
HAL Id: cea-04477117
https://cea.hal.science/cea-04477117

Submitted on 26 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Runtime assertion checking and static verification:
Collaborative partners

Fonenantsoa Maurica, David R. Cok, Julien Signoles

To cite this version:
Fonenantsoa Maurica, David R. Cok, Julien Signoles. Runtime assertion checking and static verifi-
cation: Collaborative partners. Lecture Notes in Computer Science, 2018, 11245 (Part 2), pp.75-91.
�10.1007/978-3-030-03421-4_6�. �cea-04477117�

https://cea.hal.science/cea-04477117
https://hal.archives-ouvertes.fr


Runtime Assertion Checking and Static
Verification: Collaborative Partners

Fonenantsoa Maurica, David R. Cok, and Julien Signoles

CEA, LIST, Software Safety and Security Laboratory,
PC 174, 91191 Gif-sur-Yvette, France

david.cok@cea.fr

Abstract. Runtime assertion checking aspires to a similar level of sound
and complete checking of software as does static deductive verification.
Furthermore, for the same source language and specification language,
runtime and static checking should implement as closely as possible the
same semantics. We describe here the architecture used by two different
systems to achieve this goal. We accompany that with descriptions of
novel designs and implementations that add new capabilities to runtime
assertion checking, bringing it closer to the feature coverage of static
verification.

1 Introduction

Automated deductive, static verification of software has been increasing in capa-
bility over the past decade.1 This trend was initially fueled by performance and
feature improvements in SMT solvers and has now reached the point that soft-
ware verifications of industrial software in practical use are being executed [9].
Similarly, runtime assertion checking is improving in capability. Runtime check-
ing requires creative and efficient implementations to be able to execute programs
instrumented with runtime checks effectively.

In addition, runtime and static checkers are increasingly part of suites of
tools, with the assertions being checked coming from some common specification
language. Other related tools might perform tasks like specification inference,
white box testing, and abstract interpretation. As parts of tool suites, acting on
common programming and specification languages, these tools should all adopt
a common semantics for both the programming and specification languages.
Ideally they accomplish this using a common software infrastructure.

This paper has two goals. First we describe how two different tool suites
— OpenJML [13,14,15,16] for Java and the Java Modeling Language [10] and
Frama-C [26] for ANSI C and the ANSI-C specification language [7] — have each
architected common infrastructures in order to achieve both common semantics
for their respective languages and common software implementations. Secondly,
we describe advances in runtime assertion checking that are closing the gap

1 as has abstract-interpretation-based static analysis, but in this paper we focus on
proof-based verification.
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between the kinds of assertions that can be checked by runtime checkers and
those provable by static deductive program verification.

2 Tool Suites for Specification Languages

In response to the ubiquitous presence of non-robust software, and in particular,
software that contains safety or security risks, there is active research and tool
development whose goal is to ensure that software does what it is supposed to
do. However, defining what a software system is supposed to do is not simple.
One aspect, called implicit specifications, is that a program should not violate
any of the rules of its underlying programming language, such as executing un-
defined operations. This is important, since such undefined operations, like out
of bounds memory accesses, are an important contributor to security vulnera-
bilities. However, this aspect alone does not enable checking that a program’s
actions are correct. For that we need a means to express the functional require-
ments for the program, using explicit specifications, in a precise enough way
that those requirements can be checked against the implementation by (largely)
automated tools. That is we need languages to express formal specifications.

A number of such specification languages are in active use, each paired with
a programming language:

– Eiffel [29], a programming language, has a built-in specification language;
– JML [10], the Java Modeling Language, expresses specifications for Java pro-

grams;
– ACSL [7], the ANSI/ISO-C Specification Language, expresses specifications

for ANSI-C programs, and the in-development ACSL++ specification lan-
guage for C++;

– SPARK [3] expresses specifications for the Ada programming language;
– Spec# [4] expresses specifications for C#, with the following CodeCon-

tracts [20] system working for .NET environments;
– Dafny [28] is a specification and programming language purpose-built for

verification.

These are all examples of Behavioral Interface Specification Languages [24]
(BISLs), in that the specification language syntax and semantics are closely
aligned with the associated programming language, with modifications to ac-
commodate logical specification and reasoning. Alternative examples are the Z
specification language [37] and the B-method [1] whose designs are more math-
ematical and programming-language independent. The rationale for BISLs is
that the similarity to programming languages makes learning easier. All of these
languages use similar designs and follow the pioneering work of Larch [22].

Each of these specification/programming languages has associated tool suites.
In this paper we will focus on two such tool suites: the OpenJML [13,14,15,16]
tool for Java and JML, and the Frama-C [26] platform for C and ACSL. We will
also limit discussion to two applications: automated static deductive verification
(DV) and runtime assertion checking (RAC).



3

DV follows the following paradigm: the intent of the software under study (the
‘target software’) is expressed in machine-readable specifications, with the im-
plicit specifications being generated by tools based on the programming language
semantics; the specifications and the target software are together translated into
a logical form; a logical proof tool then determines, if possible, whether the logi-
cal representations of the specifications and the implementation are consistent. If
so, then the implementation is considered verified, that is, to be consistent with
the specifications; if not, then either the implementation or the specifications (or
both) have some fault to be found and corrected. Automation is critically impor-
tant for the technique to become widespread and for efficiency in application,
though some elements of the proof in some tools are delegated to interactive
provers. Also, human interaction takes the form of writing and debugging the
specifications so that they are amenable to machine proof. Specifications for
programs that are affected by the external system or physical environment must
include models of those aspects as well. For example, software for cyber-physical
systems will include models of the physics of the physical world, including the
possibility of inaccuracies or outright failures in sensors and effectors.

Runtime assertion checking2 also takes explicit and (possibly tool-generated)
implicit specifications as input. The specifications are converted into boolean
assertions that are then compiled into the target software as instrumentation.
The target software is then run as usual, perhaps on a suite of dynamic test
cases. If any instrumented assertion is found to be false during these executions,
the RAC platform will alert the user to the assertion violation. If no such alert is
given, then the target software meets the specifications for the given set of test
inputs. Software that interacts with the environment is a particular challenge for
RAC (and dynamic testing in general), because it is difficult to arrange for all
the unusual situations and error conditions that the environment might display.

DV can prove correct behavior for any input, if the required proof is not be-
yond the capability of the underlying tools. RAC always succeeds but only checks
assertions that are executable and only for those inputs tested. In each case,
“correctness” is measured by conformance to the specifications, which them-
selves must be reviewed for fidelity to the system’s actual requirements. Both
tools are useful together, and all the more so when the target software is safety-
or security-critical.

3 Software Architecture

With similar goals and similar reliance on a common specification language, it is
good design that static and runtime checking would use a common architecture.
In the following subsections we describe how that is achieved by two different
systems.

2 Here we are distinguishing runtime assertion checking from runtime verification [6],
which typically deals with temporal properties, e.g. LTL properties.
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3.1 OpenJML for Java and JML

The Java Modeling Language is a specification language for Java programs.
An example of JML is given in Fig. 1. Syntactically, JML specifications are
written as structured Java comments (beginning with //@ or /*@). A method’s
specification is expressed as a sequence of clauses. The requires clause is a
pre-condition, stating what must be true at the time a method is called, and
then equivalently, what may be assumed when checking the implementation of a
method. The assignable clause denotes a frame-condition, which must list any
memory locations that are possibly modified by a method. An ensures clause is
a post-condition, stating conditions the method implementation must guarantee
and thus what may be assumed by callers after the method executes. A signals
clause is a post-condition that must hold when the method exits by throwing
an exception. Invariant clauses are part of a class’s specification and state
data structure consistency properties that must be maintained by all methods.
Tools such as OpenJML [13,14,15,16] and KeY [2] are able to read and check the
consistency of the Java implementation and the associated specifications.

OpenJML is a tool built on the OpenJDK [42] Java compiler. The architec-
ture of OpenJDK and OpenJML is shown in Fig. 2. As is common for compilers,
OpenJDK has multiple phases: the input source code is scanned, parsed, names
resolved, and type-checked, producing a forest of Abstract Syntax Trees (ASTs)
representing the program. This AST is then subject to various optimizations and
transformations and then emitted as Java byte code. The OpenJDK compiler
phases are Java classes that are readily extended by JML versions, which scan,
parse, resolve, and type-check the text contained in the JML annotations along
with the Java code. The JML annotations are converted into assumptions and
assertions that are inserted into the AST. This translation step embodies the
semantics of the JML specifications. Furthermore, the AST serves as an interme-
diate representation and the focal point for other tools and program analyses. It
can be pretty-printed, subjected to other programmer-initiated transformations,
and the like. In this case, the modified ASTs can be sent to the (unmodified)
code-generation phase to produce output byte-code with embedded JML asser-
tions. Or the ASTs can be sent to the Java and JML logical encoding phase,
which produces an SMT-LIB [5] equivalent of the AST (embodying the seman-
tics of Java). SMT solvers can then determine whether all assertions in the
SMT-LIB encoding are valid. A central point of this architecture is that the
JML semantics are embodied in the JML-enhanced AST, which is used by both
runtime and static checking. Thus by design the two modes of checking rely on

1 //@ requires i != Integer.MIN_VALUE;
2 //@ assignable \nothing;
3 //@ ensures \result >= 0 && (\ result == i || \result == -i);
4 //@ signals (Exception e) false;
5 int abs(int i);

Fig. 1. Example JML specification of an absolute-value method.
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a common semantics and a common implementation of AST transformations
and optimizations. The Java semantics is still implemented separately, since for
runtime checking the Java semantics is embodied in the code generator and for
static checking it is embodied in the logical encoding.

Fig. 2. Architecture of OpenJDK and OpenJML

3.2 Frama-C for C Code and (E-)ACSL Specifications

Frama-C [26] is an open source platform that provides a collection of interoper-
able sound software analysis tools for C source code (more precisely, ISO C99
code). The analyzed C source code may be annotated with formal specifications
written in the ACSL specification language [7]. ACSL formal annotations may
also be generated by Frama-C analyzers in order to be verified by others. ACSL
shares many features with JML for Java, but relies on the C syntax, as shown in
Fig. 3, which is a translation of the JML example of Fig. 1 to ACSL. Note that
there is no signals clause in ACSL since there is no exception mechanism in C.

The Frama-C platform is based on a common kernel that provides a uniform
setting and common services to analyzers seen as plug-ins, as depicted by its
architecture shown in Fig. 4. The most important service shared by the Frama-C
analyzers is a common normalized typed AST for ACSL-annotated C code. It
ensures that every Frama-C tool has the very same abstract view of the analyzed
code and the same pieces of information about implementation-defined behaviors
(e.g., the size of C types and endianness are provided by a kernel parameter
controlling machine-dependent information: they are shared by every analyzer).
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1 #include <limits.h>
2

3 //@ requires i != INT_MIN;
4 //@ assigns \nothing;
5 //@ ensures \result >= 0 && (\ result == i || \result == -i);
6 int abs(int i);

Fig. 3. Example ACSL specification of an absolute-value function.

However, the Frama-C kernel only provides a small amount of semantic in-
formation about the code: the Frama-C plug-ins must analyze the AST in a
consistent and sound way with respect to the ISO C99 standard and the ACSL
reference manual. Only a few kernel checks prevent introducing inconsistency
and unsoundness. Among them, the kernel checks (1) that most AST internal
invariants are preserved by program transformation and (2) that the validity
statuses of properties are consistently emitted by Frama-C analyzers (that is, no
analyzer A indicates that property p is valid, while analyzer B indicates that
property p is invalid) [17].

Plug-ins

plug-in 1 plug-in 2 . . . plug-in n

Kernel Services

AST Traversal

visitor analysis

AI

memory states

abstract interp

ASTs

ast

untyped ast

Plug-in Interactions

cmdline parameters

plugin entry points

Libraries

stdlib

datatype project

utils

Kernel Internals

src2cabs cabs2cil runtime

Fig. 4. Frama-C Software Architecture

Among many others, Frama-C plug-ins include three principal plugins: the
abstract-interpretation based value analysis Eva [8], the deductive verification
tool Wp, and the runtime assertion checker E-ACSL [36].



7

Eva computes a sound over-approximation of the set of values for each pro-
gram memory location at each program point. It also checks each potential
undefined behavior and raises an alarm for any of them as soon as it might hap-
pen. These alarms are also expressed by ACSL annotations: if proven valid (resp.
invalid) (possibly, by another Frama-C analyzer), it ensures that the undefined
behavior never happens (resp. does happen in at least one concrete execution).
In addition, to checking for undefined behaviors, Eva also tries to evaluate ACSL
annotations, but it usually succeeds for the simplest ones only.

Indeed, verifying statically that the analyzed code satisfies its ACSL anno-
tations is the goal of Wp, by means of deductive verification. For that purpose,
Wp generates proof obligations to be proven by external provers (e.g., Alt-Ergo,
Z3, CVC4) or proof assistants (e.g., Coq, PVS) through Why3 [21].

Compliance of the code to ACSL annotations may also be checked at runtime
through the E-ACSL tool, which converts each annotation to an equivalent C
expression. However, even if close to JML, the ACSL specification language was
designed with deductive verification in mind. Thus, some of its constructs cannot
be checked in finite time at runtime, typically (unbounded) quantifications over
all mathematical integers or reals. Consequently, the E-ACSL tool only deals with
a (large) subset of the ACSL specification language, named the E-ACSL speci-
fication language [19,35].3 It is worth noting that, while being consistent, the
semantics of the ACSL and E-ACSL specification languages differ. The former
is a (total) mathematical semantics such that the predicate 1/0 == 1/0 is well
defined and trivially holds by reflexivity of equality. However, this semantics
is not suitable at runtime because terms such as 1/0 cannot be evaluated. To
solve this issue, the E-ACSL specification language follows Chalin’s strong valid-
ity principle [12]: such terms and the predicates that use them are undefined.
Consequently, the E-ACSL tool reports a runtime error when trying to evaluate
them. JML also uses a semantics requiring well-defined specification expressions
for both static and runtime checking.

4 Recent Improvements in Runtime Assertion Checking

In some arenas, RAC has been the poor cousin to DV. One of the reasons for
this opinion is that static verification, when successful, can prove the absence
of errors and property violations for all permitted inputs, whereas RAC only
demonstrates this for the test inputs with which the program is run. On the other
hand, DV attempts can fail because of lack of capability in the logical solvers
used to determine validity of assertions.4 RAC can always run a program, albeit

3 Similarly, runtime checking of JML does not encode unbounded or even very large
ranges of quantification, though the language subset supported by RAC in OpenJML
is not as precisely defined as E-ACSL is for Frama-C.

4 This is not just a theoretical concern. The state-of-the-art in SMT technology is
rapidly evolving, but still does not efficiently handle all the concepts natural to
software. Proofs using bit-vector operations on 64-bit numbers and floating-point
operations can routinely take tens of minutes if they complete at all; quantified ex-



8

with some performance degradation caused by assertion checking instrumented
into the program. A second problem with RAC, however, is that not all of
the assertions contained in a specification are executable. Although DV may
encounter assertions that are not provable, the set of such assertions is smaller
than the current limitations of RAC.

Accordingly it is a research area for RAC to find well-performing algorithms
to check what have been to date non-executable assertions. The following sub-
sections describe some in-progress advances in this area. Most of these advances
are too recent to have a full assessment of their performance and general appli-
cability; such studies are planned for future publications. Here we will describe
the overall motivation, present the current state of practice and outline the in-
progress advances. This discussion focuses on the work on Frama-C using E-ACSL
for C programs, though most considerations apply also to RAC in OpenJML.

4.1 Memory-Related Properties

As already explained, E-ACSL for C is close to JML for Java. However, since the
C programming language contains low-level constructs to access to the program
memory, in particular pointers, E-ACSL must be able to express memory-related
properties. Consequently, it contains a set of built-in logic functions and pred-
icates that are absent from JML (and from the other behavioral specification
languages designed for high-level programming languages).

One such construct is \valid(p), which means that pointer p can safely
be dereferenced in order to access the pointed-to value. Another construct is
\initialized(&x), stating that variable x has been initialized. Checking these
kinds of properties at runtime is usually the role of dynamic memory analyzers
such as AddressSanitizer [33] or MemCheck [34] that rely on efficient implemen-
tations of memory shadowing. Such tools are able to access in constant time the
necessary information (such as its validity or its initialization status) about a
particular memory address to detect memory violations at runtime.

However, not only is E-ACSL able to express properties about some partic-
ular address, but it may also refer to allocated memory blocks. For instance,
\block length(p) is the size (in bytes) of the memory block containing p,
\base address(p) is the first address of the memory block containing p, and
\offset(p) is the byte-offset from this first address to p. Unfortunately, tra-
ditional memory shadowing techniques are not able to express such block-level
properties. Consequently, the E-ACSL tool relies on a custom shadow memory
model [41] with a compact representation of block-level properties to support
these operations.

Evaluations over standard benchmarks demonstrated that this memory model
is able to express more properties than classical models [40], while being as effi-

pressions require heuristic algorithms to decide when to instantiate the expressions;
recursion is not natural to ground solvers such as SMT tools; dynamic allocations and
heterogeneous casts between integers and pointers (in C) require low-level memory
models that make proof intractable.
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cient as MemCheck (but still slower than AddressSanitizer) and consuming less
memory than these tools [41].

Note that in DV, memory models are based on abstractions: such memory
models allow proof to be done automatically but can only express properties
about high-level data structures such as arrays, records and objects, while low-
level models may express additional operations (such as dynamic allocations and
heterogeneous casts between integers and pointers), but usually require the help
of a proof assistant (e.g. Coq) to prove the expected program properties. RAC
can deal with any programming language construct, but cannot accurately check
finest properties that may be expressed by DV memory models.

4.2 Efficient Integer Computations

Computations over integers are ubiquitous in software. Most programming lan-
guages provide various precisions of integers for different needs. Specifications,
however, are most naturally expressed in unbounded, mathematical integers (Z).
Indeed, Chalin’s research [11] showed that specifications using mathematical in-
tegers not subject to over- or under-flow were the expected semantics and best
understood by readers of specifications. Accordingly E-ACSL and JML allow
specifications to be written using unbounded integers.

It is possible, using a dedicated arithmetic library (e.g., GMPZ for C code),
to perform all numeric calculations using unbounded precision. However, this is
not at all efficient compared to using machine integers. For example there is no
need to rely on unbounded precision when handling the term 1 + 2: addition
over the C type int is sufficient. Similarly, if c is a C char variable, the int

expression c+1 will not overflow. The idea, introduced through a dedicated type
system in [25] and implemented in E-ACSL, consists in tracking the range of
possible values for each E-ACSL arithmetic term to determine what precision is
needed to perform the computation. In practice, almost all integer arithmetic
operations are computed with machine bounded integers thanks to this type
system. It is worth noting that Adacore has adapted this idea to Spark2014.

This type system has recently been extended to logic functions and pred-
icates in E-ACSL. For instance, the user can now define, say, the sum func-
tion integer sum(integer a, integer b) = a + b. If the only call to sum is done
through sum(1, 2) then the prototype of the corresponding generated C function
is long gen e acsl sum(int a, int b) (on a standard 64-bit architecture) and
so only relies on bounded machine integers. We present in the following a few
points on that work that are worth mentioning.

Recursive functions Recursive functions need special attention. For example,
consider the function f presented in Fig. 5. We need to generate multiple proto-
types for f. Indeed if it is called with an argument that fits into int (resp. long,
mpz) then we will generate the C function of prototype int gen e acsl f1(int

n) (resp. int gen e acsl f2(long n), int gen e acsl f3(mpz n)). The return
type of the different prototypes is int since f always returns 1 for any possible
value of its argument.
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1 /*@ logic integer f(integer n) =
2 n < 0 ? 1 : f(n - 1) * f(n - 2) / f(n - 3); */
3 int __gen_e_acsl_f1(int __gen_e_acsl_n );
4 int __gen_e_acsl_f2(long __gen_e_acsl_n );
5 int __gen_e_acsl_f3(mpz __gen_e_acsl_n );

Fig. 5. A logic function f defined in ACSL and declarations of three corresponding C
functions depending on the value of n. The most precise interval within which f ranges
is I = [1; 1]. Thus f will be typed into int in the best scenario.

Now, automatically computing the most precise range of E-ACSL’s recursive
functions in the general case is extremely hard, if not impossible, considering the
expressiveness of the language. For example, even for the very restricted subset
of E-ACSL where we only consider linear expressions, the problem is already NP.
Fortunately, our concern is not to perform the utmost precise interval inference,
but rather to perform an interval inference that is only precise enough so that
we do not call bignum libraries.

To achieve that, we consider an over-approximation of the problem, that we
express in a system of interval equations. For example, the system we build
for the above presented f is X1 = [1; 1] ∪ X2 · X2/X2

∧
X2 = [1; 1] ∪ X3 ·

X3/X3

∧
X3 = [1; 1]∪X3 ·X3/X3 where X1 (resp. X2, X3) denotes the interval

over which ranges gen e acsl f1 (resp. gen e acsl f2, gen e acsl f3). Our
current way of solving those systems is such that we can infer that f ranges over
[−103; 103]. Though [−103; 103] is much wider than the optimal range [1; 1], it
still lies within int: E-ACSL is able to determine that int is sufficient as return
type of f .

Termination We point out that the interval inference process is independent
of the function’s termination. Indeed we always obtain an interval, [−∞; +∞] in
the worst case, in a finite amount of time whether the function terminates or not.
This raises the following question: how should we treat non-terminating recursive
functions? The user will most likely not appreciate having his analysis stuck
in some infinite recursion. Unfortunately, it is impossible to check termination
of E-ACSL logic functions in the general case. This is, once again, due to its
expressiveness.

We could perform (incomplete) termination analysis before translating and
emit a warning every time termination is not guaranteed. However there is a
solution that completely ensures that no non-terminating function is defined.
This solution requires the user to provide a ranking function for each recursive
function definition. This can be achieved by syntactically forcing each E-ACSL
recursive function definition to have an attached decreases clause. Such clauses
already exist for specifying termination of (recursive) C functions.

A decreases clause takes some quantity Q that is supposed to strictly de-
crease at each function call until reaching a minimum value, thus guaranteeing
termination. During RAC, if Q is indeed decreasing then the function runs nor-
mally. Otherwise the execution is aborted with the indication that Q failed to
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decrease: the user needs to provide another ranking function candidate and/or
check whether the function is actually non-terminating. Support for decreases

clauses is a future work for E-ACSL and is complicated by the possibility of
defining arbitrarily large groups of mutually recursive functions.

4.3 On Support for Real Numbers

RAC is especially well-suited for verifying programs that manipulate Floating-
Point (FP) numbers. FP computations are affected by tricky rounding behav-
iors. For example the Java equality 0.2f == 0.1999999992549419403076171875f

counter-intuitively evaluates to true. These behaviors render verification ex-
tremely hard. The father of modern FP computation himself, Kahan, called out
for “desperately needed remedies for the undebuggability of large floating-point
computations in science and engineering” in 20115. Still, industrial programs
that deal with FP numbers, including those from critical industries, perform
very complex numeric computations.

For the time being, DV still needs maturation before being able to handle
large FP computations. This is mainly due to the fact that SMT solvers do
not scale for large FP formulas. Until then, we propose RAC to come to the
rescue. For verifying numeric programs written in C, we propose to write the
specifications in standard mathematics and let E-ACSL, coupled with a few other
tools, check them at runtime. By standard mathematics we mean real semantics
for which operations are error-free. One advantage of our approach is that it can
be used by users that are not familiar with FP computations, which is the case
for “95% of folks out there” as jokingly said by the father of Java, Gosling6, as
long as they remember their high school mathematics.

The role of E-ACSL is to generate the sequence of calls to the real-arithmetic
functions for all the real operations found in the specifications. In particular,
special care needs to be taken to make sure that support for reals is well inte-
grated with the interval inference and the type system for integers discussed in
the previous section. Moreover, we can minimize calls to specialized libraries for
real arithmetic in the same way as is accomplished for integers, as illustrated in
Figure 6. However, such optimizations are not yet implemented. Plus, we have
only implemented support for rationals for the time being. Indeed, we only use
FP numbers and the operations +− ∗/ in our current test cases. Thus, though
we can have complex use cases within such a setting, such as inversions by LU
decomposition, computations can still be done with rational numbers.

Superset of Q. Now what if we go beyond rational numbers? As a motivat-
ing example, positioning systems use trigonometric functions ubiquitously, say
for computing distances and angles in polar coordinates7. First, we point out
that any sound and fully automatic runtime checking of numeric properties ex-
pressed in a specification language as rich as E-ACSL is doomed to be incomplete

5 https://people.eecs.berkeley.edu/~wkahan/Boulder.pdf
6 https://people.eecs.berkeley.edu/~wkahan/JAVAhurt.pdf, p. 4
7 For example at NASA, some containment algorithms are verified at runtime [38].

 https://people.eecs.berkeley.edu/~wkahan/Boulder.pdf
https://people.eecs.berkeley.edu/~wkahan/JAVAhurt.pdf
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1 //@ assert \let real r = (float )(0.1f + 0.2f); ...
2 __e_acsl_real __gen_e_acsl_1 = __e_acsl_real_of (0.1f);
3 __e_acsl_real __gen_e_acsl_2 = __e_acsl_real_of (0.2f);
4 __e_acsl_real __gen_e_acsl_add = __e_acsl_real_add(__gen_e_acsl_1 ,
5 __gen_e_acsl_2 );
6 float __gen_e_acsl_r = __e_acsl_real_to_float(__gen_e_acsl_add );
7 ...

Fig. 6. An unoptimized translation. However, by taking advantage of the fact that
correct rounding is guaranteed for FP addition, as required by IEEE-754, we could
simply generate float gen e acsl r = 0.1f + 0.2f;

in the general case. This is because of the undecidability of equality between com-
putable numbers [39]8. Since we want neither to sacrifice soundness nor to resort
to non-automatic solutions, there are only two remaining options:

1. restrict the supported constructs in a way such that decidability is preserved.
Unfortunately, the obtained restriction would be too limited to be of interest.
Indeed Richardson’s theorem [32] prevents us from going beyond the set
Q ∪ {π} and the operations +, ∗,−, /, sin.

2. be incomplete, that is allow the emission of I Don’t Know at runtime.

In practice, libraries for exact real arithmetic already exist [23]9. In partic-
ular, we could use iRRAM [30], which provides support for algebraic functions
such as square root, transcendentals such as exponential and logarithm, and an
extensive set of trigonometric functions. Unfortunately iRRAM may not termi-
nate when comparing two reals that are equal. The simplest solution to that
would be to stop iRRAM when it takes too much time, in which case we should
return I Don’t Know. We expect that simple stopping criterion to give rel-
atively satisfying performance since comparison between two equal reals does
not happen often. However this is yet to be supported by experimental evidence
which we leave as future work.

5 Related work

There are large bodies of related work on both deductive verification and run-
time assertion checking, which we will not enumerate here. Our principal concern
is systems that seek to integrate these tools with others in a common architec-
ture and with well-defined specification semantics. Some of the systems we have
already referenced are in this category.

8 This theoretical limitation says that there is no terminating algorithm that can
decide, statically through DV or at runtime through RAC, the equality relation
between any pair of numbers that can be computed by Turing machines.

9 see also sections “Software Using MPFR” and “Other Related Free Software” on
MPFR’s webpage, https://www.mpfr.org/

https://www.mpfr.org/
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– The Eiffel language [29] pioneered specifications integrated with programs.
Its first intent was RAC, with specifications limited to being executable, and
later has been adding proof capability.

– Ada has a well-supported commercial companion tool, SPARK, which also
supports both DV and RAC using an integrated architecture. Like ACSL,
many contracts are executable, but non-executable assertions can be written.

– Spec# [4] was built as an extension of C# with non-null types as well as
contracts, enforced by Eiffel-like run-time checks and by a static program
verifier. En route to market, it became CodeContracts [20], a simplified and
language-agnostic specification language for .NET with a tool to insert run-
time checks and with a static analyzer to check certain properties statically.

Dafny [28], mentioned above, is designed to ensure that all assertions are
statically verified as part of compilation, so no assertions are compiled into the
code. It has mechanisms for adding detailed proof steps if necessary to verify
difficult assertions.

Regarding the verification of numeric properties, as discussed in §4 for the
particular case of RAC, the authors of [18] present a sound way of compiling
specifications written in real semantics into programs that can be executed on
machines with finite amount of memory (Scala programs). From a conceptual
point of view, the main difference with our work is that they require a tolerance
as well as the target precision to be explicitly stated. In contrast to that, we
want our compiled programs to be 100% accurate, no less. Moreover, we let our
tool decide the precision (the types) within which the different computations
must be done.

6 Combining DV and RAC

DV and RAC tools working against a common target software and its specifica-
tions can be usefully used together. One helpful workflow is the following. When
the target software is partially written, not yet provable, but executable and has
some specifications, RAC can be run to check that the specifications are valid
for the set of unit test cases. It takes more effort to actually prove (including
to debug) the software and specifications with DV, so RAC is used to perform
quick initial checks of the specifications. Once RAC has shown the software and
specifications to be largely correct, then DV can be used more efficiently to ver-
ify that the combination of software and specifications is indeed consistent for
all possible program inputs.

Similarly, suppose DV is not able to prove a set of specifications and produces
a counterexample, which is a set of program inputs that DV cannot prove to obey
the specifications. Then the engineer (or tools) can create an executable version
of the counterexample to be run with RAC; RAC will then pinpoint which
assertions are failing, identifying the incorrect software or the misconceptions in
the specifications [31].

Furthermore, when combining DV and testing with RAC, it may be hard
to know whether all the pieces of code and all the specifications are covered
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by the verification campaign. Here the combination of RAC+runtime coverage
measurements and DV+ tools that check specification coverage can be enhanced
by new tools [27] that provide unified coverage criteria for both runtime testing
and static proof. The cited paper also provides means to avoid verifying the same
functions redundantly with both DV and RAC.

7 Future Work

While the architectures we described are fairly well implemented, the principal
areas for improvement are these:

– Improvements in both the usability of specification languages and the clarity
of their semantics

– Reducing the gap between what can be checked at runtime and what can be
checked deductively. The biggest challenges for RAC are checking memory
properties, complex properties over real numbers and checking axiomatically-
stated specifications. The challenges for DV are specification in the presence
of abstraction and refinement, information hiding, and effective performance
of solvers with quantified expressions.

– Reducing the time- and memory-overhead of runtime checking, extending
the areas discussed in this paper.

One of the gaps to be filled for both static and runtime checking is modeling
the semantics of concurrency. Concurrency is a challenge for runtime checking
because the runtime assertion instrumentation can change the timing of portions
of the program and so change what races or deadlocks might occur. Even worse,
concurrent accesses to E-ACSL’s shadow memory model may lead to incorrect-
ness. Concurrency is a challenge for static verification because of its complexity:
one must model and check all possible interleavings of concurrent threads, along
with the appropriate memory model. Neither ACSL nor JML currently mod-
els concurrency. However, the closed-source prototype plug-in Mthread at CEA
relies on Eva to automatically detect unsafe concurrent accesses to shared vari-
ables. Another Frama-C plug-in10, developed by Adelard on a quite old version
of Frama-C, shares the same goal.

This paper has discussed two tools: Frama-C for C/ACSL and OpenJML for
Java/JML. At present these are independent tools, sharing common history,
specification language concepts and implementation techniques, but no common
software or intermediate representations. It is, of course, possible for this situa-
tion to be different. Indeed, Frama-C is already evolving to support C++. One
can envision a Frama-X framework whose internal representation of software and
specifications is general enough to accommodate multiple modern programming
languages. Each programming language would have a front-end and a specialized
specification language as similar as possible to specification languages for other
supported programming languages. All the languages would then use a common
back-end that created the logical encoding of the software+specifications and
managed the proof environment.

10 https://bitbucket.org/adelard/simple-concurrency

https://bitbucket.org/adelard/simple-concurrency
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8 Conclusion

Practical, sound runtime assertion checking depends on two characteristics. First,
the translation of programming language source code and specification language
assertions must be correct, according to a well-understood semantics. This cor-
rectness is best achieved when the RAC tool shares an intermediate form with
other tools also needing correct semantic translations. Here we have presented
static deductive verification as one such tool, but a few other possibilities are
model checkers, test generation, and specification inference. A shared infrastruc-
ture reduces the implementation work and increases the semantic conformance
among tools.

The second needed characteristic is practicality: the RAC tool must be able to
check as many kinds of assertions as possible and do so as efficiently as possible.
In this paper we presented advances in three areas — memory properties and
integer and real computations — demonstrating that implementations of RAC
are continuously improving and that RAC is a viable and useful element in a
suite of program analysis tools, at times in ways that cannot yet be achieved by
deductive verification.
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DIA, which has received funding from the European Union’s 2020 Research and
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