware that equality of unions is also equality
of all fields [2, Sec. 2.2.7]. However, this informal semantics is not

precise enough. Typically, in our example, the initialized field of p1
is packet, which is a structure, while the initialized field of p3 is
full_packet, which is an array. Since the representations of both

types differ, both fields cannot be easily compared each other. An

idea could be to check the type of the “active” field of an union (the

one with which we initialized the union) in addition to its value,

but it does not work well in presence of casts. As detailed in Sec. 5.2,

our solution consists in looking at the bit-level representation of

unions when comparing them. Here, these representations are the

same, so unions p1 and p3 are equal.
The last assertion at lines 34–39 compares underspecified terms,

such as 12/0. Such terms would lead to an undefined behavior if

evaluated as C expressions. However, the ACSL logic is “a 2-valued

logic with only total functions. Consequently, logic terms are never

"undefined"” [2, Sec. 2.2.2], even if we do not know their values

beyond the fact that they belong to their expected types (integers,

for terms such as 12/0). Therefore, it must be possible to use them in

ACSL predicates without making the underlying logic inconsistent.

Typically, the ACSL equality ==must still define an equivalence (i.e.,

reflexive, transitive, and associative) relation, even when comparing

such terms. Here, since the sum of the packets’ lengths is equal to

12, the assertion must be valid: if it were invalid, the equality would

not be reflexive.

It is worth noting that none of these assertions can be executed

in C. Indeed, the first and second assertions compare structures and

unions, which is not possible in C, while executing the third one

would lead to undefined behaviors when dividing by zero. However,

they are legal and well-defined in ACSL. The main purpose of this

paper consists in defining a formal semantics for such assertions.

While the code in Fig. 1 presents the main elements of our for-

malization, it also contains C constructions that are not strictly

relevant to the issue at hand. Hence, Fig. 3 contains a simpler ex-

ample that we will use throughout the rest of this paper. This small

1 struct p2D {int x; int y;};

2 struct tri { struct p2D a; struct p2D b; struct p2D c; };

3 struct quad {

4 struct p2D a; struct p2D b; struct p2D c; struct p2D d;

5 };

6 union shape { struct tri tri; struct quad quad; };

7 int main() {

8 struct p2D p1 = {.x=2, .y=1}, p2, p3;

9 p2.x = 2; p2.y = 5;

10 p3.x = 5; p3.y = 1;

11 union shape s1 = {.tri = {.a=p1, .b=p2, .c=p3} };

12 union shape s2 = {.quad = {.a = p1, .b=p2,

.c=p3 ,.d={.x=5, .y=8}}};

13 /*@ assert p1 != p2 && p2 != p3 && p3 != p1; */

14 /*@ assert s1 != s2; */

15 return 0;

16 }

Figure 3: Example of ACSL Assertions Over structs and
unions .

example presents a type shape that uses structures and unions.

Indeed, a (geometrical) shape is either a triangle or a quadrilateral,

both being defined by 2D-points on a plane. The main function

then defines three points p1, p2, and p3, a triangular shape s1 and

a quadrilateral shape s2 and contains two ACSL assertions on the

equality of the points and on the equality of the shapes.

3 THE CH2O− LANGUAGE
As ACSL is meant to formally specify properties over C programs,

in order to define the semantics of a subset of ACSL, we first need to
3

FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal Louis Gauthier, Virgile Prevosto, and Julien Signoles

⊚𝑐 ::= == |<= |< ⊚𝑎 ::= + |- |* |/ |% ⊚ ::= ⊚𝑐 | ⊚𝑎 ⊚𝑢 ::= - |!
𝛼 ::= := | ⊚𝑎 := | := ⊚𝑎

𝑒 ::= 𝑣 constant

| 𝑥 variable

| 𝑒.𝑙 𝑖𝑑 field access of a left-value

| 𝑒.𝑟 𝑖𝑑 field access of a right-value

| ∗𝑒 dereference

| &𝑒 address

| load 𝑒 loading from memory

| (𝜏)𝑒 cast operator

| ⊚𝑢𝑒 unary operation

| 𝑒1 ⊚ 𝑒2 binary operation

| 𝑒1𝛼𝑒2 assignments

| 𝑒1 [®𝑟 := 𝑒2] altering structs and unions

𝑠 ::= 𝑒 expression

| skip skip

| return 𝑒 return

| if (𝑒) 𝑠1 else 𝑠2 conditional

| 𝑠1; 𝑠2 sequence

| while(𝑒) 𝑠 loop

| local𝜏𝑠 local variable declaration

Figure 4: CH2O’s Syntax.

have a semantics for the corresponding subset of C. As mentioned

above, several C formal semantics have already been defined, so

there was no need to define our own. In particular, there are the

formal C semantics of C. Ellison and G. Rosu [14], the one used in

Cerberus by K. Nienhuis, K. Memarian and P. Sewell [33], the one of

M. Norrish in HOL [34], and the one used by theCompCert certified
compiler [6] in Coq. All these semantics were not chosen because

their representations of values did not suit our needs. Typically,

our semantics of unions in ACSL, presented in Sec. 5, requires a bit-

level representations of values that these semantics do not provide.

Hence, we have chosen to rely on Krebbers’ CH2O [24], written

in Coq. More precisely, we extract CH2O−
, a subset of CH2O that

is large enough for our study. Note that we only focus on CH2O−

in this paper in order to have a clear self-contained presentation

of the language. However, our Coq development
3
is based on the

whole CH2O development.

The rest of this section presents CH2O−
. Its content is not new,

and reuses Krebbers’ notations whenever possible. However, this

section is necessary to introduce the grounding blocks required by

our semantics ofminiACSL. Sec. 3.1 introduces the CH2O−
’ syntax

and type system, while Sec. 3.2 presents its memory model.

3.1 CH2O−’s Syntax and Type System
Fig. 4 describes CH2O−

syntax, composed of C expressions and

statements. Expressions include integer constants, variables and

field accesses, unary and binary operations on integers and point-

ers, pointer dereferences, addresses of an expression and casts of

an expression to a given type, assignments, loading a value from

memory and altering structs and unions.

3
https://github.com/Anonym398/minACSL

𝑘 ∈ 𝐾 ::= char | short | int | long | long long | ptr_rank
𝑠𝑖 ::= signed | unsigned 𝜏𝑖 ::= 𝑠𝑖 𝑘 𝜏𝑝 ::= 𝜏 𝜏𝑏 ::= 𝜏𝑖 | 𝜏𝑝∗
𝜏 ∈ type ::= 𝜏𝑏 | struct 𝑡 | union 𝑡

Figure 5: CH2O− ’s Types.

In CH2O−
, left-values are not converted to right-values im-

plicitely as it is done in C by lvalue conversion [23]. load expressions
materialize reading a value from memory. The argument of load
must be a left-value, inC sense, i.e., a location inmemory. Then, load
retrieves the value stored in this location. Similarly, field accesses

are tagged to indicate whether they are used as left- or right-values

(respectively 𝑒.𝑙 𝑖𝑑 and 𝑒.𝑟 𝑖𝑑).

Binary operations contains comparison and arithmetic opera-

tions. It is worth noting that the comparison operators can only be

applied on integers and pointers: In C, and so in CH2O−
, it is not

possible to compare structures or unions. We then find assignment

expressions, which include simple assignment (:=), compound pre-

fix operations (⊚𝑎 :=) and postfix increment and decrement (:= ⊚𝑎).
Finally, in CH2O−

, _[_ := _] is used to transcribe C’s compound
literals. More precisely, such an expression denotes a compound

literal in which a field has been given a value. Then, a compound

literal is translated as a sequence of such insertions, starting with

an empty compound noted 0
𝜏
.

For instance, the CH2O−
expression corresponding to the ini-

tialization of p1 on line 8 of Fig. 3 is:

0
struct 𝑝2𝐷 [(↩ struct 𝑝2𝐷−−−−−−→ 0) := int𝑖𝑛𝑡 2] [(↩

struct 𝑝2𝐷
−−−−−−→ 1) := int𝑖𝑛𝑡 1] .

In this example, 0
struct 𝑝2𝐷

is the empty compound literal of type

𝑝2𝐷 . First, [(↩ struct 𝑝2𝐷−−−−−−→ 0) := int𝑖𝑛𝑡 2] corresponds to the assign-
ment .x = 2, with (↩ struct 𝑝2𝐷−−−−−−→ 0) corresponding to the field index
(𝑥 is the first field), and int𝑖𝑛𝑡 2 being its value. Similarly, the second

insertion corresponds to the initialization of .y to the value 1.
Statements include expression evaluations, skip (i.e., the effect-

less statement), return, conditionals, sequences and while loops.

There is also a special statement used for local variable declara-

tion. Indeed the local𝜏𝑠 statement opens a block scope with a local

variable of type 𝜏 .

For typing CH2O−
, we directly use the C type system defined

by Krebbers [24], restricted to the types of CH2O−
. Our types are

shown in Fig. 5. The set𝐾 contains standardC’s ranks of integers, as
well as a specific rank corresponding to C’s intptr_t, to represent
the numerical values of pointers. As usual in C, signedness will
often be omitted, and considered signed by default. Unions and

structures types are defined by their names 𝑡 ∈ tag represented as

strings.

Let index be a countable set and B be the set of Booleans. Each

object has an object identifier 𝑜 ∈ index. A memory typing envi-

ronment Δ ∈ memenv := index → type × B is a partial function

mapping objects to their type and danglingness status.

We do not specify here Krebbers’ typing rules restricted to the

CH2O−
subset. However, we assume that programs are well typed

according to these rules, which means in particular:

• Each expression 𝑒 has a type 𝜏 in an adequate memory typing

environment Δ, which is noted Δ ⊢ 𝑒 : 𝜏 .
4

https://github.com/Anonym398/minACSL

A Semantics of Structures, Unions, and
Underspecified Terms for Formal Specification FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal

• Each object identifier corresponding to a program object has

a type 𝜏 , with a danglingness status 𝑏 ∈ B, in an adequate

memory typing environment Δ, which is noted Δ(𝑜) = (𝜏, 𝑏)
• An object is said alive in a memory typing environment Δ,
which is noted Δ ⊢ 𝑜 alive, when Δ(𝑜) = (𝜏, false).

• A tag environment Γ ∈ env assigns fields to structs and

unions, i.e., env := tag → list type. It basically links a tag

corresponding to a struct or union to the list of types, each

of them corresponding to a field of the struct or union.

3.2 Memory Objects and Values
In this paper, CH2O−

objects that are not integers are named mem-
ory objects: their semantics rely on their memory representation,

which is presented here.

The part of an object that is accessed through a field 𝑖 of a

structure or an union 𝑜 is a reference. It is represented by a path

from the top of 𝑜 to 𝑖 . Such a path is a list of reference segments,
corresponding to field accesses. The empty reference 𝜖 contains no

segment. References and their segments are defined as follows:

𝑟 ∈ refseg ::= ↩
struct 𝑡
−−−−→ 𝑖 | ↩union 𝑡−−−−→ 𝑖 Reference segment

®𝑟 ∈ ref := list refseg Reference

Addresses are represented by an associated object identifier 𝑜 of

type 𝜏 , a reference ®𝑟 to some sub-object of type 𝜎 , and a type 𝜎𝑝 to

represent a cast. A pointer is either an address or the NULL pointer

of type 𝜎𝑝 . More precisely, addresses and pointers are defined as

follows:

𝑎 ∈ addr ::= (𝑜 : 𝜏, ®𝑟)𝜎>★𝜎𝑝 Address

𝑝 ∈ ptr ::= NULL𝜎𝑝 | 𝑎 Pointer

For any address 𝑎 and reference segment 𝑟 , 𝑎⟨𝑟 ⟩Γ is the address

of the field accessed through 𝑟 in the object at 𝑎. It is defined by:

𝑎⟨𝑟 ⟩Γ = (𝑜 : 𝜏, ®𝑟, 𝑟)𝜎2>★𝜎2with 𝑎 = (𝑜 : 𝜏, ®𝑟)𝜎>★𝜎𝑝

Here, 𝜎2 is the type of the field represented by 𝑟 in the object at

address 𝑎. For instance, consider the following declaration.

struct S { int *p; union U {char* x; int y ;} u; } s;

Assuming the object identifier of s is 𝑜𝑠 , the representation of the

pointer (int**)&s.u.x is the following address:

(𝑜𝑠 : struct 𝑆, ↩
struct 𝑆
−−−−→ 1 ↩

union 𝑈
−−−−−→ 0)char∗>★int∗ .

Starting from 𝑜𝑠 , we take the second field of struct S, then the

first field of union U, to obtain the address of a char *, that we
convert to the address of a int *.

Bits Representation. The C language allows for bit-level manipu-

lations of objects. Therefore, we need a bit-level representation of

their values. We reuse Krebbers’ bit representation:

𝑏 ∈ bit ::= 0 | 1 | (ptr 𝑝)𝑖 | E

In most cases, a bit is either 0 or 1. (ptr 𝑝)𝑖 denotes the 𝑖𝑡ℎ bit of a

pointer 𝑝 . E represents an indeterminate bit [23, Sect. 3.19.2].

For example, consider a little-endian architecture where an int
contains 32 bits and a short contains 16 bits, and a type union
ex {int i; short s};. Then, the bit representation of variable

e1 of type union ex initialized by {.s = 257} is the following:

00000001 00000001 EEEEEEEE EEEEEEEE.

The last 16 bits are indeterminate because e1 has been initialized

through its short s field: these bits have not been initialized, so they

have no known values. In this paper, a byte is as usual a vector of 8

bits. Inside a byte, if 𝑛 consecutive bits have the same value 𝑥 , we

group them into one block of bits noted 𝑥𝑛 . For example, the bit

representation of e1 will be simply noted

−→
071

−→
071

−→
E8

−→
E8 .

Values. A higher-level representations of values is defined in

Fig. 6. A base value can be an integer int𝜏𝑖 𝑥 , defined by its type

𝑣𝑏 ∈ baseval ::= int𝜏𝑖 𝑥
| ptr 𝑝
| indet 𝜏𝑏

𝑣 ∈ val ::= 𝑣𝑏
| struct𝑡𝑎𝑔 (®𝑣)
| union𝑡𝑎𝑔 (𝑖, 𝑣)
| union𝑡𝑎𝑔 (®𝑣)

Figure 6: CH2O− ’s Values.

𝜏𝑖 and its numerical value 𝑥 ∈ Z, a pointer 𝑝 , or an indeterminate

value of type 𝜏𝑏 . The value int𝜏𝑖 𝑥 will be shortened to 𝑥 when

there is no ambiguity. A structure is defined by a sequence of sub-

values, corresponding to the values of each of its fields. Unions have

two different representations depending on how they have been

created. First, field-based representation union𝑡 (𝑖, 𝑣) means that

its current value has been obtained by assigning 𝑣 to its 𝑖𝑡ℎ field.

This representation is used to enforce C’s type-punning constraints.

Type-punning consists in accessing a union through another field

than the one with which the union was written to. Enforcing type-

punning constraints must obey some constraints, so that the union

value must remember, whenever possible, this field. Indeed, type-

punning does not have the same behaviour in all cases so this

representation is needed. This representation is not needed for

structures as all fields have their own place in memory and so the

notion of type-punning is not applicable there. Second, union𝑡 (®𝑣)
denotes the extensive representation of an union resulting from

some low-level operation that breaks its field-based representation,

typically through a byte-by-byte copy. Vector
#»𝑣 represents the

value of its bit representation as interpreted according to the type

of each field of the union.

As an example of a union value of the first form, consider the ini-

tialization {.tri={.a=p1,.b=p2,.c=p3}} of s1 at line 11 of Fig. 3.
In that case, the union is defined by an integer index (here .0 since

.tri is the first element) and its associated value (here, a struct
tri containing p1, p2, and p3). Therefore, its representation is:

union𝑠ℎ𝑎𝑝𝑒 (.0, struct𝑡𝑟𝑖 (𝑝1, 𝑝2, 𝑝3))
𝑝1 = struct𝑝2𝐷 (2, 1)
𝑝2 = struct𝑝2𝐷 (2, 5)
𝑝3 = struct𝑝2𝐷 (5, 1)

On the other hand, consider now the code below,which initializes

the union u one byte after the other through a for-loop4:

4
This example is written in C, but a similar version can be written in CH2O−

.

5

FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal Louis Gauthier, Virgile Prevosto, and Julien Signoles

1 int main() {

2 union s_o_i { short s; int n; } u;

3 for (size_t i=0; i<sizeof(u) -1; i++)

4 ((unsigned char*) &u) [i] = 0;

5 }

In that case, the union has not been properly initialized through

one of its field, so we only know its extensive bit representation,

which is

−→
08

−→
08

−→
08

−→
E8 . Indeed, the for loop initializes the first three

bytes to 0 but not the last one. The first two bytes are the bytes

corresponding to the s field of u, so this field is initialized and its

value is int𝑠ℎ𝑜𝑟𝑡 0. However, the field n of u has four significant

bytes, so one of them is not initialized. Consequently, the value

associated to this field is indetint. Therefore, u’s value is as follows:

union𝑠_𝑜_𝑖 (intshort 0, indetint).

Function flatten : val → list bit converts a higher-level value
to its corresponding sequence of bits. The exact definition of this

function is omitted here (see [24] for its definition on CH2O). In
the rest of the paper, we will note 𝑣 = flatten(𝑣) for any value 𝑣 .

This function will notably be useful when we define our notion of

equality on unions in Sect. 5.2. For instance, flattening the value of

u of the previous example after its initialization results in:

flatten(u) = u =
−→
08

−→
08

−→
08

−→
E8 .

Equality of Values. Equality of CH2O−
values only deals with

integers and pointers. It is defined as follows:

int𝜏1 𝑥1 =𝑣 int𝜏2 𝑥2 iff
{

int_cast(𝜏, 𝑥1) =Z int_cast(𝜏, 𝑥2); and
𝜏 =𝜏 int_promote(𝜏1) ∪ int_promote(𝜏2)

ptr 𝑎1 =𝑣 ptr 𝑎2 iff

𝑎1 =𝑎𝑑𝑑𝑟 (𝑜1 : 𝜏1, ®𝑟1); and
𝑎2 =𝑎𝑑𝑑𝑟 (𝑜2 : 𝜏2, ®𝑟2); and
𝑜1 =𝑜𝑏 𝑗 𝑜2; and

𝑜𝑜1 := addr_object_offset(𝑎1); and
𝑜𝑜2 := addr_object_offset(𝑎2); and
𝑜𝑜1 =𝑜 𝑓 𝑓 𝑠 𝑜𝑜2

ptr NULL𝜎1 =𝑣 ptr NULL𝜎2
This definition is based on a few operations that are not intro-

duced in this paper for the sake of concision: they are not critical

for the understanding of our own contribution. Basically, before

being compared, integers are converted into a common type 𝜏 by

function int_cast, following the promotion rules of the C standard

given by function int_promote. Pointers are equivalent when both

their corresponding objects and the offsets in these objects, given by

function addr_object_offset, are the same. Finally, NULL pointers

are equivalent, independently from their type. We assume that this

Krebbers’ equality defines an equivalence (i.e., transitive, reflexive

and symmetric) relation. Proving it is left for future works.

4 miniACSL SYNTAX
This section presents the syntax of our formal specification lan-

guage, named miniACSL, and shown in Fig. 7. It extends CH2O−

statements by introducing logical assertions. Assertions make the

link between CH2O−
and miniACSL. Informally, they state that a

miniACSL predicate must be true at a given program point. Terms

are the logical counterpart of CH2O−
expressions. More precisely,

⊚𝑙 ::= ∧| ∨ | ⇒
𝑡 ::= 𝑣 constant

𝑥 variable

𝑡 .𝑙 𝑖𝑑 field access of a left-value

𝑡 .𝑟 𝑖𝑑 field access of a right-value

−𝑡 unary operation

𝑡1 ⊚𝑎 𝑡2 binary operation

∗𝑡 dereference

&𝑡 address

load 𝑡 loading from memory

\baseaddress(𝑡) pointer’s base address

\offset(𝑡) pointer’s offset

\blocklength(𝑡) pointer’s block length

℘ ::= True | False propositional constant

𝑡1 ⊚𝑐 𝑡2 comparison operation

℘1 ⊚𝑙 ℘2 logical connector

¬℘ negation

\valid(𝑡) pointer’s validity

\initialized(𝑡) pointer’s initialization

𝑠 ::= ... existing CH2O−
statements

assert(℘) miniACSL assertion

Figure 7: miniACSL Syntax.

terms include “pure” CH2O−
expressions, i.e. excluding assign-

ments. In miniACSL, terms also do not include comparison oper-

ations, which are lifted to predicates. Similarly, the only unary

operator is the unary minus, since the negation operator is lifted

to predicates. Our terms include in addition three ACSL’s built-
in logic functions that are used in specifications about pointers.

First, the function \baseaddress(𝑡) returns the base address of a
pointer 𝑡 , i.e. the first address of the memory block containing 𝑡 .

Second, the function \offset(𝑡) returns the offset of a pointer 𝑡 , i.e.
the number of bytes between the address where 𝑡 points to and

its base address. Third, the function \blocklength(𝑡) returns the
length in bytes of the memory block where the pointer 𝑡 points

to. Predicates include the two propositional constants True and

False, term comparisons, standard logical connectors (conjunction,

disjunction, and implication), and negation. They also include two

ACSL’s built-in predicates related to memory properties: Predicate

\valid(𝑡) is valid if and only if the pointer t is valid, meaning that

the memory location it points to can be safely written, and predi-

cate \initialized(𝑡) is valid if and only if every non-padding bit of

the memory location 𝑡 points to has been properly initialized with

some determinate value.

5 miniACSL SEMANTICS
Weuse a shallow embedding [10] to define our semantics ofminiACSL.
It means that we rely onCoq’s built-in elements in our development,

in particular on the following Coq operators:

⊚𝑙𝑐 ∈ logicalcoqop ::=
𝑐
∧ |

𝑐
∨ | 𝑐⇒

⊚𝑎𝑐 ∈ arithcoqop ::=
𝑐+ | 𝑐− | 𝑐∗ |

𝑐

/
Moreover, contrarily to C, where every integer type has a finite

size, ACSL integers are mathematical, unbounded integers. Hence,

6

A Semantics of Structures, Unions, and
Underspecified Terms for Formal Specification FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal

miniACSL values, called valacsl, extend CH2O−
values with plain

mathematical integers without any size or signedness information:

𝑣𝑎 ∈ valacsl ::= 𝑣 CH2O−
value

| int𝑧 𝑥 mathematical integer

Sect. 5.1 (resp. 5.2) presents structure (resp. union) comparison.

Then, Sect. 5.3 focuses on underspecified terms. Finally, Sect. 5.4

and 5.5 detail the formal rules for evaluating terms, predicates and

assertion, respectively.

5.1 Structure Comparison
As already mentioned, ACSL allows comparing two unions or two

structures, so that we have to extend =𝑣 to these values. For struc-

tures, we just compare pairwise each field of both values. This is

similar to structural comparisons that exist in many programming

languages, e.g., equality = in OCaml.
The equality between two structures is defined as follows:

∀𝑡1, 𝑡2, #»𝑣1,
#»𝑣2, structt1 (#»𝑣1) =𝑣 structt2 (#»𝑣2) ↔ ∀𝑖, 𝑣1𝑖 =𝑣 𝑣2𝑖

Consider the comparison p1 != p2 at line 13 of Fig. 3. The val-

ues of p1 (resp. p2) is struct𝑝2𝐷 (int𝑖𝑛𝑡 2, int𝑖𝑛𝑡 1 (resp. 5)) at that
program point. Comparing these structures means comparing each

of their fields, pairwise. Hence, p1 != p2 is evaluated to True be-
cause the values for the second field of both structures are not the

same.

Note that we do not take tags into account for comparing struc-

tures, so two structures with differents tags can be equal, provided

they have the same number of fields (each of them having compati-

ble types). For example, let us assume we have another structure

type: struct sh {int a; short b;}; and a structure s repre-

sented by struct𝑠ℎ (int𝑖𝑛𝑡 2, int𝑠ℎ𝑜𝑟𝑡 1). Here, s and p1 are equal

according to our comparison, even if they do not have the same

tags for their second field. Such structures can indeed be compared

since types int and short are compatible. It allows comparing the

second field of each structure. Notice that, in contrary to the com-

parison of unions explained in the following section, comparison

of structures does not need the low level representation introduced

in Section 3.2 as structures have only one representation in our

formalism which means our field base equality handle all possible

structure comparisons.

5.2 Union Comparison
Contrary to structures, unions have several representations depend-

ing on how we initialized it (byte by byte, or using one of its field),

as already explained in Section 3.2. Hence, comparing unions is

trickier than comparing structures. A first possibility is to differ-

entiate both cases. Indeed, in case both unions have a field-based

representation, we could try to only compare their used field and

associated value. Conversely, in case both are an extensive represen-

tation, we compare all values of their list of values (similarly to what

we do with structures). Finally, if one union has a field-based repre-

sentation and the other one an extensive representation, it could

seem natural to pick up the value in the vector of the latter corre-

sponding to the field of the former. However, such a relation would

not be transitive. Let us take as example the three unions u1, u2
and u3 defined in Fig. 8. Assuming a little-endian architecture with

1 int main() {

2 union c_o_i { char c; int n; } u1, u2, u3;

3 u1.c = 0;

4 for (size_t i = 0; i = sizeof(u2); i++)

5 ((uint8_t *) &u2) [i] = 0;

6 ((uint8_t *) &u2) [1] = 1;

7 u3.n = 256;

8 }

Figure 8: Code Initializing Unions u1, u2, and u3.

32-bit int the values of u1, u2, and u3 are union𝑐_𝑜_𝑖 (.0, char 0),
union𝑐_𝑜_𝑖 (char 0, int 256), and union𝑐_𝑜_𝑖 (.1, int 256), respec-
tively. As u1 is properly initialized by its c field (which is the first

field of the union c_o_i type), we can represent the union with

its field representation using .0 to specify that the field initialized

is the first one and using char 0 to indicate the value of this field.

The same process can be applied to u3 which is also initialized by

one of its field. The value of u2 is based on its extensive representa-

tion. Indeed, we initialize u2 byte by byte, so its representation in

memory is

−→
08

−→
107

−→
08

−→
08 since we initialized all its bytes to 0 but

the second, set to 1. Hence, the char field of u2, corresponding to
the first byte, has a value of 0. Similarly, its int field extends on all

four bytes, corresponding to a value of 256. Since we know that u1
has been set through its .c field, we could compare their values 𝑢1
and 𝑢2 by observing only their field 0. Therefore, since 𝑢1 .0 = 0 and

𝑢2 .0 = 0, 𝑢1 = 𝑢2. Similarly, 𝑢3 is set through its .n field, at index 1,

and we have 𝑢2 .1 = 256 and 𝑢3 .1 = 256. Therefore, we would also

have 𝑢2 = 𝑢3. However, 𝑢1 = 𝑢3 does not hold with our definition,

since 𝑢1 and 𝑢3 are defined with distinct fields.

After exploring several possibilities, we eventually chose to use

a bit-by-bit comparison in all cases. Indeed, all others explored

solutions were in fact not equivalence relations. More precisely, our

bit-by-bit comparison relies on the flatten function of Sec. 3.2 to

get the binary representations of the compared unions:

∀𝑢1, 𝑢2 ∈ {union; union}, 𝑢1 =𝑣 𝑢2 ↔ 𝑢1 � 𝑢2

Equality � of two binary representations is defined as follows:

∀𝑏1, 𝑏2 ∈ bit, 𝑏1 � 𝑏2 ↔

(𝑏1 = 𝑛 ∧ 𝑏2 = 𝑛 ∧ 𝑛 ∈ {0; 1; E})
∨ (𝑏1 = (ptr 𝑝1)𝑖1 ∧ 𝑏2 = (ptr 𝑝2)𝑖2 ∧ ptr 𝑝1 =𝑣 ptr 𝑝2 ∧ 𝑖1 = 𝑖2)

Theorem 5.1 (The relation =𝑣 is an eqivalence relation).

The relation =𝑣 is reflexive, symmetric, and transitive.

Sketch of proof. The proof is part of our Coq development
5
.

This relation on bits is defined so as to ensure reflexivity: it is defined

by induction on the structure of bits and only relies on equivalence

relation between subterms. In particular, two indeterminate bits

are always equal, but different from the other bits. □

Going back to the example of Fig.8, we would have the represen-

tations

−→
08

−→
E8
−→
E8
−→
E8 ,

−→
08

−→
107

−→
08

−→
08 , and

−→
08

−→
107

−→
08

−→
08 for 𝑢1, 𝑢2, and 𝑢3,

respectively. With our new equality, we see that 𝑢2 � 𝑢3 so u2 and

u3 are considered equals with our equality while u1 and u2 are not.

5
https://github.com/Anonym398/minACSL

7

https://github.com/Anonym398/minACSL

FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal Louis Gauthier, Virgile Prevosto, and Julien Signoles

5.3 Underspecified Terms
This section presents our semantics for underspecified terms and

particularly for terms resulting in a division by zero. Indeed, as

mentioned in Section 2, ACSL allows manipulating underspecified

terms. For example, by reflexivity of equality, we should be able to

prove that 4/0 == 4/0 holds.
For solving this issue, we introduce a new function divZ : 𝑍 → 𝑍

denoting a division by zero. Its parameter represents the numerator

of the division. This function is left fully unspecified: we only know

that its parameter is any integer and it returns any integer. Yet, it is

enough to prove for instance that, for any integer 𝑥 , divZ(𝑥) is equal
to itself. Thanks to this constructor, we can define the semantics of

the miniACSL arithmetic operations 𝑜𝑝𝑧 ∈ ⊚𝑧 := {/𝑧 ;×𝑧 ;+𝑧 ;−𝑧 }
as follows:

int𝑧 𝑥 𝑜𝑝𝑧 int𝑧 𝑦 :=

int𝑧 𝑥

𝑐

/ 𝑦 if 𝑦 ≠ 0 and 𝑜𝑝𝑧 = /
int𝑧 divZ(𝑥) if 𝑦 = 0 and 𝑜𝑝𝑧 = /
int𝑧 𝑥

𝑐
𝑜𝑝 𝑦 if 𝑜𝑝𝑧 ∈ {+𝑍 ;−𝑍 ;×𝑍 }

Thanks to this definition, the term 4/0 can be evaluated to divZ(4)
and manipulated in Coq like any other integer. In particular, it

allows us to use the existing Coq logic and tactics on 𝑍 in our

meta-theory. Let us illustrate this with the predicate 5+4/0-2
== 1+(x+2)/0+2, assuming the value of x of type int is 2. This

assertion is true. Thanks to our Coq formalisation, this is very easy

to prove. Indeed, the terms 1 + divZ(𝑥 + 2) + 2 can be rewritten to

1+divZ(4) +2 since 𝑥 is equal to 2 and, by using standard properties
over integers, the terms 5 + divZ(4) − 2 and 1 + divZ(4) + 2 can

be rewritten to the same term, for instance 3 + divZ(4), which is

equal to itself by reflexivity. The Coq’s proof is part of our coq
development, in core_c/proof_paper.v.

Division by zero is not the only underspecified term existing in

ACSL. In particular, any invalid memory access, such as dereferenc-

ing an invalid pointer, is also underspecified. It could be handled

similarly by introducing a new underspecified function for each

kind of error. For instance, the semantics of *p when the value

of p is NULL would be deref (NULL) with deref an underspecified

function. This extension is left to future work.

Our work is slightly different from existing works on undefined

behavior. Indeed, C. Hathhorn [18] defines a semantics which re-

jects undefined behavior in C by for example, adding restrictions to

semantic rules in a way of never having to deal with an undefined

behavior. Similarly, M. Norrish [35] represents undefinedness in C
by a unique value, which is the same for every undefined expres-

sion. P. Herms [19] uses the mechansims of opaque definitions and

subset types of Coq to handle underspecified terms in ACSL, but
without being allowed to manipulate these underspecified terms as

we can do with our semantics.

5.4 Semantics of miniACSL Terms
Our semantics for miniACSL terms is a denotational semantics

similar to CH2O’s one for pure expressions. In particular, we reuse

some elements (slighly simplified in this paper):

• A stack 𝜌 is a function that takes a variable 𝑥 as argument

and returns its object identifier 𝑜 and its type 𝜏 : 𝜌 (𝑥) = (𝑜, 𝜏).
• A memory𝑚 maps an address 𝑎 to a value 𝑣 :𝑚(𝑎) = 𝑣 .

• The memory typing environment associated to a memory

𝑚, noted𝑚, that associates to every address of𝑚 the type

and the danglingness status of the stored value.

• size_of : type → N returns the size of any type in bytes.

• top : index → type → addr denotes the top address of an

object identifier 𝑜 , i.e., top𝜏 (𝑜) = (𝑜 : 𝜏, 𝜖)𝜏>★𝜏 .

• ref_offsetΓ : addr → N denotes the offset of a reference ®𝑟 .

For example, ref_offset ↩ struct 𝑡𝑟𝑖−−−−−→ 1 ↩
struct 𝑝2𝐷
−−−−−−→ 1 = 12. Indeed,

it accesses the second field of a struct p2D stored in the second

field of a struct tri, while the first field of a triangle is 8-byte

long and the first field of a p2D is 4-byte long (assuming int is

4-byte long and no padding bytes due to alignment).

We note J𝑡KΓ,𝜌,𝑚T the evaluation of the term 𝑡 in our denotational

semantics. This function depends on the stack 𝜌 , the memory𝑚

and the tag environment Γ. For brevity, we omit 𝜌 ,𝑚, Γ and T that

only indicates that the evaluation is the one of the term, and simply

use the notation J𝑡K since the omitted parameters are provided by

the C context and are constant in the logical world. Fig. 9 presents

the rules for evaluating a term either to a value 𝑣𝑎 ∈ valacsl (right
value), or an address 𝑎 ∈ addr (a left value).

1. J𝑣K = 𝑣

2. J𝑥K = top𝜏 (𝑜) if 𝜌 (𝑥) = (𝑜, 𝜏)
3. Jload 𝑡K =𝑚(𝑎) if J𝑡K = 𝑎
4. J𝑡 .𝑙𝑟K = 𝑎⟨𝑟 ⟩ if J𝑡K = 𝑎
5. J𝑡 .𝑟 𝑟K = 𝑣 [𝑟]Γ if J𝑡K = 𝑣
6. J−𝑡K = −J𝑡K
7. J𝑡1 ⊚𝑎 𝑡2K = J𝑡1K 𝑜𝑝𝑧 J𝑡2K
8. J∗𝑡K = 𝑝 if J𝑡K = ptr 𝑝
9. J&𝑡K = ptr J𝑡K
10. J\baseaddress(𝑡)K = top𝜏 if J𝑡K = ptr (𝑜 : 𝜏, ®𝑟)
11. J\offset(𝑡)K = int𝑍 ref_offset ®𝑟 if J𝑡K = ptr (𝑜 : 𝜏, ®𝑟)
12. J\blocklength(𝑡)K = int𝑍 size_ofΓ𝜏 if J𝑡K = ptr (𝑜 : 𝜏, ®𝑟)

Figure 9: Evaluation of Terms.

The evaluation of a value is simply the value itself. Variable

evaluation consists in looking up its object identifier 𝑜 in the stack

𝜌 and returning the corresponding address.

As said above, the load expression gets the value stored at the

given address. Case 4 evaluates a field access as an address: the

function returns the address of the field accessed. Case 5 is the case

of a right-value, so the term is evaluated as a value 𝑣 ∈ valacsl:
the function returns the value 𝑣 [𝑟]Γ , which is the value of the field

access represented by the reference segment 𝑟 for the value 𝑣 . The

& operation takes an address (left-value) in argument and returns a

pointer (right-value) pointing to this address. The ∗ operation takes

a pointer value in argument and returns a left-value corresponding

to the address that is pointed to by the value in argument.

For arithmetic operations, however, we need tomodify theCH2O
semantics since we use mathematical (i.e. unbounded) integers, so

that, contrarily to C, there is no overflow. We rely on our definition

𝑜𝑝𝑧 ∈ ⊚𝑧 for arithmetic operations that allows for using divZ(𝑥).
For example, J3 + 4/0K = int𝑧 3 +𝑧 int𝑧 divZ(4) = int𝑧 3

𝑐+ divZ(4).
8

A Semantics of Structures, Unions, and
Underspecified Terms for Formal Specification FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal

For evaluating a call to one of the three built-in logic functions,

we evaluate their argument as a pointer value (right-value), and

then we can rely on the functions presented above. Assuming

𝑡 evaluates to a pointer value ptr 𝑝 with 𝑝 = (𝑜 : 𝜏, ®𝑟)𝜎>★𝜎𝑝 ,

\baseaddress(𝑡) uses top to retrieve 𝑜 . Similarly, \offset(𝑡) uses
the function ref_offset on ®𝑟 to get its offset from the pointer 𝑝 , and

\blocklength(𝑡) uses the function size_of on the type 𝜏 .

5.5 Semantics of miniACSL Predicates
Our predicates are evaluated to Coq’s Prop type. This shallow

embedding avoids the need to reimplement our whole logic in Coq
and allows us to easily use Coq’s tactics and standard library in our

proofs. In other words, our evaluation function for predicates does

not return a truth value but is rather a conversion from aminiACSL
predicate to a Coq Prop. Hence, to verify a predicate is True we

have to prove its translation into Coq’s Prop.
Fig. 10 presents the evaluation of predicates. As for terms, we

define a denotational semantics noted J℘KΓ,𝜌,𝑚P that returns the

translation of a predicate into a Coq Prop. As with terms, we will

omit the parameters, since they do not change during evaluation.

We introduce the judgment ⊨ J℘K. This judgement means that a

proof of this Coq Prop exists in the formalism (so the predicate

℘ holds). To convert a relational operation between two terms,

1. J𝑇𝑟𝑢𝑒K = 𝑇𝑟𝑢𝑒

2. J𝐹𝑎𝑙𝑠𝑒K = 𝐹𝑎𝑙𝑠𝑒

3. J𝑡1 ⊚𝑐 𝑡2K = comp_val(⊚𝑐 , J𝑡1K, J𝑡2K)
4. J℘1 ⊚𝑙 ℘2K = J℘1K ⊚𝑙𝑐 J℘2K
5. J¬℘K =

𝑐¬ J℘K

6. J\valid(𝑡)K =

{
𝑇𝑟𝑢𝑒 if J𝑡K = ptr 𝑎 and𝑚 ⊢ 𝑎 alive
𝐹𝑎𝑙𝑠𝑒 if J𝑡K = ptr 𝑎 and ¬𝑚 ⊢ 𝑎 alive

8. J\initialized(𝑡)K = init_val(𝑣) if J𝑡K = ptr 𝑎 and𝑚(𝑎) = 𝑣

Figure 10: Evaluation of Predicates.

we have defined a Coq inductive definition comp_val. For each
logic connector we simply convert the operand(s) and use the cor-

responding Coq connector. Similarly, we introduce a new Coq
inductive definition init_val that allows us to evaluate initialization
of a pointer. This predicate holds if and only if the location pointed

to by the pointer is considered initialized. It is defined as follows:

init_val(𝑣) ↔
∨©«

(𝑣 ∈ baseval ∧ 𝑣 ≠ indet 𝜏𝑏)
(𝑣 = struct𝑡 (®𝑣) ∧ init_val_list(®𝑣))
(𝑣 = union𝑡 (𝑖, 𝑣) ∧ init_val(𝑣))
(𝑣 = union𝑡 (®𝑣) ∧ init_bit_list(𝑣))

ª®®®¬
init_val_list(®𝑣) ↔ ∀𝑣𝑛 ∈ ®𝑣, init_val(𝑣𝑛)

init_bit_list(®𝑏) ↔ ∀𝑖, 𝑣𝑖 ≠ E
This definition has several cases, depending on which value is at

the address pointed to by the pointer. If the value is a base value, we

just need to verify that the value is not indeterminate. All the other

base values are considered initialized. If the value is a structure,

we verify that each value of each field is initialized. Unions are

splitted into two cases since they have two representations. When

the union has been initialized properly by one of its field, we just

need to verify that the the value at this field is initialized. When the

union has been initialized byte by byte, we don’t know which field

and which bits are useful, so we verify that every bit of this union

has been initialized by flattening the value. A bit is considered

initialized if its value is not indeterminate.

Finally, validity is based on danglingness of a pointer. After

having evaluated the term, we verify that the resulting address is

not dangling.

5.6 Statements
The statement assert(℘) links miniACSL with CH2O−

. Before we

give the rule of this statement, we need to explain the semantics of

CH2O’s statements. Program states are defined as tuples 𝑆 (𝑃, 𝜙,𝑚)
where 𝑚 is the (heap) memory and (𝑃, 𝜙) is a zipper-like data

structure [21] that describes the part of the program that is being

executed. 𝑃 is a stack of all statement contexts that have been

traversed since the start, while 𝜙 represents the current focus of the

evaluation, as explained below. This complex structure is used to

properly handle stack variables allocation and deallocation, as we

enter and exit code blocks, especially in presence of non-structured

control flow (i.e., goto).
Execution of statements is modeled by traversal through the

zipper in several directions, corresponding to the different forms of

control. This includes in particular:

• down (↘) indicates that we are in the process of evaluating

the current statement;

• up (↗) means that the current statement has been executed

and we are ready to start the execution of the next state-

ment in the sequence, popping the stack as needed to find a

sequence;

• goto (↷ 𝑙) is used for finding the statement labelled by 𝑙 .

The focus 𝜙 of the program state can be either a tuple (𝑑, 𝑠) con-
taining a direction and a statement, or an undefined focus defined

as follows:

𝜙𝑢 ::= E𝑒 | E𝑆𝑒 ⟨𝑣⟩ | E℘
Undefined focus are useful when the execution encounter an

undefined behavior of C (the two first cases, directly taken from

CH2O) or when an assert has a predicate that we cannot prove to

be true (the last case). These states are terminating the execution

as there is no rule to continue from states being on this focus.

Reduction rules are identical in CH2O and CH2O−
, except for

assert(℘), which only exists in CH2O−
. Intuitively, if we are in a

state where ℘ evaluates to True, assert(℘) acts as a skip, i.e. the
execution proceeds, with the memory being left unchanged. Con-

versely, if ℘ evaluates to False, the execution stops. More formally,

our rules for assert(℘) are thus the following.

𝑆 (𝑃, (↘, assert(℘)),𝑚) → 𝑆 (𝑃, (↗, assert(℘)),𝑚) if ⊨ J℘K

𝑆 (𝑃, (↘, assert(℘)),𝑚) → 𝑆 (𝑃, undef (E℘),𝑚) if ⊭ J℘K

It should be noted that, in the first case, we keep the assert in
the focus, (as opposed to replacing it with a skip after successful

evaluation), so that the standard stack unwinding rules will pick it

up for a new evaluation on a new program state, should it become

again under focus following a loop or a goto statement.

9

FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal Louis Gauthier, Virgile Prevosto, and Julien Signoles

Let us illustrate this rule with the execution of the program from

Fig. 3. We concentrate on the execution of the assert from line 13.

We omit all lines that are not necessary for our example, so we

only keep p1, p2 and p3 initializations and the assert itself. Hence,
once the assert statement is in the stack as shown in the state 𝑃1 of

Fig. 11, we need to evaluate the predicate that we want to assert to

continue the execution.

𝑃1 = (𝑥2 := struct𝑝2𝐷 (int𝑖𝑛𝑡 5, int𝑖𝑛𝑡 1);□)
(𝑙𝑜𝑐𝑎𝑙𝑜𝑝3:struct 𝑝2𝐷 □)
(𝑥1 := struct𝑝2𝐷 (int𝑖𝑛𝑡 2, int𝑖𝑛𝑡 5);□)
(𝑙𝑜𝑐𝑎𝑙𝑜𝑝2:struct 𝑝2𝐷 □)
(𝑥0 := struct𝑝2𝐷 (int𝑖𝑛𝑡 2, int𝑖𝑛𝑡 1);□)
(𝑙𝑜𝑐𝑎𝑙𝑜𝑝1:struct 𝑝2𝐷 □)

𝜙1 = (↘, assert(℘))
𝑆1 = 𝑆 (𝑃1, 𝜙1,𝑚)
℘ = 𝑥0! = 𝑥1 ∧ 𝑥1! = 𝑥2 ∧ 𝑥0! = 𝑥2
J℘K = comp_val(! =, 𝑥0, 𝑥1)

𝑐
∧

comp_val(! =, 𝑥1, 𝑥2)
𝑐
∧

comp_val(! =, 𝑥0, 𝑥2)

𝑃2 = (𝑥2 := struct𝑝2𝐷 (int𝑖𝑛𝑡 5, int𝑖𝑛𝑡 1);□)
(𝑙𝑜𝑐𝑎𝑙𝑜𝑝3:struct 𝑝2𝐷 □)
(𝑥1 := struct𝑝2𝐷 (int𝑖𝑛𝑡 2, int𝑖𝑛𝑡 5);□)
(𝑙𝑜𝑐𝑎𝑙𝑜𝑝2:struct 𝑝2𝐷 □)
(𝑥0 := struct𝑝2𝐷 (int𝑖𝑛𝑡 2, int𝑖𝑛𝑡 1);□)
(𝑙𝑜𝑐𝑎𝑙𝑜𝑝1:struct 𝑝2𝐷 □)

𝜙2 = (↗, assert(℘))
𝑆2 = 𝑆 (𝑃2, 𝜙2,𝑚)

Figure 11: Example of assert Evaluation.

As said in Section 3.1, the statement local𝜏𝑠 is used to open

a block scope with one local variable of type 𝜏 . So for the three

variables p1 p2 and p3, a local𝜏𝑠 statement is used to declare each

block for each variable. Each block scope has a variable 𝑥𝑖 . The

block of p1 uses the variable 𝑥0, the one of p2 uses the variable 𝑥1
and the last block, which is the one of p3, uses the variable 𝑥2. At
this point, once the predicate has been converted into a Coq Prop,

we should give a proof of this Prop. If we succeed, it means that

the predicate is true, so that we can continue the execution. As the

predicate is provable here, we can continue the execution to state

𝑆2 by the rule of assert we introduced just before: as mentionned

earlier, our assert statement behaves like a skip statement if the

predicate in the assert is true, and is blocking execution otherwise.

6 CONCLUSION AND FUTUREWORKS
This paper presents a Coq formalization of a subset of the ACSL
specification language for C code. It has focused on structures,

unions and underspecified terms, which present specific challenges.

Indeed, contrary to C, structures and unions are first-class values in
ACSL. In particular, they may be compared. Underspecified terms

and predicates are also ACSL first-class values. They include C
expressions whose C semantics is an undefined behavior, such as

1/0 == (2-1)/(1-1). Providing a convenient semantics for these

constructs is not easy, while critical for the language consistency.

Our development is based on the Krebbers’ semantics of C [24].

It allows us to include the whole C language for free and to focus

only on the specification language. We also benefit for free from his

Coq development. In the future, it will help us to extend our work

to a larger part of the ACSL specification language. ACSL includes

several features that would be interesting to study, notably proper-

ties depending on specific program points, frame conditions and

data dependencies, properties over floating-point values and real

numbers, user-defined (recursive) logic functions, predicates and

types, inductive and axiomatic definitions, logical arrays, and sets

of values. On the longer term, this formalization work should also

help testing existing code analyzers that evaluates ACSL predicates,
typically the analyzers included in Frama-C, such as its abstract

interpretation-based value analysis Eva [5], its deductive verifica-
tion tool WP [1], and its runtime assertion checker E-ACSL [37].

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their helpful

comments. This project was partly funded by project ANR-22-PECY-

0005 "Secureval" managed by the French National Research Agency

for France 2030.

REFERENCES
[1] P. Baudin, F. Bobot, D. Bühler, L. Correnson, F. Kirchner, N. Kosmatov, A.

Maroneze, V. Perrelle, V. Prevosto, J. Signoles, and N. Williams. 2021. The Dogged

Pursuit of Bug-Free C Programs: The Frama-C Software Analysis Platform. Com-
mun. ACM 64, 8 (2021).

[2] P. Baudin, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy, and V. Prevosto. 2023.

ACSL: ANSI/ISO C Specification Language. https://github.com/acsl-language/

acsl/releases/download/1.19/acsl.pdf

[3] T. Benjamin and J. Signoles. 2023. Formalizing an Efficient Runtime Assertion

Checker for an Arithmetic Language with Functions and Predicates. In Symp. On
Applied Computing (SAC).

[4] Lionel Blatter, Nikolai Kosmatov, Virgile Prevosto, and Pascale Le Gall. 2022.

An Efficient VCGen-Based Modular Verification of Relational Properties. In Int.
Symp. on Leveraging Applications of Formal Methods, Verification and Validation.
Verification Principles (ISoLA). https://doi.org/10.1007/978-3-031-19849-6_28

[5] S. Blazy, D. Bühler, and B. Yakobowski. 2017. Structuring Abstract Interpreters

through State and Value Abstractions. In Int. Conf. on Verification, Model Checking,
and Abstract Interpretation (VMCAI). https://doi.org/10.1007/978-3-319-52234-

0_7

[6] S. Blazy and X. Leroy. 2009. Mechanized semantics for the Clight subset of the C

language. Journal of Automated Reasoning (2009).

[7] M. Bodin, A. Charguéraud, D. Filaretti, P. Gardner, S. Maffeis, D. Naudziuniene,

A. Schmitt, and G. Smith. 2014. A trusted mechanised JavaScript specification. In

Symposium on Principles of Programming Languages (POPL).
[8] Denis Bogdănaş and Grigore Roşu. 2015. K-Java: A Complete Semantics of Java.

In Symp. on Principles of Programming Languages (POPL). https://doi.org/10.

1145/2676726.2676982

[9] Michael H. Borkowski, Niki Vazou, and Ranjit Jhala. 2024. Mechanizing Refine-

ment Types. Proc. ACM Program. Lang. 8, POPL, Article 70 (jan 2024), 30 pages.

https://doi.org/10.1145/3632912

[10] R. J. Boulton, A. D. Gordon, M. J. C. Gordon, J. Harrison, J. Herbert, and J. Van

Tassel. 1992. Experience with Embedding Hardware Description Languages in

HOL. In Int. Conf. on Theorem Provers in Circuit Design: Theory, Practice and
Experience.

[11] P. Chalin. 2007. A Sound Assertion Semantics for the Dependable Systems

Evolution Verifying Compiler. In Int. Conf. on Software Engineering (ICSE ’07).
23–33. https://doi.org/10.1109/ICSE.2007.9

[12] D. Chisnall, J. Matthiesen, K. Memarian, P. Sewell, and R. N. M. Watson. 2016.

C memory object and value semantics : the space of de facto and ISO standard.

(2016).

[13] L. A. Clarke and D. S. Rosenblum. 2006. A Historical Perspective on Runtime

Assertion Checking in Software Development. SIGSOFT Soft. Eng. Notes (2006).
[14] C. Ellison and G. Roşu. 2012. An executable formal semantics of C with applica-

tions. In Int. Symp. on Principles of Programming Languages (POPL).
[15] David Greenaway. 2014. Automated proof-producing abstraction of C code. Ph. D.

Dissertation. https://api.semanticscholar.org/CorpusID:29734373

10

https://github.com/acsl-language/acsl/releases/download/1.19/acsl.pdf
https://github.com/acsl-language/acsl/releases/download/1.19/acsl.pdf
https://doi.org/10.1007/978-3-031-19849-6_28
https://doi.org/10.1007/978-3-319-52234-0_7
https://doi.org/10.1007/978-3-319-52234-0_7
https://doi.org/10.1145/2676726.2676982
https://doi.org/10.1145/2676726.2676982
https://doi.org/10.1145/3632912
https://doi.org/10.1109/ICSE.2007.9
https://api.semanticscholar.org/CorpusID:29734373

A Semantics of Structures, Unions, and
Underspecified Terms for Formal Specification FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal

[16] R. Hähnle and M. Huisman. 2019. Deductive Software Verification: From Pen-and-
Paper Proofs to Industrial Tools. https://doi.org/10.1007/978-3-319-91908-9_18

[17] J. Hatcliff, G. T. Leavens, K. R. M. Leino, P. Müller, and M. Parkinson. 2012.

Behavioral Interface Specification Languages. Computing Surveys 44, 3 (2012).
https://doi.org/10.1145/2187671.2187678

[18] C. Hathhorn, C. Ellison, and G. Roşu. 2015. Defining the Undefinedness of C. In

Conf. on Programming Language Design and Implementation (PLDI) (Portland,
OR, USA) (PLDI ’15). 10 pages. https://doi.org/10.1145/2737924.2737979

[19] P. Herms. 2013. Certification of a Tool Chain for Deductive Program Verification.
Ph. D. Dissertation. Université Paris-Sud.

[20] T. Hoare. 2003. The Verifying Compiler: A Grand Challenge for Computing

Research. J. ACM 50, 1 (jan 2003), 63–69. https://doi.org/10.1145/602382.602403

[21] Gérard Huet. 1997. The Zipper. Journal of Functional Programming (sep 1997).

https://doi.org/10.1017/S0956796897002864

[22] M. Huisman and A. Wijs. 2023. Runtime Annotation Checking. https://doi.org/10.

1007/978-3-031-30167-4_9

[23] ISO/IEC JTC 1/SC 22. 2011. ISO/IEC 9899:2011 Programming languages — C.
Standard 9899:2011. ISO. https://www.iso.org/standard/57853.html

[24] R. Krebbers. 2015. The C Standard Formalized in Coq. Ph. D. Dissertation. Radboud
University Nijmegen.

[25] D. Lazar, A. Arusoaie, T.-F. Serbanuta, C. Ellison, R. Mereuta, D. Lucanu, and G.

Roş. 2012. Executing Formal Semantics with the K Tool. In Int. Symp. on Formal
Methods (FM).

[26] G. T. Leavens, A. L. Baker, and C. Ruby. 1999. JML: A Notation for Detailed Design.
[27] J.-C. Léchenet. 2018. Certified algorithms for program slicing. Ph. D. Dissertation.

Université Paris-Sud.

[28] H. Lehner. 2011. A Formal Definition of JML in Coq and its Application to Runtime
Assertion Checking. Ph. D. Dissertation. ETH Zürich.

[29] L. Li, Y. Liu, D. Postol, L. Lampropoulos, D. Van Horn, and M. Hicks. 2022. A

Formal Model of Checked C. In Computer Security Foundations Symp. (CSF).
https://doi.org/10.1109/CSF54842.2022.9919657

[30] D. Ly, F. Loulergue, N. Kosmatov, and J. Signoles. 2023. Sound Runtime Assertion

Checking for Memory Properties via Program Transformation. Formal Aspects

of Computing (2023).

[31] K. Memarian, V. B. F. Gomes, B. Davis, S. Kell, A. Richardson, R. N. M. Watson,

and P. Sewell. 2019. Exploring C Semantics and Pointer Provenance. https:

//doi.org/10.1145/3290380

[32] R. Milner. 1978. A theory of type polymorphism in programming. J. Comput.
System Sci. 17, 3 (1978), 348–375. https://doi.org/10.1016/0022-0000(78)90014-4

[33] K. Nienhuis, K. Memarian, and P. Sewell. 2016. An Operational Semantics for

C/C++11 Concurrency. In Int. Conf. on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA). https://doi.org/10.1145/3022671.2983997

[34] M. Norrish. 1998. Formalising C in HOL. Ph. D. Dissertation. University of

Cambridge.

[35] M. Norrish. 1999. Deterministic Expressions in C. In Programming Languages
and Systems.

[36] D. Park, A. Ştefănescu, and G. Roşu. 2015. KJS: A Complete Formal Semantics of

JavaScript. In Conf. on Programming Language Design and Implementation (PLDI).
https://doi.org/10.1145/2737924.2737991

[37] J. Signoles, N. Kosmatov, and K. Vorobyov. 2017. E-ACSL, a Runtime Verification

Tool for Safety and Security of C Programs. In Int. Workshop on Competitions,
Usability, Benchmarks, Evaluation, and Standardisation for Runtime Verification
Tools (RV-CuBES). https://doi.org/10.29007/fpdh

[38] Matthieu Sozeau, Abhishek Anand, Simon Pierre Boulier, Cyril Cohen, Yannick

Forster, Fabian Kunze, Gregory Malecha, Nicolas Tabareau, and Théo Winterhal-

ter. 2020. The MetaCoq Project. Journal of Automated Reasoning 64 (2020), 947 –

999. https://api.semanticscholar.org/CorpusID:198315470

[39] Harvey Tuch. 2008. Formal Memory Models for Verifying C Systems Code. Ph. D.
Dissertation. UNSW, Sydney, Australia.

[40] S. Zingg, S. Krstic, M. Raszyk, J. Schneider, and D. Traytel. 2022. Verified First-

Order Monitoring with Recursive Rules. In Int. Conf. on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS).

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

11

https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1145/2187671.2187678
https://doi.org/10.1145/2737924.2737979
https://doi.org/10.1145/602382.602403
https://doi.org/10.1017/S0956796897002864
https://doi.org/10.1007/978-3-031-30167-4_9
https://doi.org/10.1007/978-3-031-30167-4_9
https://www.iso.org/standard/57853.html
https://doi.org/10.1109/CSF54842.2022.9919657
https://doi.org/10.1145/3290380
https://doi.org/10.1145/3290380
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1145/3022671.2983997
https://doi.org/10.1145/2737924.2737991
https://doi.org/10.29007/fpdh
https://api.semanticscholar.org/CorpusID:198315470

	Abstract
	1 Introduction
	2 Motivating example
	3 The CH2O- Language
	3.1 CH2O-'s Syntax and Type System
	3.2 Memory Objects and Values

	4 miniACSL Syntax
	5 miniACSL Semantics
	5.1 Structure Comparison
	5.2 Union Comparison
	5.3 Underspecified Terms
	5.4 Semantics of miniACSL Terms
	5.5 Semantics of miniACSL Predicates
	5.6 Statements

	6 Conclusion and future works
	Acknowledgments
	References

