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Franck Védrine1, Maxime Jacquemin1, Nikolai Kosmatov1,2, and
Julien Signoles1

1CEA, LIST, Software Security and Reliability Laboratory, Palaiseau, France
firstname.lastname@cea.fr

2Thales Research & Technology, Palaiseau, France
nikolaikosmatov@gmail.com

Abstract. Verification of numerical accuracy properties in modern soft-
ware remains an important and challenging task. One of its difficulties is
related to unstable tests, where the execution can take different branches
for real and floating-point numbers. This paper presents a new verifica-
tion technique for numerical properties, named Runtime Abstract Inter-
pretation (RAI), that, given an annotated source code, embeds into it an
abstract analyzer in order to analyze the program behavior at runtime.
RAI is a hybrid technique combining abstract interpretation and runtime
verification that aims at being sound as the former while taking bene-
fit from the concrete run to gain greater precision from the latter when
necessary. It solves the problem of unstable tests by surrounding an un-
stable test by two carefully defined program points, forming a so-called
split-merge section, for which it separately analyzes different executions
and merges the computed domains at the end of the section. The imple-
mentation of this technique relies on two basic tools, FLDCompiler, that
performs a source-to-source transformation of the given program and
defines the split-merge sections, and an instrumentation library FLDLib
that provides necessary primitives to explore relevant (partial) executions
of each section and propagate accuracy properties. Initial experiments
show that the proposed technique can efficiently and soundly analyze
numerical accuracy for industrial programs on thin numerical scenarios.

1 Introduction

Verification of numerical accuracy properties of critical software is an impor-
tant and complex task. In programs with floating-point operations, the results
of computations are approximated with respect to ideal computations on real
numbers [1]. An accumulation of rounding errors may lead to inaccurate compu-
tations that can result in costly or even disastrous bugs123. Therefore, verifying
that such behaviors do not happen, and so that accuracy properties do hold, is
of the utmost importance. It remains a challenging research problem [2] for both
dynamic and static analysis.

1 http://www-users.math.umn.edu/~arnold/disasters/patriot.html
2 https://en.wikipedia.org/wiki/Vancouver_Stock_Exchange
3 http://www-users.math.umn.edu/~arnold/disasters/sleipner.html

http://www-users.math.umn.edu/~arnold/disasters/patriot.html
https://en.wikipedia.org/wiki/Vancouver_Stock_Exchange
http://www-users.math.umn.edu/~arnold/disasters/sleipner.html


Abstract interpretation [3] and runtime verification [4] are two well-established
program analysis techniques for verifying program properties. The former is a
static technique that soundly over-approximates the program behaviors in order
to verify at compile time that all of them satisfy some property of interest P,
while the latter is a dynamic technique that monitors a concrete execution in
order to check that this execution satisfies P at runtime. Both techniques have
many successful applications [5,6], but suffer from intrinsic limitations abstract
interpretation may be too slow and imprecise to be tractable, while runtime
verification cannot soundly reason about all possible executions and may have a
hard time to deal with properties that rely on non-executable models (e.g. real
numbers) or several execution traces.

This paper presents a new verification technique for verifying numerical ac-
curacy properties, named Runtime Abstract Interpretation (RAI ), as a hybrid
verification technique combining abstract interpretation and runtime verifica-
tion. Similar to [7] and modern symbolic execution tools [8], the main idea of
RAI is to turn a given program into an abstract interpreter for that program,
following — in the simplest case — the same control-flow structure. It replaces
(i) the concrete values by the abstract values in an abstract domain and (ii) the
concrete floating-point operations and comparisons by abstract transformers and
predicates. By embedding an abstract interpretation engine into a runtime pro-
gram execution, it aims at being sound as the former while taking benefit from
the concrete run to retrieve the precision of the latter (even if the execution
context is unknown at compile time, e.g. in presence of numerical inputs from
an external database). It also can analyze programs while taking into account
uncertainty of their inputs (e.g. coming from sensors), providing guarantees on
their robustness [9].

The main difficulty of numerical property verification consists in handling
unstable tests in a sound way. Indeed, an unstable test happens for instance
when the guard of a conditional statement depends on a floating-point expres-
sion and can be evaluated to a boolean value different from the one relying on
the real values. For example, if before the statement if(x<0){...}else{...}

we have x∈ [−0.1, 0.2], the theoretical execution for the exact (real) values can
follow the then branch, while the machine (floating-point) values can lead to the
else branch. In such a case, the program execution flow diverges from the theo-
retical one in real numbers. For a sound analysis of the program, both branches
should be considered and a possible imprecision of variables in the rest of the
program should be computed comparing different control flows. Some existing
tools [10,11,12] can soundly support unstable tests, but do not scale to large
industrial code with > 10, 000 LOC.

RAI solves this issue by surrounding an unstable test by two carefully defined
program points, split and merge, delimiting a so-called split-merge section, for
which it separately analyzes different executions and soundly merges the com-
puted abstract values at the end of the section. To make the technique efficient,
the (partial) executions of the section are enumerated and separately analyzed
only within the section itself, without repeating each time a common execution



prefix and suffix before and after the section, thanks to storing and retrieving
the context at the split point. A split-merge section is defined as the smallest
part of the program that suits the analysis goals, while the lists of variables to
save and to merge are carefully minimized. To further reduce repeated execu-
tion segments, split-merge sections can be nested: the section defined for some
unstable test can be a strict subset of that for another test.

We have implemented a prototype RAI toolchain for verifying numerical ac-
curacy and robustness properties on C code. Numerical properties can be speci-
fied using a set of dedicated primitives, or more generally, as annotations in the
ACSL specification language [13], which are then translated into instrumented
C code using these primitives by the (existing) runtime assertion checker E-
ACSL [14] that was recently extended for their support [15]. The main steps of
the toolchain rely on two new tools, FLDCompiler, that defines the split-merge
sections, and an instrumentation library FLDLib4, that provides necessary primi-
tives to explore partial executions of a section and propagate accuracy properties.
Each component can be used separately, or can be easily replaced. For instance,
it is possible to replace FLDLib by Cadna [16] to obtain accuracy verification by
stochastic propagation instead of conservative propagation. We have evaluated
our prototype on several small-size numerical C programs, and on two industrial
case studies of synchronous reactive systems of several dozens of thousands of
lines of code. The results show that the proposed technique can efficiently and
soundly analyze numerical accuracy for industrial programs on thin numerical
scenarios (i.e. small intervals of inputs).

Summary of Contributions:

– a new hybrid verification technique, named Runtime Abstract Interpretation,
for verifying numerical accuracy and robustness properties, that embeds an
abstract interpretation engine into a runtime execution and relies on split-
merge sections;

– a modular prototype implementation of RAI based on two main components:
FLDCompiler and FLDLib;

– an empirical evaluation of the whole toolchain on representative programs,
including industrial case studies.

Outline. Section 2 presents our motivation on a concrete example. Section 3
provides an overview of RAI. Section 4 presents the main components of the
technique. Section 5 shows experimental results. Finally, we present related work
in Sec. 6, and conclude in Sec. 7.

2 Motivating Numerical Example

Floating-point operations approximate ideal computations on real numbers [1]
and, therefore, can introduce rounding errors. Accuracy properties express that
these errors stay in acceptable bounds. Robustness of the system means that a

4 The source code of FLDLib is available at https://github.com/fvedrine/fldlib.

https://github.com/fvedrine/fldlib


1 double interpolate(double *tbl , int n, double in) {
2 double out;
3 int idx = ( int) in; // truncation to an integer
4 i f (idx < 0 || idx >= n-1) // out -of -bound values
5 out = (idx < 0) ? tbl[0] : tbl[n-1];
6 else // computation from the two closest integer values
7 out = tbl[idx] + (in - idx) * (tbl[idx +1] - tbl[idx]);
8 return out;
9 }

Fig. 1: Motivating example: an interpolation table.

small perturbation of the inputs (e.g. due to possible sensor imprecision [9]) will
cause only small perturbations on its outputs.

Consider for instance the C function of Fig. 1. It implements an interpolation
table tbl composed of n measures for linear approximation of a continuous
function on a point in ∈ [0, n − 1]. Such tables are quite common in numerical
analysis. We are interested in two properties:

accuracy: the round-off error of the result (out) increases the imprecision of the
input (in) by at most twice the biggest difference between two consecutive
measures of the table;

robustness: the previous property is satisfied not only for every concrete input
value in, but also for any value near it (in [in− ε, in + ε] for a given small
ε > 0).

The first property will be (more precisely) expressed by the assertion of Fig. 4,
as we will explain in Sec. 3. Both properties are verified for in ∈ [0, n−1], but fail
for values around −1. Indeed, for two close input values −1 and −1+ε of in (with
a small ε > 0), idx is equal to −1 and 0 respectively. Therefore the result out is
equal to tbl[0] and tbl[0]+(−1+ε)×(tbl[1]−tbl[0]) ≈ 2×tbl[0]−tbl[1]
respectively: that is an obvious discontinuity. Any tool checking this property
should raise an alarm if (and, optimally, only if) such an input is encountered.

Numerical analysis of a complex computation-intensive industrial application
(typically, ¿10,000 lines of code) for the whole set of possible inputs is not feasible
in the majority of cases. A suitable numerical property can be complex to define
(and even in this example, the property above should be slightly corrected to
become true, as we explain in Sec. 3). Expressing such properties for a large
interval of values (like the interval in ∈ [0, n− 1] in our example) is not always
possible (e.g. for more complex properties or functions) or not sufficient to ensure
the desired precision (e.g. on irregularly-spaced interpolation data when the table
entries become greater on some sub-intervals while a more precise estimate is
required for other sub-intervals, or in presence of singularities). A more precise
estimate can often be found on smaller intervals (as we will illustrate on Fig. 6
in Sec. 4.2).

In practice, industrial engineers often seek to ensure accuracy and robustness
properties by considering a rich test suite and by replacing in each test case
the concrete value of each input variable by an interval around this concrete
value, thus creating a thin numerical scenario from the test case. This approach
allows engineers to check accuracy and robustness on such thin scenarios, better



understand the numerical properties of the program, and possibly prepare their
later proof if it is required. The purpose of the present work is to provide a
practical and sound technique for this goal.

Dynamic analysis tools cannot soundly assess robustness and accuracy for
an interval of values because they do not reason for intervals and can only check
properties for a specific execution with given concrete inputs (Issue 1), and be-
cause of unstable tests, like at lines 3–4: the branch taken at runtime for machine
values may be different from the theoretical execution with real numbers. The
imprecision of computation of in (prior to the call) could lead to executing, say,
the positive branch at runtime while the negative branch should be executed in
real numbers (Issue 2a).

Abstract interpreters can also have a hard time to deal with (possibly, nested)
unstable tests [9,12] (Issue 2b). They also hardly keep precise relationships be-
tween variables, e.g. between idx and in after the truncation from double to int

at line 3. That usually leads to imprecise analysis results (Issue 3). In addition,
a practical abstract interpreter usually requires to stub input-output (I/O) func-
tions such as communications with the environment in order to model possible
behaviors outside the analysis scope (Issue 4). In our example, the interpola-
tion table values can be read during system initialization from a file by another
function, like we often observed it in industrial code.

Last but not least, the user needs to express the accuracy properties in a
formal way and the analysis tools need to understand them. For that purpose,
a formal specification language for numerical properties is required (Issue 5).

In this paper, we propose a new hybrid verification technique for verifying
accuracy and robustness properties, named Runtime Abstract Interpretation
(RAI), embedding an abstract interpretation engine into the runtime execution,
where:

– a dedicated extension of a formal specification language solves Issue 5 (Sec. 4.1);
– relying on concrete runs solves Issue 4, with two possibilities: either by taking

the concrete values from the environment (when these values are known to
be fixed)or by defining value and error intervals for them (when they are not
fixed);

– Issue 3 is solved since the relations between variables are implicitly kept
by the execution flow, while the RAI toolchain automatically replaces the
concrete floating-point values and operations by their abstract counterparts
that soundly take into account round-off errors (Sec. 4.2);

– representing concrete values by abstract ones solves Issue 1;
– analyzing possible executions solves Issues 2a and 2b (Sec. 4.3).

3 Overview of Runtime Abstract Interpretation

Figure 2 describes the whole process of RAI. In bold font we show the main
steps and elements (detailed in Sec. 4) that we have designed from scratch or
extended from earlier work. We illustrate these steps for the function abs of
Fig. 5a.
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Fig. 2: Principle of Runtime Abstract Interpretation.

A key element of the RAI toolchain is FLDLib, the Abstract Analysis Library
(presented in Sec. 4.2). It implements (in C++) the required primitives of the
analyzer (e.g. abstract domain types, transfer functions, join operators of ab-
stract domains, split and merge instructions). Its implementation is eventually
linked to the user code to produce a Self-Analyzing Executable Code, but only
its API is required at compile time to allow calls to its primitives.

Our RAI toolchain takes as inputs a C source code with formal annotations
in the ACSL specification language [13] that express numerical properties to
be verified in the code. The first step consists in encoding the annotations as
additional source code in order to evaluate them at runtime. It produces an in-
strumented code, that we call here Self-evaluating Code. This step is performed
by the pre-existing runtime assertion checker of the Frama-C verification plat-
form [17], namely the E-ACSL tool [14,18], that we have extended to support
the target numerical properties (cf. Sec. 4.1). Alternatively, the user can man-
ually instrument the code with property checking instructions using primitives
provided by FLDLib.

For example, the assertion on lines 28–29 of Fig. 5a (stating that the absolute
error xe of x at that point is between the given bounds) will be translated by
E-ACSL into C code using the corresponding primitive (accuracy assert ferr)
provided by FLDLib. For short, we will give below a pseudo-code translation on
line 29 of Fig. 5b.

The second step of RAI is performed by FLDCompiler that embeds an abstract
analyzer into the code by extending the behavior of all numerical operations. It
leads to Self-analyzing code (in C++) able to analyze the target annotations in
addition to the normal code behavior. For that purpose, the double and float

types are overloaded and become abstract domains represented by struct types.
So, a variable float x becomes a tuple of abstract values x = (xr, xf , xe, xrel)
whose elements represent the ideal (real) domain xr, the machine (floating-point)



domain xf , the absolute error domain xe, and the relative error domain xrel.
Other numerical comparisons and operations are overloaded to soundly propa-
gate these domains (cf. Sec. 4.2). To handle unstable tests, FLDCompiler defines
split-merge sections allowing the analyzer to run some execution segments sev-
eral times when it is necessary to relate machine and real values of diverging
executions (cf. Sec. 4.3).

For the example of Fig. 5a, FLDCompiler inserts split and merge instructions
on lines 8 and 23 in order to surround the unstable test on line 14 and allow the
analyzer to re-execute the code between them when necessary. Let br, bf denote
the branches (i.e. the truth values of b) executed, resp., for a real and a machine
value of x. Basically, RAI partitions the domain of values of x into four subsets
such that (br, bf) = (0, 0), (0, 1), (1, 0) or (1, 1). The corresponding execution
paths within the limits of the section are analyzed separately for each subset, and
the results are soundly merged at the end of the section. For example, the subset
(br, bf) = (1, 0) is here defined by xr < 0, xf ≥ 0. For this subset the section will
be executed twice: once forcing the true branch b = 1 to compute the expected
real domain, and once forcing the false branch b = 0 to compute the resulting
machine domain, both being needed to soundly merge the results and compute
errors. If another unstable test is met inside the section, the tool (dynamically)
partitions the current subset into smaller subsets to explore relevant execution
flows for the domains of values that do lead to these flows. Broadly inspired by
dynamic symbolic execution [8,19] (but more complex in our case due to the need
of soundly merging/re-slitting subexecutions to make the approach efficient), this
exploration is the most technical part of the contribution. Its main ideas will be
presented below in Sec. 4.3 using Fig. 5b.

The third step of RAI is “compile & link” using a standard C++ compiler. It
embeds the abstract analysis primitives’ code into the final executable. Executing
it performs the analysis, evaluates the annotations and produces the code output
as if executed in a normal way, without RAI. If an annotation fails, the failure
can be reported and, if desired, the execution can be aborted.

4 The RAI Technique in More Detail
4.1 Primitives to Express Numerical Properties

We rely on (a rich, executable subset of) the ACSL specification language [13,20]
to express accuracy properties on C programs. It is a powerful language, well
supported by the Frama-C [17] platform. Among others, it comes with a runtime
assertion checker, named E-ACSL [14], that converts the formal annotations into
C code to check them at runtime.

Specification. ACSL annotations are logical properties enclosed in special com-
ments /*@. . . */. They include pre-/postconditions and assertions that may be
written before any C instruction. They can contain logical functions, predicates
and comparison operators over terms. All constants and numerical operators
are over mathematical numbers (integers in Z, or rationals in Q, depending on
the context). C integers and floating-point values are implicitly coerced to their
mathematical counterparts.



Built-in name : type
accuracy get [f,d][rel]err : F→ Q2

accuracy get [f,d]real : F→ Q2

accuracy get [f,d]impl : F→ Q2

accuracy enlarge [f,d]val err: F×Q4 → bool

accuracy assert [f,d][rel]err : F×Q2 → bool

[f,d]print : F→ bool

Fig. 3: Numerical built-ins extending ACSL. The first three built-ins are logic
functions, while the three others are predicates. Their counterparts exist in
FLDLib.

1 /*@ assert
2 \let (err_min , err_max) = accuracy_get_derr(in); // primitive
3 \let cst = max_distance(tbl , n); // logic function
4 \let (val_min , val_max) = accuracy_get_dimpl(out); // primitive
5 \let bound = max(-val_min , val_max ); // logic function
6 accuracy_assert_derr(out ,
7 -2.0 * cst * max(-err_min , err_max) - 1e-16 * bound ,
8 +2.0 * cst * max(-err_min , err_max) + 1e-16 * bound ); */

Fig. 4: ACSL assertion expressing — more precisely — the accuracy property of
Sec. 2 for the function of Fig. 1.

To express numerical properties, we have extended ACSL with a rich set of
numerical built-ins presented in Fig. 3, in which F denotes either type float

(if f) or double (if d). These primitives have their C counterparts supported
by the FLDLib library. The two built-ins starting with accuracy enlarge en-
large the values and the absolute errors to the two pairs of bounds provided
as arguments. The accuracy assert built-ins check whether the absolute or (if
rel is indicated) the relative error is included within the given bounds. The
accuracy get [rel]err built-ins return the lower and upper bounds of the ab-
solute or relative error, while the accuracy get real/impl built-ins return the
bounds of the real-number or implementation domain. The last built-ins print
information about the internal FLDLib representation.

A simple ACSL assertion, stating that the absolute error is in the provided
bounds, is given on lines 28–29 of Fig. 5a. As another example, the accu-
racy property stated in Sec. 2 for the program of Fig. 1 can be expressed—
more precisely—by the assertion of Fig.4. Here, the logic function max distance

computes the maximal distance between two successive elements of y, that is,
maxi=0,...,n−2 |y[i+1]−y[i]|. Lines 4–5 compute the upper bound for |out|, which
is used in the last terms on lines 7–8, added to take into account a small round-off
error from the addition operation on line 7 in Fig. 1. This correction illustrates
the difficulty to define correct error bounds for machine computation. Robust-
ness follows from this assertion: a small input error leads to a small output
error.

Encoding for Runtime Checking. We have extended the E-ACSL tool in two
ways to support numerical properties. First, the numerical built-ins of Fig. 3
are directly compiled into their FLDLib counterparts. Second, since the ACSL



specification language relies on mathematical integers and rational numbers, the
generated code cannot soundly use standard C operators over integral or floating-
point types. Instead, E-ACSL generates special code relying on GMP library5 to
soundly represent mathematical integers and rationals. This translation has been
optimized to rely on the machine representation as much as possible, when the
values fit it, and generate GMP code only when necessary. This second extension
is outside of the main scope of this paper and is not presented here.

4.2 Propagating Abstract Values at Runtime

The presentation of RAI focuses on the key design ideas and refers to fragments
of Fig. 5 that provides a (simplified pseudo-code) version of the resulting Self-
analyzing Code for function abs. The reader can refer to the source code of
FLDLib for more detail.

FLDLib is an open-source instrumentation library that infers accuracy prop-
erties over C or C++ code. It implements numerical abstract domains inspired
by those implemented in the close-source tool Fluctuat [10]. Since these domains
themselves are not a key contribution of this paper, we present them briefly.

FLDLib only deals with detecting numerical errors and computing domains of
numerical variables. Discrete values (pointers included) are only enumerated. In
particular, it has no pointer analysis. Therefore, it is better used on thin scenarios
that encompass concrete test cases in small intervals. In such scenarios, pointers
have only one or two possible value(s). This way, RAI scales to large numerical
codes or numerical pieces of code inside bigger developments (>10, 000 lines of
code).

Domains. FLDLib domains combine intervals and zonotopes [21]. Zonotopes al-
low to maintain linear relationships between program variables V that share the
same perturbations (noise symbols) by mapping V to affine forms. Sharing noise
symbols between variables helps at keeping precise information since it means
that the source of uncertainty is the same. We do not detail the zonotope domain
here for lack of space, but Fig. 6 illustrates the benefits of combining zonotopes
and intervals, in particular with a domain subdivision. For instance, if x ∈ [0, 1],
an interval is more precise than a zonotope for representing x2 (providing an
interval x2 ∈ [0, 1] instead of [−0.25, 1], cf. the projection of abstractions onto
the x×x axis in Fig. 6a), but less precise for representing x−x2 ([−1, 1] instead
of [0, 0.25], cf. the distance from the diagonal in Fig. 6a). The intersection of
both abstractions provides more precise results (Fig. 6b). A subdivision of the
input interval into two sub-intervals significantly improves the results (Fig. 6c,d)
— the orange area of Fig. 6d is much less than in Fig. 6b. As mentioned in Sec.2,
using thin scenarios helps to keep precise relationships between variables.

Type Redefinition and Operation Overloading. A key principle of FLDLib consists
in redefining double and float types and overloading all related operations.
The float type becomes a structure that is called in this paper float fld

5 https://gmplib.org/

https://gmplib.org/


1 f loat abs ( f loat x ) {
2

3

4

5

6 // Here FLDCompiler

7 // will insert:

8 // split(x);

9

10

11

12

13

14 int b = ( x < 0 ) ;

15 i f (b) {
16 x = −x ;

17 }
18

19

20

21 // Here FLDCompiler

22 // will insert:

23 // merge(x);

24

25

26 // Will be translated to C by E-ACSL:

27 /*@ assert

28 accuracy_assert_ferr(x,

29 -1e-5, 1e-5);*/

30 return x ;

31 }

1 f loat abs ( f l o a t f l d x){//x = (xr, xf , xe) =(real,float,error)

2 int br , bf , bexec ;

3 f l o a t f l d xsave , xmerged , xtmp ;
4 xsave = x ; // store init. domains at split-merge section entry

5 xmerged = (⊥,⊥,⊥) ; // set merged domains to empty
6 // fix branches taken for real and machine values:

7 for (br, bf ∈ {0, 1}){
8



xtmp = (⊥,⊥,⊥) ; // store empty domains in xtmp

9 for (bexec ∈ {br, bf}){ // fix the branch bexec to follow now
10 x = xsave ; // start each execution from initial domains

11 // reduce domains to execute the chosen branches br, bf :
12 i f (br ) Assume(xr < 0) else Assume(xr ≥ 0) ;

13 i f (bf ) Assume(xf < 0) else Assume(xf ≥ 0) ;
14 int b = bexec ; // ensure we follow the chosen branch
15 i f (b) { // deduce new domains after num. operations:
16 x = ComputeUnitOp(−, x) ; // propagates x = -x;
17 }
18 // if real/machine executions diverge, i.e. br 6= bf :

19 i f (br != bf ){ // then merge them separately
20 i f (bexec == br ) xtmp

r = Joinr(x
tmp
r , xr) ;

21 i f (bexec == bf ) xtmp
f = Joinf(x

tmp
f , xf) ;

22 xtmp
e = ComputeErr(xtmp

r , xtmp
f ) ;

23



x = xtmp ;
24 }
25 } // end of enumeration of subcases for bexec ∈ {br, bf}
26 xmerged = Join(xmerged, x) ; // merge output variables

27 } // end of enumeration of possibles cases for br, bf ∈ {0, 1}
28 x = xmerged ; // set resulting merged domains
29 a s s e r t (−10−5 ≤ xe ≤ 10−5 ) ; // translated ACSL assert
30 return x ;
31 }

Fig. 5: (a) Function abs with an assertion and a split-merge section to be inserted
by FLDCompiler, and (b) the resulting (simplified) Self-analyzing Code for RAI.
For simplicity, we omit here the relative error xrel in x = (xr, xf , xe, xrel).

(cf. line 1 in Fig. 5a,b). A variable float x; becomes a variable float fld x;
that, mathematically speaking, contains a tuple of abstract values (xr, xf , xe, xrel)
whose elements represent the real domain xr as a zonotope, the floating-point
domain xf as an interval, the absolute error domain xe as a zonotope, and the
relative error domain xrel as an interval. For simplicity, we omit the relative error
computation in our examples.

Like Cadna [16] (for an execution with concrete values), FLDLib uses C++
operator overloading to propagate these domains over the program execution
(with abstract values). All arithmetic operations and comparisons, as well as
casts from floating-point to integral types are thus redefined as abstract trans-
formers.

For instance, the unary operation assignment x = -x; can be replaced in
the resulting Self-analyzing Code as a primitive x = ComputeUnitOp(−, x);
(cf. line 16 in Fig. 5a,b) that computes the resulting abstract values of the
components of x after the operation. Similarly, a binary operation x = x + y; is
replaced by a primitive x = ComputeBinOp(+, x, y);. Such abstract operations
(transfer functions) are well-known and we do not detail them here.



Fig. 6: Function x2 abstracted (a) with intervals (yellow) and affine forms (or-
ange) shown separately, and (b) the resulting intersection. The same abstractions
with a subdivision, (c) shown separately, and (d) the resulting intersection.

In addition to abstract versions of all numerical operations, FLDLib provides
other useful primitives for constraint propagation. In the (simplified) examples of
this paper, we also use a primitive Assume(<cond>) to assume a condition (and
propagate it to all relevant domains), a primitive Join(x′, x′′) to merge (join)
the domains coming from different execution paths, its variants Joinr(x

′
r, x
′′
r )

and Joinf(x
′
f, x
′′
f ) to merge the domains for real or machine numbers only, and

ComputeErr(xr, xf) to compute a new error (e.g. after such a separate merge).
Operator overloading is particularly convenient in our context since it lim-

its necessary source-to-source transformations. We also have promising initial
experiments on Ada programs that support operator overloading through the
libadalang library6. A similar approach could be applied to C programs with no
operator overloading capabilities, where such a transformation can be automat-
ically done e.g. by the Clang compiler.

4.3 Covering All Executions for Unstable Tests

Unstable Tests by Example. The key difficulty of our method is related to unsta-
ble tests. For instance, for the conditional at line 15 in Fig. 5a, if the domains and
precision of x ensure that both the real number and the machine number satisfy
x<0 and thus execute the same branch (b = 1), the Self-analyzing Code needs
to execute only this branch and perform the analysis (thanks to the overloaded
operations) along this path to obtain a sound result. In general, the evaluation of
the condition for real numbers (denoted br) can lead to the true or false branch
(we write br = 1 or 0, resp.), while the condition for machine numbers (denoted
bf) does not necessarily lead to the same branch. Therefore, the Self-analyzing
Code has to consider four cases: (br, bf) ∈ {0, 1}2 (cf. line 7 in Fig. 5b) which
create a partition of the set of possible values. It analyzes each case separately
(saving and restoring initial values, cf. lines 4, 10 in Fig. 5b) and finally merges
the results of all cases (cf. lines 5, 26 in Fig. 5b). For each case, the domains are
reduced to fit the assumption of the case (cf. lines 12–13 in Fig. 5b) before a
new execution starts.

We denote by bexec the branch(es) to be executed in each case. For each of
the two cases with br = bf (where real and machine numbers activate the same
branch), it is sufficient to execute only that branch, that is, bexec = br = bf ,
since its execution by assumption (and thanks to the overloaded operations)

6 https://github.com/AdaCore/libadalang

https://github.com/AdaCore/libadalang


computes both the new real values and the new machine values. However, in
each of the two diverging cases (with br 6= bf), we need to execute the real value
flow (taking bexec = br) to evaluate the new real values, and the machine value
flow (taking bexec = bf) to evaluate the new machine values (cf. lines 9, 14–15
in Fig. 5b). Both subcases are then merged accordingly: real values from the
real value branch, machine values from the machine value branch (cf. line 8,
19–24 in Fig. 5b) before being merged as a complete case (cf. line 28 in Fig. 5b).
Incomplete data written on lines 22–23 after the first subcase are ignored and
overwritten by the second subcase. So, the machine domains coming from the
execution for real values (bexec = br) and the real domains coming from the
execution for machine values (bexec = bf) are indeed ignored. Overall, line 15 is
executed 6 times.

Assume we have |xe| = |xf − xr| ≤ 10−5 for the input value. Then the asser-
tion on line 29 will be satisfied. For instance, for the unstable case br = 1, bf = 0,
the Assume’s on lines 12–13 reduce domains to −xr, xf ∈ [0, 10−5]. After exe-
cuting both subcases, i.e. after lines 20–22 in the second iteration of the internal
loop, the RAI computes xtmp

r , xtmp
f ∈ [0, 10−5], hence xtmp

e ∈ [−10−5, 10−5]. The
constraint xe ∈ [−10−5, 10−5] being respected in all cases, it remains respected
after the merge on line 26. Notice that the execution of the Self-analyzing Code
after the merge point continues as a unique execution (unless a subsequent split-
merge section splits it again). In this way, RAI reruns the execution segments
only when it is necessary for a sound analysis of the program.

Split-Merge Sections. As illustrated by Fig. 5, in order to be sound, RAI encloses
each unstable test b within a loop that executes its body several times to analyze
all possible cases of evaluation of b for real and machine numbers. Our RAI
toolchain provides two directives to delimit those loops: split marks the start
of a block of code B that must be run multiple times to analyze all possible
executions, while merge marks the point of convergence where all memory states
after the executions of B must be joined into a unique state. Such a block B
enclosed between these directives is called a split-merge section. Such sections
can include several branches and be nested (for instance, for nested conditional
statements). The split-merge directives are provided by FLDLib and inserted
into the generated code by FLDCompiler.

In the general case, split is parameterized by the variables that must be
restored before a new execution in order to ensure that the initial memory state
is the same at each loop iteration (i.e. each execution of the section runs from
the same state), while merge is parameterized by the variables to be joined
after different executions. A simple example of a split-merge section is shown
in Fig. 5a, where the split and merge directives become, resp., lines 2–13 and
18–28 in Fig. 5b. They are parameterized by x since x must be restored before a
new execution (it may have been overwritten by a previous one at line 16) and
x is the only section’s output to be merged (cf. lines 4, 10, 26 in Fig. 5b).

For the example of Fig 1, FLDCompiler inserts a split directive with no
argument (since in is never overwritten) before the cast at line 3, while a merge

directive parameterized by out is inserted before line 8. Indeed, a cast from a



Fig. 7: (a) A code and (b),(c) transformation steps performed by FLDCompiler.

save-list(p) = {x | ∃(s1, s2), (x, s1) ∈ maydef(p) ∧ (x, s2) ∈ mayref(p)},
merge-list(p) = {x | ∃(s1, s2), (x, s1) ∈ maydef(p) ∧ (s1, s2, x) ∈ datadep(F(p)) ∧ s2 6∈ p},

where F(p) is the body of the function containing p.

Fig. 8: Computation of save-list and merge-list.

floating-point value to an integer is a form of unstable test since the real value can
be casted to a different integer than the floating-point one. The merge directive
cannot be placed earlier because out would not be computed yet.

Annotation Criteria. FLDCompiler is a source-to-source program transformation
that automatically annotates a program with the needed split and merge direc-
tives together with their parameters. For the sake of performance and precision,
a generated split-merge section should be minimal (as small as possible), split
should only restore what is needed, and merge should only join variables that
are modified by the section and used afterward. It is worth noting that precisely
computing these parameters statically is undecidable, so over-approximations
may actually be performed. Positioning the split-merge sections is done by a
greedy algorithm that expands them through the code until three criteria, pre-
sented below, are satisfied. These criteria are illustrated on the example of Fig. 7
that contains the unstable test if (2 * x + 3 < 0).

Criterion 1 A split must strictly dominate its associated merge. Conversely,
a merge must strictly post-dominate its associated split.

Dominance and post-dominance relations [22] used in this criterion state
that all paths that go through split must go through its associated merge

and, conversely, all paths that go through merge must have gone through its
associated split. This criterion ensures that the memory allocations performed
by split are eventually freed by merge. The other way round, the memory
freed by merge must have been initially allocated by split. In our example, the
if statement is post-dominated by the while, which is dominated by the if.
Therefore, a split (resp. merge) directive is added before the if (resp. while).



Criterion 2 A split-merge section must start and end in the same block.

A split-merge section is enclosed in a loop that starts in the part generated by
split and ends in the part generated by merge. The criterion must be satisfied
to generate a syntactically valid C code, as in Fig. 5a and Fig. 7b,c.

Criterion 3 Non floating-point variables must be kept unchanged in every mem-
ory state generated by a split and joined by its associated merge.

This criterion is mandatory because the FLDLib library has no abstraction
for non floating-point variables: merging them would lead to an error. For exam-
ple, Fig. 7b presents a first positioning attempt for the split-merge section that
actually violates Criterion 3. Indeed, because the value of the integer variable n

is modified in the if and is needed after the merge, its values must be joined. To
fix this, merge is delayed as shown in Fig. 7c. This criterion enables to prove the
robustness propety in our motivating example in Fig. 1 whereas linear domains
usually fail at keeping enough relationships between the idx variable and the
input in.

In some cases, e.g. when an integer variable depending on the result of an
unstable test is part of the outputs of the function, the split-merge section cannot
be closed inside the function. In such cases (met only in one industrial example
for < 10% of unstable tests), the user may need to move the section to the
caller(s) to respect this criterion. The user can indeed adjust the split-merge
directives manually, e.g. making one section instead of two consecutive sections.
This can sometimes increase precision, since domain merging is done later on the
path and fewer times, at the cost of increasing the number of paths to analyze
and analysis time.

Arguments of split and merge. As said previously, split and merge take pa-
rameters that specify, resp., the variables to restore before a new execution of the
section, and the ones to be eventually merged after it. To minimize the analysis
cost, only necessary parameters should be generated. For example, if a variable
is never modified, restoring its value is useless. These parameters for split and
merge are respectively computed by a save-list and a merge-list whose com-
putation is explained below. They are based on a dedicated data dependency
analysis inspired from [23]. More precisely, for each statement p, this analysis
gathers four sets, informally defined as follows:

mustdef(p) : a set of variables necessarily modified in p (that is, all executions
modify them). For instance, variable n of Fig. 7 is in the mustdef set of if.

maydef(p) : a set of pairs (x, s) where s is a sub-statement of p that may modify
the variable x. In Fig. 7, the maydef set of the while loop contains (x, x+=x).
However, x does not belong to the mustdef set of while because, if n = 0,
then x is left unchanged.

mayref(p) : a set of pairs (x, s) where s is a statement of p that may read the
variable x. In Fig. 7, x belongs to the mayref set of if because it is read by its
condition. For sequence of statements S, this set does not contain variables



that are read after being assigned in S. For instance, x (paired to any state-
ment) does not belong to mayref of sequence S ≡ (x = 2; y = x + 3;).

datadep(p) : a set of tuples (s1, s2, x) in which s1 writes a variable x that is later
read by s2 (without intermediate writings). Its computation uses the three
previous sets. For the example of sequence S above, variable x is modified by
x = 2; and then read by y = x + 3, so (x = 2, y = x + 3, x) ∈ datadep(S).

The save-list and merge-list of a split-merge section are computed as shown in
Fig. 8. A variable x is added to the save-list of a section p if there is a statement
inside p that may modify x and another statement that may read x. Said another
way, if a new execution may depend on the value of a variable that could have
been modified in another execution, then we need to restore it before a new
execution. Dualy, a variable x is added to the merge-list of a section p if there is
a statement in p that may modify x and there is another statement outside the
section that may read that modified value afterwards.

FLDCompiler is implemented as a Frama-C plug-in [24] and relies on its kernel
to pretty-print the generated code. It visits the whole source code and generates
the split-merge sections based on the declared type of variables. The basic version
has no notion of alias, so if a pointer iterates on the cells of a floating-point array,
it does not add them to the save-list and the merge-list, which may produce
unsound results. To soundly solve this problem, FLDCompiler relies on Eva [25],
the value analysis plugin of Frama-C, in order to know all possible targets of
pointers to be added to the save-list and the merge-list. It may add unnecessary
variables since Eva’s analysis by abstract interpretation is conservative. Finally,
FLDCompiler issues a warning if it tries to add to the lists something that is
dynamically allocated and thus that does not exist at compile-time.

Path Exploration within Split-Merge Sections. The example of Fig. 5 illustrated
the key ideas of the exploration7. This simplified approach would not be directly
suitable though for nested conditions, loops or nested split-merge sections.

The actual implementation is more technical: it performs a depth-first explo-
ration of path segments inside each section, dynamically discovers new branches
and records (dynamically allocated) execution contexts in a worklist of execu-
tions to be explored. Nested split-merge sections are treated by storing a section
context in a stack. Since the abstract values of outcoming variables are merged at
the end of the path segment of the inner section, they can be used to continue the
considered execution for the outer section in a transparent way. Thanks to this
approach, the directives split(id, save-list) and merge(id,merge-list), (which, in
practice, have a unique identifier id for each section) are defined as macros. The
interested reader may find the implementation details in the code of FLDLib.

5 Experimental Results

Our RAI toolchain has been evaluated on (i) variations of the motivating example
with different sizes of the table, (ii) a benchmark of small-size C examples, and
(iii) on two large industrial case studies.

7 For convenience of the reviewers, Fig.12 gives an example with two unstable tests.



Table size 10 20 100 200 400 1000 2000

Our toolchain 0.01s 0.02s 0.14s 0.47s 1.85s 11.6s 69s
Fluctuat 0.05s 0.09s 0.16s 0.28s 7.00s 92.0s 838s

Fig. 9: Analysis time for the motivating example.

Motivating example with different table sizes. We first consider a version of
the motivating example of Fig. 1 that loads the measures of the interpolation
table from a file and calls interpolate with a large scenario in∈ [0, n − 1].
This is a very frequent code pattern in industrial code. It uses an external I/O
library that is compiled with standard options and is not instrumented with our
custom floating-point domains. We compare time (see Fig. 9) and precision of
the tools supporting unstable tests (Fluctuat, Rosa and Precisa) and our toolchain
for different sizes of the table. Rosa and Precisa do not manage such examples
that generate a combinatorial explosion: with 2 elements Rosa takes 9s, with 3
elements it takes 111s and more than 20mns for 4 elements; Precisa takes 9.1s for
8 elements, 37s for 9 elements, 131s for 10 elements. Since our toolchain accepts
dynamic values, the Self-analyzing Executable is compiled only once and can
be used with different files. This is not the case for Fluctuat that parses the
interpolation table in the source code.

Our toolchain reports an accuracy error on the result of 8 × 10−6, while
Fluctuat reports a maximal accurracy error of 0.89. Hence RAI shows that the
interpolate function is robust, whereas Fluctuat cannot show it, at least, without
additional subdivision annotations from the user that can be tricky to find.

Benchmarks. We use benchmarks from [9,26] with unstable tests and present
in [27]. They contain several small-size C examples in several categories (cf.
Fig. 10). Simple examples show basic computations that focus on accuracy prop-
erties. Unstable branches are robustness tests for unstable branch handling.
Interpolation tables contain various ways to compute an interpolation table.
They also focus on testing robustness of unstable branches. Maths models func-
tions of math.h for error estimation. Miscellaneous contain other examples. File
filter.c is a second order linear filter that focuses on accuracy. File patriot.c
is a historical example that contains a sum of 0.1 whose error shifts over time.
File complex LU.c finds a vector X such that M(X) = (Y ) for a square matrix
M with a Lower/Upper decomposition. File complex intersect.c shows itera-
tive computations. File scanf.c shows how to manage external library functions
not related to floating-point operations. The variable whose precision is analyzed
is given after the file name.

Results. Each example has been annotated with ACSL assertions modeling the
expected properties to use our toolchain. All of them have also been run with a
timeout of 20min in Fluctuat [10], Precisa [12] and Rosa [26]. Figure 10 presents
the accuracy and time (either on top of the whole category for very small val-
ues, or per example otherwise). ko identifies a case where the tool failed to
treat the example. Nikolai: Unstable stands for unstable results.? n/t means “not
translated” into PVS for Precisa or into Scala for Rosa due to the difficulty or



Target file/variable Our toolchain Fluctuat Rosa Precisa FpDebug

Simple examples: < 0.01s < 0.01s < 0.6s < 0.2s
absorption.c/z 1e-8 1e-8 5.96e-8 5.96e-8 1e-8
associativity.c/u 6.67e-16 1.55e-15 1.55e-15 4.21e-15 -2.22e-16
division.c/z2 1.805e-16 5.55e-16 5.55e-16 5.55e-16 -1.57e-17
exp.c/y 4.47e-13 5.61e-13 n/t 4.45e-12 ko
polynome.c/t 1.066e-14 9.21e-15 7.33e-15 1.80e-14 -2.41e-16
relative.c/z 2.33e-12 2.33e-12 2.33e-12 6.59e-12 1.82e-13
triangle.c/A 2.59e-13 2.59e-13 1.58e-12 2.58e-08 -5.6e-21

Unstable branches: < 0.01s < 0.01s see below < 0.2s
comp abs.c/z 4.44e-16 2 (false al.) 3.73e-9/0.3s 4 (false al.) -2.85e-08
comp cont.c/y 1.01e-04 9.03e-05 7.0e-5/0.2s 3 (false al.) -2.25e-08
comp cont nested.c/w 1.67e-18 1.67e-18 4.52e-16/3e4s n/t -1.0e-18
comp cont mult.c/res 3.30e-05 105 (false al.) 3.41e-5/0.4s 192 (false al.) unstable
comp disc nested.c/z 0.1 (true al.) 0.1 0.3/1.6s n/t ko
comp disc.c/z 1.0 1.0 0.5 (true al.)/0.2s ko ko
comp model err.c/S 0.023 (true al.) 3.82e-01 0.024/2.2s ko ko
smartRoot.c/VAR 1.52e-15 0.27 1.61e-15/25s ko 1.38e-17
cav10.c/VAR 102 101 2.9/1.4s 101 -3.3e-17
squareRoot3.c/VAR 1.25e-11 0.43 2.75e-9/4.5s 2.71 (false al.) 7.27e-17
squareRoot3Inv.c/VAR 1.25e-9 0.43 3.93e-9/4.5s 2.71 7.27e-17

Interpolation tables: < 0.1s < 0.1s see below see below
inter cond.c/res 1.33e-05 105 (false al.) 192/0.5s 191/0.02s 4.77e-07
inter loop.c/result 1.45e-06 4.17e-06 ko 33/0.05s -4.60e-07
inter tbl cast.c/out 4e-06 77.1 (false al.) time out time out -1.04e-15
inter tbl loop.c/res 4e-08 time out n/t n/t -1.04e-15
motiv example.c/out1 1.19e-07 77.1 (false al.) time out time out -1.04e-08
motiv example.c/out2 4 (true al.) 95.1 time out time out ko

Maths: < 0.2s < 0.1s see below see below
sin model error.c/res 2.57e-16 2.57e-16 n/t n/t 8.79e-18
sqrt unroll.c/t.v 7.11e-15 7.82e-14 n/t n/t -4.81e-15
sqrt fixpoint.c/Output 3.15e-15 1.39e-14 n/t n/t 3.51e-16

Miscellaneous: see below see below see below see below
filter.c/S 1.65e-14/0.13s 1.65e-14/1s time out time out 1.44e-16
NBody.c/VAR 1.13e-6/4.4s time out time out n/t 1.91e-04
patriot.c/t 1.91e-04/0.05s 1.91e-04/0.8s time out time out 7.14e-15
complex LU.c/det 7.15e-15/0.01s n/t n/t n/t n/t
complex intersect.c/x 0.53/0.27s 0.2/0.6s n/t n/t n/t
scanf.c/res 4.57e-07/0.04s n/t n/t n/t n/t

Fig. 10: Tool comparison over small-size C examples.

impossibility to give an equivalent encoding of the C version. The best accuracy
for a particular example is written in bold. Therefore, the table clearly shows
that our toolchain has almost always the best accuracy.

The results of FpDebug were also recorded to show an under-approximation
of the precision. They show that the results of our RAI toolchain, while being
obtained using over-approximations, are not very far from the results returned
by FpDebug and providing an under-approximation. Hence, on the considered
examples, our tool remains reasonably precise.

Since FLDLib uses the same reasoning as Fluctuat except for constraint man-
agement, many results are merely the same. However, Fluctuat has only a limited
support of unstable branches. Rosa manages them well but chains of if’s lead
to a combinatorial explosion. Rosa approximates the errors on constant values
but it is the most precise tool on non-linear computations. The comparison with
Precisa is somehow biased since SMT optimization with FPRock was not acti-
vated. We do not know if it would have scaled better with it. Nevertheless our
toolchain aims at providing guaranteed accuracy analysis with unstable



branches on real-life C code containing loops and thousands of lines of code,
while Precisa (as Rosa) is more concerned with robustness proofs of smaller algo-
rithms. Finally, unlike the other two sound tools (Fluctuat, Precisa), Rosa and
our tool did not report any false alarms on these examples, whereas
Rosa has timed out on some.

Industrial Case Studies. We also experimented our toolchain on two (non pub-
lic) industrial case studies (synchronous reactive systems of several dozens of
thousands of lines of code) on thin scenarios coming from existing tests with
relative error, resp, 10−6 and 10−16. The first one was automatically generated
in C, whereas the second one was written by hand in C++. Thus only Fluctuat
and our tool were used on the first, and only our tool on the second. The first one
contains computations that represent physical models, with many components
like interpolation tables, but also linear filters, threshold functions. The second
one contains solving algorithms coming from the templated C++ eigen8, which
is very convenient for our instrumentation mechanism as all the floating-point
code is inlined.

Results. On the first case study, FLDCompiler added about 50 split-merge sec-
tions whose nested depth was up to 5. Even if we only used its syntactic version
(that is not based on the Eva plug-in of Frama-C, resulting in a loss of preci-
sion), the results were pretty good and useful. Our tool exercised all interesting
split-merge sections by performing the simulation of 80,000 loop cycles in ¡24h!
It took only 2s to analyze one loop cycle with FLDLib (while Fluctuat took 1h,
so did not scale). All these sections have been proved to be continuous.

The second case study with eigen demonstrated the need to extend FLD-
Compiler to provide better results on some linear algebra algorithms and some
discontinuous unstable branches. For example, the determinant computation is
a continuous formula but often internally uses a LU (Lower/Upper) matrix de-
composition that contains many unstable branches due to the choice of the best
pivoting number. In this case, we have manually defined 25 split-merge sections
whose depth was up to 4. Our toolchain was able to successfully analyze between
10 and 20 cycles and validate the robustness of the unstable tests.

Our tool scales better than Fluctuat on these case studies for the rea-
sons mentioned in Sec. 2 and since it does not care about pointers. Nevertheless,
its scalability is directly related to the trade-off between precision and analysis
time: if the number of noise symbols in zonotopes is not bounded, the analysis
may be quadratic. In practice, an option sets a bound to limit the number of
noise symbols introduced in an affine form.

On the first generated industrial C code, our toolchain succeeds in keep-
ing a reasonable error for a thin scenario and such avoiding excessive over-
approximations. On the second industrial C++ code, the guaranteed numerical
error delivered by FLDLib increases at every loop cycle and false alarms appear
from the accumulation of overapproximations. That leads to a combinatorial

8 https://gitlab.com/libeigen/eigen



explosion on a merge point far from the split point in terms of instructions. In
this case, FLDLib helped to better understand and identify the tricky numerical
parts of a big code.

All in all, these industrial use cases demonstrate that our toolchain scales
on thin scenarios up to several dozens of thousands of lines of code. At worst, a
few split-merge directives have to be manually adjusted and FLDLib provides a
helpful support for this task. It is also worth noting that FLDLib can be replaced
by Cadna to obtain a stochastic analysis that scales better, even if the results are
non-necessarily sound but close to the expected ones. We also experimented the
exact part of FLDLib (without domains) that works like FpDebug, but at source
code level, and obtained the same under-approximated results as FpDebug.

Last but not least, our toolchain can be easily integrated into a con-
tinuous integration process. For that purpose, it only requires to instrument
the unit test files. Any other file (including library file) can remain unchanged.

6 Related Work

Many techniques and tools [28,29,30,16,31,12,10,21,32,33,26,11,34,35,36,37,38,39]
have been developed for analysis of numerical properties during the last fifteen
years. They can be roughly classified in two categories: testing and static analysis
tools.

Among testing tools, FpDebug [28] and Herbgrind [29] are based on Val-
grind [40] and detect accuracy property failures with few false alarms. FpDe-
bug relies on MPFR9 to associate a highly-precise value to each floating-point
value of the tested program; its results are under-approximations. Herbgrind uses
symbolic execution to detect sudden important accuracy loss. Both tools scale
up on bigger programs. However, unlike RAI toolchain, they cannot guarantee
the absence of failures even on thin scenarios. Verrou [30], Cadna [16], and Verifi-
carlo [31] aim at reporting possible instances of errors with stochastic arithmetic.
The core idea consists in randomly (with a selected probability) changing the
rounding mode used for each floating-point operation during the program exe-
cution. For each execution, the obtained floating-point values differ, and with
enough executions, an accuracy estimation can be made with a good confidence.
Like our toolchain, those tools do not avoid false alarms because of the stochastic
process, but their results are rather realistic and robust. However, unlike RAI,
they cannot guarantee the absence of errors.

Among static analysis tools, Fluctuat [10], Gappa [33], Rosa [26,11] and Daisy
[37] use a data-flow approach with interval or zonotope abstract domains. Pre-
cisa [12], FPTaylor [32] and real2Float [38] use optimization-based approaches.
Gappa, Daisy, FPTaylor, real2Float, and Precisa allow formal verification in a the-
orem prover by generating proof scripts or certificates. Among all these tools,
only Fluctuat, Rosa and Precisa have support for unstable tests.

These last tools have different design choices and trade-offs between scalabil-
ity and tightness of over-approximations. Fluctuat [10] favor some scalability with
forward propagation of domains. Fluctuat scales reasonably well for programs of

9 https://www.mpfr.org

https://www.mpfr.org


a few thousand lines of code. Precisa uses interval arithmetic combined with
branch-and-bound optimization and symbolic error computations; Rosa uses ex-
ternal SMT solver like Z3 [41], while Fluctuat relies on the zonotope abstract
domain [21] to represent values and errors. Compared to Rosa, Precisa and Fluc-
tuat, our toolchain scales better and can handle I/O and memory manipulations
without stubs.

FPTaylor [32] favors tightness: it handles bounding errors as an optimization
problem that is soundly solved by first-order Taylor approximations of arith-
metic expressions. FPTaylor generally provides tighter approximations than our
toolchain. However, unlike our toolchain, it cannot analyze large programs and
handles neither loops, nor I/O operations, nor unstable tests. Finally, Gappa [33]
presents a third possible trade-off. Indeed, Gappa is intended to help verifying
and formally proving properties on numerical programs. It is based on interval
arithmetic and several rewriting rules for floating-point rounding errors expres-
sions.

Rosa [26,11] and PVS-based tools [34,35] generate suitable optimized types
for given accuracy and manage unstable tests using constraint solvers. Rosa
optimizes the format of the floating-point variables given a required accuracy
whereas [34] generates programs with contracts to check the stability of tests.
Salsa [36] improves the accuracy of programs but it does not take unstable test
into account.

RAI combines abstract interpretation [3] and runtime verification [4]. The
idea of computing abstract domains at runtime (but without handling unstable
tests) was proposed e.g. in [7]. Modern symbolic execution tools [8,19] also com-
bine static and dynamic analyses by replacing concrete values by symbolic ones
and exploring execution paths. But they do not need to merge/re-split/re-merge
several executions to treat unstable tests, and soundly define relevant points,
which constitutes the key difficulty of RAI.

Relying on various ideas of previous work (type overloading, abstract do-
mains and transformers, enriching concrete execution with additional symbolic
features, program dependency analysis), RAI combines and enriches them in or-
der to support unstable tests, bringing specific technical contributions on how to
efficiently and soundly analyze relevant executions segments several times, how
to define split-merge sections and find minimal lists of variables to save/merge.
To the best of our knowledge, such a combined technique for numerical analysis
has never been proposed before. The main benefits of our toolchain lie in its
ability to scale up well for thin scenarios while preserving soundness, and in its
management of I/O and memory manipulations without the need of stubs.

7 Conclusion and Perspectives

Assessment of numerical accuracy in critical programs is crucial to prevent ac-
cumulation of rounding errors that can provoke dangerous bugs. This work has
presented an original hybrid verification technique for verification of numerical
accuracy and robustness, Runtime Abstract Interpretation (RAI), that combines
abstract interpretation and runtime verification and is able to soundly and effi-
ciently handle unstable tests. We implemented a prototype RAI toolchain that



has been evaluated on a representative set of numerical C programs and on two
industrial case studies. The results show that RAI can efficiently and soundly
analyze numerical accuracy for industrial programs on thin numerical scenarios.
Future work includes a large evaluation on real-life programs and an extension
of the toolchain to support all features of the C programming language.
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A Appendix: Supplementary Material

This appendix is added for convenience of the reviewers, not for publication.

A.1 Benchmarks Used in the Experiments

For convenience of the reviewers, we prepared an anonymized link to the source
code of the benchmarks (except industrial ones) used in the experiments in this
paper. They are (or will be soon) available at

https://frama.link/benchs_fldlib_ase20

A.2 Virtual Machine

For convenience of the reviewers, a virtual machine is (or will be soon) available
at

https://frama.link/vm_fldlib_ase20

This VM contains the benchmarks (except industrial ones) and the tools in-
stalled. It allows to reproduce the experiments and was tested with Virtual Box.

In case of a temporary access problem to the provided links, the reviewers
can kindly contact the authors via the PC Chairs.

A.3 An Example of Self-analyzing Code for a Function with two
Conditionals

Figure 12 provides a more complete example, similar to Fig. 5, but with two
consecutive conditional statements. Again, the resulting Self-analyzing Code is
a simplified pseudo-code version of the real code for RAI, but we hope it gives
useful insights on the method.

In reality, in this specific case, FLDCompiler would create a separate split-
merge section for each conditional statement. In order to give a more interesting
example (that is not too similar to Fig. 5), we assume in this example that both
conditional statements are in the same split-merge section.

The user can indeed adjust the split-merge directives manually, making one
section instead of two consecutive sections. (This can sometimes increase analysis
precision, since domain merging is done later on the path and fewer times. That
is done at the cost of increasing the number of paths to analyze and analysis
time.)

The split directive has two arguments, since x and y are read and can
be modified by an execution of the section. For x it is obvious. In fact, y is
also modified since it is involved in the condition on line 20 (and therefore, the
Assume primitive on lines 14–15 in Figure 12b propagates constraints on y and
therefore modifies y). For simplicity, we did not detail this case in the simplified

https://frama.link/benchs_fldlib_ase20
https://frama.link/vm_fldlib_ase20


presentation in Sec. 4.3, where, in fact, floating-point variables read in conditions
inside a split-merge section must be also added into a split-list.

The merge directive has only one argument, since only x is used after the
section and therefore must be merged.

A.4 Complete Code of the Motivating Example Used in the
Experiments

The complete code of the example (an interpolation function from Fig. 1, with
various sizes of the table) used in the first set of experiments in Sec. 5, is given
in Fig. 11. The table used in the experiments is present in the provided archive
with the benchmarks.

We consider the whole interval of values in∈ [0, n−1]. Notice that the prelimi-
nary knowledge of the table measures is not necessary to create the Self-analyzing
Executable Code. Our RAI toolchain will soundly analyze the program for the
concrete table read from a file in the beginning of its run.

1 #include "io.h" // load an external library
2

3 static const int MAX_ARRAY_SIZE = 2000;
4

5 double interpolate(double *tbl , int n, double in) {
6 double out;
7 int idx = ( int) in; // truncation to an integer
8 i f (idx < 0 || idx >= n-1) // out -of -bound values
9 out = (idx < 0) ? tbl[0] : tbl[n-1];

10 else // computation from the two closest integer values
11 out = tbl[idx] + (in - idx) * (tbl[idx +1] - tbl[idx]);
12 return out;
13 }
14

15 int main( int argc , char* argv) {
16 io_double_array simple_array = io_read_array(argv [1]);
17 int len = io_get_size(simple_array );
18 double array[MAX_ARRAY_SIZE ];
19 for ( int i = 0; i < len; ++i)
20 array[i] = io_get_array_value(simple_array , i);
21

22 double in = io_get_dynamic_value_in_interval (0, n-1, -1e-5, 1e-5);
23 // assume ’in’ in the interval [0,n-1] with error in [-1e-5, 1e-5]:
24 /*@ assert accuracy_enlarge_dval_err(in, 0, n-1, -1e-5, 1e-5); */
25 double res = interpolate(array , len , in);
26 /*@ assert dprint(res); */
27 io_close_array (& simple_array );
28 return 0;
29 }

Fig. 11: The complete code of the motivating example with an interpolation table
used in the experiments in Sec. 5, of Fig. 10.



1 f loat f oo ( f loat x , f loat y ){
2

3

4

5

6 s p l i t (x , y ) ;

7 // x,y to save/restore

8 // for each new execution

9

10

11

12

13

14

15

16 int b1 = ( x < 0 ) ;

17 i f ( b1 ) {
18 x = −x ;

19 }
20 int b2 = ( y > 0 ) ;

21 i f ( b2 ) {
22 x = x + y ;

23 }
24

25

26

27 merge ( x ) ;

28 // only x to merge, since

29 // y is not used below

30

31

32

33

34

35 return x ;

36 }

1 f loat f oo ( f l o a t f l d x , f l o a t f l d y ){
2 int br1 , bf1 , bexec1 , br2 , bf2 , bexec2 ;

3 f l o a t f l d xsave , xmerged , xtmp , ysave ;
4 xsave = x ; ysave = y ; // store initial domains at split-merge section entry

5 xmerged = (⊥,⊥,⊥) ; // set merged domains to empty
6 // fix branches taken for real and machine values:

7 for (br1, b
f
1, b

r
2, b

f
2 ∈ {0, 1}){

8 xtmp = (⊥,⊥,⊥) ; // store empty domains in xtmp

9 for ((bexec1 , bexec2 ) ∈ {(br1, br2), (bf1, b
f
2)}){ // fix the branches to follow now

10 x = xsave ; y = ysave ; // start each execution from initial domains
11 // reduce domains to the subset that executes the chosen branches:
12 i f (br1 ) Assume(xr < 0) else Assume(xr ≥ 0) ;

13 i f (bf1 ) Assume(xf < 0) else Assume(xf ≥ 0) ;
14 i f (br2 ) Assume(yr > 0) else Assume(yr ≤ 0) ;

15 i f (bf2 ) Assume(yf > 0) else Assume(yf ≤ 0) ;
16 int b1 = bexec1 ; // ensure the flow follows the chosen branch
17 i f ( b1 ) { // deduce new domains after numerical operations:
18 x = ComputeUnitOp(−, x); // propagates x = -x;
19 }
20 int b2 = bexec2 ; // ensure the flow follows the chosen branch
21 i f ( b2 ) { // deduce new domains after numerical operations:
22 x = ComputeBinOp(+, x, y); // propagates x = x + y;
23 }
24 // if real/machine executions diverge:

25 i f ((br1, b
r
2) 6= (bf1, b

f
2)){ // then merge them separately

26 i f ((bexec1 , bexec2 ) = (br1, b
r
2)) xtmp

r = Joinr(x
tmp
r , xr) ;

27 i f ((bexec1 , bexec2 ) = (bf1, b
f
2)) xtmp

f = Joinf(x
tmp
f , xf) ;

28 xtmp
e = ComputeErr(xtmp

r , xtmp
f ) ;

29 x = xtmp ;
30 }
31 } // end of enumeration of subcases

32 xmerged = Join(xmerged, x) ; // merge output variables
33 } // end of enumeration of possibles cases

34 x = xmerged ; // set resulting merged domains
35 return x ;
36 }

Fig. 12: (a) Function foo with two conditions (with one split-merge section in-
serted by FLDCompiler), and (b) the resulting (simplified) Self-analyzing Code
for RAI.
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