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Abstract: 

Because of their simplicity, efficiency and ability for parallelism, FFT-based methods are very attractive 
in the context of numerical periodic homogenization, especially when compared to standard FE codes 
used in the same context. The purpose of the paper is to go beyond the use of periodic Boundary 
Conditions (BC), but keeping the advantages of FFT-based implementations. The present paper focuses 
on conductivity problems, considered as a first step towards mechanical problems. The proposed 
implementation is highly flexible, allowing to apply non-uniform loadings, to choose between periodic, 
Neumann and Dirichlet BC for each face of the unit-cell (of couple of faces for periodic BC), and to 
choose between different types of Finite Differences schemes (two types are considered here). The 
implementation relies on the use of Discrete Trigonometric Transforms (i.e. sine and cosine 
transforms) and their relation with the Discrete Fourier Transform on 4 times extended signals. The 
use of DTTs implicitly considers the signal to be anti-symmetric or symmetric with respect to each 
domain boundary. A direct relationship exists between the choice of a DTT (among 16 available) used 
in a given direction and the type of symmetry assumed on each boundary. Symmetry and anti-
symmetry assumptions are respectively related to Dirichlet BC and anti-symmetry. The 
implementation has been precisely validated for various types of loading (uniform or non-uniform, full 
or combined, Dirichlet, Neumann and periodic BC) from a direct comparison with the same FE 
simulations.  
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1 – Introduction 

Solving mechanical problems defined on heterogeneous unit-cells, submitted to periodic BC, with FFT-
based algorithm was proposed initially by Moulinec and Suquet [12]. Its application to conducting 
materials is straightforward, and even simpler as the size of the tensors is decreased compared to 
mechanics (i.e vectors replaced by scalar, second order tensors by vectors etc…). Because of their 
simplicity, efficiency and ability for parallelism, they have become very popular and various 
improvements have been proposed since the original proposition. The reader is invited to read the 
review papers of Schneider [15], Lucarini [10] or Gierden [7], for an overview of the different advances. 

An important limitation of current FFT-based implementations is their restriction to periodic BC. To 
circumvent that problem, the unit-cell can be embedded in a buffer whose properties can be adjusted 
to simulate Neumann BC (see for example [4] for a simulation on a tube), or combined to a modified 
algorithm, to simulate Dirichlet BC [6]. Using a buffer zone is also proposed by To [17] [16] with a rather 
different method, using form factors. Very recently, the question was addressed differently for 
conducting materials by Monchiet [11]: instead of using a buffer, the unit-cell and the loading is 
duplicated and symmetrized consistently with the type of BC (Neumann or Dirichlet). The advantage 
is that a classical FFT-based implementation can be used ‘as it is’, the drawback is that the unit-cell is 
multiplied by 8 in 3D. In addition, their proposition is limited to uniform BC. Another approach was 
proposed recently by Grimm-Strele [9], for mechanical problems, in order to apply orthogonal mixed 
uniform BC proposed by Pahr [13]. This approach extends the previous works of Wiegmann [2] to 
heterogeneous materials: in that case, fields are implicitly symmetrized with the use of discrete Sine 
and Cosine transforms, similarly to the use of the discrete Fourier Transform. However, the 
implementation was limited to uniform loadings and to a limited number of loading cases. Note that a 
similar approach was also recently followed by Wise [20] for solving the wave propagation equation in 
a homogeneous medium with various types of BC and a Pseudo Spectral Time Derivative solver. 
Following the same approach for heterogeneous conducting materials, the aim of the paper is to 
propose a highly flexible implementation, allowing to apply non-uniform loadings, to choose between 
periodic, Neumann and Dirichlet BC for each face of the unit-cell (of couple of faces for periodic BC), 
and to choose between different types of Finite Differences schemes (two types are considered here). 

The position of any point 𝑀 is given by a vector 𝒙, whose coordinates (𝑥 , 𝑥 , 𝑥 ) are related to an 
orthonormal coordinate system (𝑂, 𝒆𝟏, 𝒆𝟐, 𝒆𝟑). The unit cell consists of a parallelepiped of dimensions 
𝐿 , 𝐿  and 𝐿 . The unit-cell is bounded by 6 faces denoted 𝑆  and 𝑆  (𝑑 = 1: 3): 𝑆  with an outer 
normal vector 𝑵𝒅

𝟎 = −𝒆𝒅, positioned at (𝑥 = 0), and 𝑆  positioned at 𝑥 = 𝐿  with a normal 
𝑵𝒅

𝟏 = −𝒆𝒅. The field equations governing the conduction problem are reported below: 

div(𝒒) = 0
𝒒 = −𝐾. 𝛁𝑻

𝑇 = 𝑇∗ + 𝑇

 (1) 

 

with 𝒒 the heat flux, 𝑇 the temperature and 𝐾 the heterogeneous thermal conductivity. Note that an 
arbitrary given field 𝑇∗ is introduced, so that the unknown field is the temperature fluctuation 𝑇.  

Different boundary conditions (BC) can be associated to each face (or couple of faces). For periodic BC 
on faces 𝑆  and 𝑆 , 𝑇 and 𝒒. 𝒆𝒅 have to be 𝐿 -periodic (same value on opposite points). For Dirichlet 



  

BC on a given surface 𝑆 , the fluctuation 𝑇 is null on 𝑆  (so that the value of 𝑇 corresponds to 𝑇∗). For 

Neumann BC on a given surface 𝑆 , the normal heat flux 𝒒. 𝑵𝒅
𝒋  must be equal to an arbitrary applied 

flux 𝑄∗ . The standard implementation of FFT-based methods for the simulation of heterogeneous 
materials only considers periodic BC on the 3 couples of faces. The proposed implementation allows 
for every combinations of BC on the 6 different faces. With 5 combinations per couple of opposite 
faces (Periodic, Dirichlet/Dirichlet, Dirichlet/Neumann, Neumann/Dirichlet and Neumann/Neumann) 
the implementation has to be flexible enough to account for 125 possible combinations (250 in fact as 
two discretization schemes will be considered). This flexibility comes from the fact that all these 
boundary conditions can be regarded as periodic boundary conditions on 2 or 4 times larger unit-cells 
using appropriate symmetries. At the centre of the proposed implementation, the FFT-based algorithm 
used with periodic BC is briefly summarized below. 

Solving problem (1) with periodic boundary conditions, using a regular spatial discretization of the 
fields over the unit-cell, can be done with Discrete Fourier Transform (with the notation 𝐷𝐹𝑇(𝑓) =

𝑓 or simply 𝑓) as follows: 

⎩
⎪
⎨

⎪
⎧𝒒 = −𝐾. (𝛁𝐃𝑻∗ + 𝛁𝐃𝑻)

𝑝 = div 𝒒 − 𝑘 𝛁𝐃𝑻   

div 𝛁𝐃𝑻 = −
𝑝

𝑘
       

                ⟺               

⎩
⎪
⎨

⎪
⎧𝒒 = −𝐾. 𝛁𝐃𝑻∗ + 𝛁𝐃𝑻  

𝑝 = div 𝒒 − 𝑘 𝛁𝐃𝑻     

T =
�̂�

𝑘 ‖𝝃𝑫‖
(≐ 𝐺 (�̂�))

                 (2) 

 

In the present formulation (2), all the variables are discrete fields, div  and 𝛁𝐃 stand for discrete 
divergence and gradient operators associated to the choice of a finite discretization D. With this choice 

comes the definition of modified wave-vectors 𝝃𝐃, so that  dıv (𝒒) = i𝒒. 𝝃𝐃 and 𝛁𝐃𝑻 = i𝑇𝝃𝐃. Their 
expressions can be found in [19] or [15] for different finite discretization schemes. Formulation (2) 
allows for the definition of a fix-point algorithm: first step, given 𝑇 evaluate 𝑝 in real space, second 
step, apply the discrete Green operator (i.e. evaluate 𝑇 from a back and forth in Fourier space), back 
to first step. The choice of the numerical parameter 𝑘  affects the convergence of the fix-point 
algorithm [12], however, using an acceleration convergence procedure (the Anderson’s acceleration 
as proposed in [4] and implemented in [8]) drastically accelerates the convergence and reduces its 
sensitivity to 𝑘 .  

After introducing the geometric discretization and the two Finite Differences (FD) schemes used in the 

present paper, the second step of the algorithm (apply Green operator T = 𝐺 (�̂�)) is first detailed, 
using Discrete Trigonometric Transforms to account for different types of symmetries in the evaluation 
of the discrete Green operator, 𝐺 . Then, the first step (evaluate 𝑝 in equation (2)) is described, using 
symmetries to extend the size of the unit-cell and evaluate discrete derivatives in real space. Finally, 
after a section devoted to additional remarks, comes the final validation with various different loadings 
demonstrating the flexibility of the implementation. 

2 – Unit-cell discretization and Finite Differences schemes 

Figure 1, illustrates the definitions used for the discretization of the unit-cell. The grid of nodes touches 
the boundaries of the unit-cell, whereas the grid of centres, translated by half a voxel do not touch the 
boundary. The size of the grid of centres is 𝑛 𝑛 𝑛  with the range [0: 𝑛 − 1] : , and the size of the 



  

grid of nodes is (𝑛 + 1)(𝑛 + 1)(𝑛 + 1) with the range [0: 𝑛 ] :  (with notation [0: 𝑛 ] : =

[0: 𝑛 ] × [0: 𝑛 ] × [0: 𝑛 ] and 0: 𝑛 = {0,1,2, … , 𝑛}). 

Two Finite Differences (FD) schemes are used: the “Octahedral” scheme corresponds to the classical 
first order centered derivation scheme (points involved in the derivation are placed on an octahedron), 
with the notation 𝑂 replacing D in (2), and the “Hexahedral” scheme, strictly equivalent to the first 
order derivation  obtained using hexahedral finite elements with reduced integration [14], with 
notation 𝐻 (points involved in the derivation are placed on an hexahedron). These different schemes 
are represented in Figure 1, on which important remarks are made: 

- For the 𝑂-scheme, all the quantities (𝑇, 𝛁𝐃𝑻, 𝒒, 𝑝) are defined on the grid of nodes, whereas 
for the 𝐻-scheme, the quantities (𝑇, 𝑝) and (𝛁𝐃𝑻, 𝒒) are defined on the grid of nodes and the 
grid of centres, respectively. 

- The evaluation of the heat flux 𝒒 = −𝐾. 𝛁𝐃𝑻 supposes 𝐾 and 𝛁𝐃𝑻 defined on the same grid. 
So, as a consequence of the previous point: for the H-scheme, 𝐾 is evaluated on the grid of 
centres and for the 𝑂-scheme, 𝐾 is evaluated on the grid of nodes. Hence, the discretization 
of the material properties is slightly different depending on the FD scheme.  

- For the 𝑂-scheme, evaluation of derivatives at the boundary requires the knowledge of 
quantities outside of the domain. For the 𝐻-scheme, only the derivation of 𝛁𝐃𝑻 or 𝒒, defined 
at centers, requires quantities defined outside of the domain. In both cases, these quantities 
are defined according to the symmetry conditions associated to the choice of BC (see next 
sections). 

 

Figure 1 : Illustration of the unit-cell discretization: definition of the ranges of the grids of corners and 
centres, locations of the different quantities depending on the Finite Difference scheme (𝑂 or 𝐻), and 
illustration of the 𝑂 and 𝐻 schemes. 

Using periodic boundary conditions in the 3 directions, with 𝑇 defined on the range [0: 𝑛 − 1] :  , 
the modified wave-vectors for the two schemes, 𝝃𝑶 and 𝝃𝑯 , can be found in [19] or [15]. 

(0,0) (1,0) 

(0,1) 

(0,0) (1,0) 

(0,1) 

𝛁𝐇𝑻 

 divH(𝒒) 

(2,0) 

Grid of nodes (for 𝑇 and 𝑝, using 𝑂- and 𝐻-schemes, and 𝛁𝐎𝑻 and 𝒒, using 𝑂-scheme) 
Grid of centres (for 𝛁𝑯𝑻 and 𝒒, using 𝐻-scheme) 

(4,0) 
(3,0) 

𝛁𝐎𝑻, div (𝒒) 

Definitions for this 2D grid: 
• Dimensions are 𝑛1 = 𝑛2 = 4 
• Range of the grid of nodes : [0: 𝑛1, 0: 𝑛2] 
• Range of the grid of centres : [0: 𝑛1 − 1,0: 𝑛2 − 1] 



  

Defining problem (1) on a 𝑀 times larger unit-cell and keeping the same grid discretization (i.e. with 
the range [0: 𝑀𝑛 − 1] :  ), the modified wave-vectors will be noted as 𝝃𝑫𝑴 (in practice  𝑀 will be 2 
or 4). 

3 – Application of the Green Operator with symmetry conditions 

Solving div 𝛁𝐃𝑻 = −  is equivalent to write 𝑇 = 𝐺 (𝑝), with 𝐺  a discrete Green operator (non-

local). Evaluating the Green operator can be done straightforwardly with DFT if periodic BC are 
prescribed (see equation (2)). The aim of the present section is to build the discrete Green operator 
with non-periodic BC. It makes use of Discrete Trigonometric Transform (DTT), which can be related to 
standard DFT on larger unit-cells. 

Note that below, DTTs gathers sine and cosine discrete transforms, and DTs, for discrete transforms, 
gathers the DTTs and the DFT. 

Notations for discrete symmetry types and their associated DTTs 

For a 1D discrete signal, the definitions of symmetry extensions outside of the domain depends: on 
the type of symmetry, which can be A (for Anti-symmetry) or S (for Symmetry), but also on the position 
of the (anti-)symmetry axis, whether located on an ending point, notation W (for Whole), or a half-
element after, notation H (for Half). Assuming that the location of the symmetry axis has the same 
location type T (whether W or H), the notation TXTY specifies the symmetry type with X and Y 
(whether A or S) respectively for the left (first) and right (or last) point of the discrete signal. In that 
case, the number of different combinations is of 8. As an example, the notation WAWS assumes an 
extension of the discrete signal with anti-symmetry (A) on the left side and symmetry (S) on the right 
side, the symmetry axis being located on the ending points (W).  In addition, it must be noted that each 
type of symmetry extension corresponds to the definition of a given DTT (see [5] and [20]) and can also 
be associated to a type of boundary condition (Dirichlet or Neumann) as seen in equation (10). Table 
1 gathers all these informations. Finally, in case of 2D (or 3D) discrete fields, the symmetry is related 
to a given direction 𝑑 (𝑑 = 1: 3, in 3D) with the notation TX TY . 

In addition, various graphical representations are given in appendix to visualize these symmetries and 
accommodate with the notation. 

Discrete symmetry type (TXTY) Discrete Trigo. Transf.  [5] Boundary Condition (left/right) 
WSWS DCT1 Dirichlet/Dirichlet 
HSHS DCT2  
WSWA DCT3 Dirichlet/Neumann 
HSHA DCT4  
WAWA DST1 Neumann/Neumann 
HAHA DST2  
WAWS DST3 Dirichlet/Neumann 
HAHS DST4  

Table 1 : The table gathers the different discrete symmetry types (T=W or H for the location of 
symmetry axis, X=S or A for the type of symmetry on the left side, and Y=S or A for the right side), see 
explanations in the next for a more detailed description of the notation), the corresponding type of DT 
according to the names defined in the fftw library [5], and the associated types of boundary 
conditions, see equation (10).  



  

3.1 – DFT 

The definition of the 1D DFT 𝐹, of a sequence of 𝑛 points 𝑓, associated to the definition of the wave-
number 𝜉 , is: 

𝐹 = 𝑓 exp (−i𝑘𝜉 ) , 𝜉 =
2𝜋𝑗

𝑛
, 𝑘 ∈ [0: 𝑛 − 1] (3) 

 

Extending this definition to 3D consists of applying 1D FFTs, separately in each direction, so that the 
definition, together with the definition of wave-vectors 𝝃𝒋, becomes: 

 

𝐹𝒌 = 𝑓𝒋exp (−i𝒌. 𝝃 )

𝒋∈[ : ] :

, 𝝃𝒋 =
2𝜋𝑗

𝑛
,
2𝜋𝑗

𝑛
,
2𝜋𝑗

𝑛
,       𝒌 ∈ [0: 𝑛 − 1] :  (4) 

 

As proposed in the previous section, we use the notation 𝐹  for the DFT of a signal with range [0: 𝑀𝑛 −

1]. Note that the definition of the wave number 𝜉 ,  is deduced from the definition of 𝜉  as follows:  

𝐹 , = 𝑓 exp (−i𝑘𝜉 , ) , 𝜉 , =
2𝜋𝑗

𝑀𝑛
, 𝑘 ∈ [0: 𝑀𝑛 − 1] (5) 

 

3.2 – DCT1 (WSWS) 

The definition of the Discrete Cosine Transform of type 1, or DCT1, is associated to the extension of 
the signal defined on the range [0: 𝑛] to the range [0: 2𝑛 − 1] that is assumed periodic (see appendix). 
Filling the extension is done according to symmetry assumptions on both sides of the initial domain. 
For DCT1, the left point (𝑖 = 0), belongs to the symmetry axis (W) and Symmetry (S) is assumed, this 
explain the first part of WSWS. The right point  (𝑖 = 𝑛) has the same properties which explain the 
second part of WSWS. Note that W stands for “whole” when the symmetry axis crosses the “whole” 
point. H stands for “half” when the axis crosses between two points. With the symmetry WSWS, the 
extension is filled according to the relation: 𝑓 = 𝑓  for 𝑗 ∈ [0: 𝑛]. 

Applying the DFT definition (5) on the twice (𝑀 = 2) extended signal (with range [0: 2𝑛 − 1] for 𝑗 and 
𝑘) and using the relation 𝑓 = 𝑓  leads (after simple manipulations) to the definition of the DCT1 
(as used in the library fftw [5]): 

𝐹 , = 𝑓 + 𝑓 (−1) + 2 𝑓 cos (
𝑘𝜋𝑗

𝑁 − 1
) = 𝐹 , 𝑘 ∈ [0: 𝑛], (6) 

 

with 𝑁 the number of points in the initial sequence (i.e. 𝑁 = 𝑛 + 1). DCT1 is performed on 𝑓 , for the 
complete range 𝑗 ∈ [0: 𝑛]. 



  

3.3 – DST1 (WAWA) 

On the difference to the previous case, the twice extended signal is filled with anti-symmetry 
assumptions on left and right points (see appendix), leading to the relation:  𝑓 = −𝑓  for 𝑗 ∈

[0: 𝑛]. This condition necessitates that the signal vanishes on extreme points: 𝑓 = 𝑓 = 0. Following 
the same procedure as for DCT1 leads to the definition of DST1 (as used in fftw [5]): 

𝐹 , = −i. 2 𝑓∗ sin
𝑘𝜋(𝑗 + 1)

𝑁 + 1
= −i𝐹 , 𝑘 ∈ [1: 𝑛 − 1], (7) 

 

with 𝑁 the number of non-vanishing points in the initial sequence (i.e. 𝑁 = 𝑛 − 1). Actually, in that 
case, DST1 is performed on 𝑓 , for a reduced range 𝑗 ∈ [1: 𝑛 − 1], excluding 𝑓  and 𝑓  necessarily set 
to 0. Equation (7) uses a renumbering with 𝑓∗ = 𝑓  for  𝑗 ∈ [0: 𝑁 − 1](= [0: 𝑛 − 2]).  

3.4 – DCT3 (WSWA) 

In the previous cases, the symmetry conditions were the same on both sides. Now, the conditions are 
symmetry on left point and anti-symmetry on right point. Hence, the signal must be extended 4 times, 
from the range [0: 𝑛] to the range [0: 4𝑛 − 1], to obtain a periodic signal consistent with the symmetry 
conditions (see appendix).  For each quarter of the extended signal we use the relations deduced from 
the symmetry conditions: 𝑓 = −𝑓 ,  𝑓 = −𝑓  and 𝑓 = 𝑓 , for 𝑗 ∈ [0: 𝑛]. Note that the 
first condition necessitates 𝑓 = 0. Following the same procedure as before, but with a 4 times 
extension (i.e. 𝑀 = 4), leads to the definition of DCT3 (as used in fftw [5]): 

𝐹 , = 2 𝑓 + 𝑓 cos
𝜋(𝑘 + 1/2)𝑗

𝑛
= 2𝐹 , 𝑘 ∈ [0: 𝑛 − 1]. (8) 

 

Here, DCT3 is performed on 𝑓  for a reduced range 𝑗 ∈ [0: 𝑛 − 1], excluding 𝑓  necessarily set to 0. 

3.5 – DST3 (WAWS) 

DST3 is defined using the same procedure as DCT3, with the symmetry relations, 𝑓 = 𝑓 ,  𝑓 =

−𝑓  and 𝑓 = −𝑓 , for 𝑗 ∈ [0: 𝑛]. The last relation, together with the periodicity condition over 
the extended domain (𝑓 = 𝑓 ), necessitates 𝑓 = 0. Similar to DST3, the definition of DCT3 reads: 

𝐹 , = −2i 𝑓∗ (−1) + 2 𝑓∗ sin
𝜋(𝑗 + 1) 𝑘 +

1
2

𝑛
= −2i𝐹 , 𝑘 ∈ [0: 𝑛 − 1]. (9) 

 

DST3 is performed on 𝑓  for a reduced range 𝑗 ∈ [1: 𝑛], excluding  𝑓  necessarily set to 0. Equation (9) 
uses a renumbering with 𝑓∗ = 𝑓 for  𝑗 ∈ [0: 𝑛 − 1].  

 

 



  

3.6 – Relations between the symmetries of 𝑓 and its derivatives 

For the sake of clarity, 2D fields are considered (adaptation to 3D or 1D fields being straightforward). 
Notation TX TY  used below is detailed at the beginning of section 3. If a field 𝑓 has the 
symmetries TX TY /TX TY , for direction 1/direction 2, with X  and Y  the type of symmetry (A or S) 
and T the location of the symmetry (W or H, for field defined at nodes or at centers),  then, the 
symmetry is inverted in the direction of derivation and kept in the other direction. In other words,  
𝑑𝑓/𝑑𝑥  has the symmetry TX TY /TX TY  and 𝑑𝑓/𝑑𝑥  the symmetry TX TY /TX TY , with the 
notation A = S and S = A. 

For example, assuming a field 𝑓 with the symmetry WSWA/WAWA (i.e. a field defined at nodes (W),  
Symmetric (S) and Anti-symmetric (A)  on the left and right sides in direction 1, and Anti-symmetric on 
both sides in direction 2), the derivative 𝑑𝑓/𝑑𝑥  has the symmetry WAWS/WAWA and 𝑑𝑓/𝑑𝑥 has the 
symmetry WSWA/WSWS. 

Note that above, the location T is not modified by the derivative, which corresponds to a Finite 
Difference scheme for which the quantity and its derivative is evaluated at the same physical point 
(the nodes here), such as the 𝑂-scheme used in the present paper. Alternatively, the derivative can be 
evaluated at centers, between the nodes where the quantities are given (see Figure 1), or conversely 
at nodes if quantities are given at centers. This is the case of the 𝐻-scheme, for which the derivation 
‘inverts’ location T in T (with the notation W = H and H = W). 

A general rule, useful for a flexible implementation, is proposed below. If a 3D field, 𝑓, has the 
symmetries TX TY /TX TY /TX TY , its derivative in direction d ,  𝑑𝑓/𝑑𝑥 , exhibits :  

- inverse symmetry types in direction 𝑑  ( X  and Y ) and no inversion in the other directions,  
- for 𝐻-scheme, an inverse symmetry location 𝑇 (no inversion for the 𝑂-scheme). 

3.7 – Relations between symmetries and non-periodic BC 

As mentioned in the previous sub-sections, the WA symmetry condition is associated to a null value at 
the boundary: 𝑇 = 𝑇 = 0 for WAWA,   𝑇 = 0 for WAWS, and 𝑇 = 0 for WSWA. Hence, using the 
DTT associated to the anti-symmetry conditions, supposes implicitly a null Dirichlet BC that is 𝑇 = 0. 

According to the previous subsection, if a 1D field 𝑇 has a WS symmetry condition then 𝑔 = 𝑑𝑇/𝑑𝑥 
has a WA or HA symmetry (whether the 𝑂- or 𝐻-scheme is used). As noticed just before, the WA 
symmetry is associated to a null value at the boundary. For the HA symmetry, the relation is (for the 
left point) 𝑔 = −𝑔 . However, located at centers 𝑔  and 𝑔  are defined on both side of the 
boundary so that the value at the middle point, that falls on the boundary, is evaluated by 𝑔 / =

(𝑔 + 𝑔 )/2 = 0. For 3D fields, applying a WS symmetry in direction 𝑑 is equivalent to a null 
Neumann condition that is 𝛁𝑫𝑻. 𝑵𝒅 = 0 (with 𝑵𝒅 the outer normal to the boundary in direction 𝑑).  

In brief, applying null Neumann or Dirichlet BC on 𝑇 can be done assuming appropriate symmetries for 
𝑇 as follows: 

S symmetry for 𝑇  ⟹  null Neumann BC (𝛁𝑫𝑻. 𝑵𝒅 = 𝟎)

A symmetry for 𝑇  ⟹  null Dirichlet BC (𝑻 = 𝟎)              
   (10) 

 



  

 

3.8 – Green operator with null-Dirichlet, null-Neumann and Periodic BC  

This section describes step by step the application of the Green operator 𝑇 = 𝐺 (𝑝), assuming that 𝑝 
and 𝑇 are 1D fields with the same range [0: 𝑛], and the same symmetries (i.e. BC). 

The connections established in the previous sub-sections between various DTs and DFT can be 
summarized as follows: 

𝑆 (�̂� ) = 𝛼𝑆 (𝑝)    (11) 
 

𝑆  is a selection operator for arrays in real space. The range of 𝑝 is [0: 𝑛] and the range of 𝑆 (𝑝) is 
[0: 𝑁 − 1], with 𝑁 the number of selected points. The points selected by 𝑆  for each DT (see previous 
sub-sections) are gathered in Table 2. 

𝑆  is a selection operator for arrays in Fourier space and 4 times extended unit-cells. The range of 
�̂�  is [0: 4𝑛 − 1]  and 𝑆 (�̂� ) is an array of range [0: 𝑁 − 1], with 𝑁 the number of selected 
points. The points selected by 𝑆  for each DT are gathered in Table 2. Note that in the previous 
subsections, selection is made for different extension factor  : 1 (trivially, for DFT), 2 (for DCT1 and 
DST1) or 4 (for DCT3 and DST3).  To simplify, selection is performed for the same extension factor 𝑀 =

4 (i.e. in the same range [0: 4𝑛 − 1]), assuming 4 periodic repetitions for DFT,  and 2 for DCT1 and 
DST1). Then the selection is done by multiplying by 2 (for DCT1 and DST1) or 4 (for DFT) the ranges 
selected for 𝑀 = 2 or 𝑀 = 1, as done in Table 2.  

The factor 𝛼 is not reported in Table 2 as its effect will be annihilated by a factor 1/𝛼 in a further step 
(equation (13)). It can be easily deduced from previous sub-sections. 

Once a selected range of Fourier coefficients 𝑆 (�̂� ) has been evaluated from DT applications 
(equation (11)), the Green operator 𝐺  is applied for the same selection range: 

𝑆 𝑇 = 𝑆 𝐺 �̂� = 𝑆 𝐺 𝑆 (�̂� ) =
𝑆 (�̂� )

𝑘 ‖𝑆 (𝜉 )‖
  (12) 

 

where 𝜉  are the modified wave-numbers evaluated for a 4 times extended domain. 

Equation (11) is now applied to deduce 𝑆 𝑇 from  𝑆 𝑇  according to: 

𝑆 𝑇  =
𝑆 𝑇

𝛼
   (13) 

 

Then, inverse DT can be applied to 𝑆 𝑇 to obtain 𝑆 𝑇 . 

Finally, the points which have not been selected by 𝑆  in [0: 𝑛], that corresponds to points located at 
the boundaries, must be filled: in case of Dirichlet BC on 0 and/or 𝑛, then 𝑇 = 0 and/or 𝑇 = 0, in 
case of periodic BC, then 𝑇 = 𝑇 . 



  

For the sake of simplicity, the presentation was done in 1D. However, the extension to 3D is rather 
straightforward and relies on the fact that the 3D transform corresponds to a succession of 1D 
transforms in each direction (with appropriate DT corresponding to the BC in each direction). The 
selection operators 𝑆  and 𝑆  now operates on 3D arrays with the selection rules proposed in Table 
2 for each direction. In equation (12), the wave-number 𝜉  in 1D is replaced by the wave-vector 𝝃𝑫𝟒, 
whose definition is given in [19] [15]. 

In terms of implementation, it must be emphasized that if 4 times extended fields are considered in 
Fourier space, only the values selected by 𝑆  appear in equations (11)(12)(13), and each quantity of 
type 𝑆 (𝑋 ) corresponds to a 3D array of range [0: 𝑁 − 1] : , with 𝑁  the number of points used 
in DT (see Table 2). Note that the array 𝑆 (𝝃𝑫𝟒) in equation (12) corresponds to a selection of wave-
vectors that can be evaluated once, at the beginning of the iterative fix-point algorithm. 

To summarize, assuming that 𝑝 and 𝑇 have the same symmetries, the application of the (non local) 
Green operator 𝑇 = 𝐺 (𝑝) is rather simple and flexible as soon as the selection operators 𝑆  and 𝑆  
are correctly initialized in agreement with Table 2. The four steps are: 

- DT on a selected range (𝑆 ) of 𝑝 (→ equation (11)), 
- Application of the Green Operator, for selected (𝑆 ) wave-vectors (→ equation (12)), 
- Inverse DT (of equation (13)), to obtain 𝑇 on the selected range (𝑆 ), 
- Adjust non-selected points (for Dirichlet and Periodic BC). 

DT 𝑆  : selection in [0: 𝑛] 
(Real space) 

𝑆  : selection in [0,4𝑛 − 1]  
(Fourier space) 

𝑁 : number of 
selected points 

WSWS / DCT1 [0: 𝑛] 2 × [0: 𝑛]                      (0,2,4 … , 2𝑛) 𝑛 + 1 
WSWA / DCT3   [0: 𝑛 − 1] 2 × [0: 𝑛 − 1] + 1      (1,3,5 … , 2𝑛 − 1) 𝑛 
WAWA / DST1 [1: 𝑛 − 1] 2 × [1: 𝑛 − 1]              (2,4,6 … , 2𝑛 − 2) 𝑛 − 1 
WAWS / DST3 [1: 𝑛] 2 × [0: 𝑛 − 1] + 1      (1,3,5 … , 2𝑛 − 1) 𝑛 
P / DFT [0: 𝑛 − 1] 4 × [0: 𝑛 − 1]              (0,4,8 … , 4𝑛 − 4) 𝑛 

Table 2 : Range selections in real (𝑆 ) and Fourier space (𝑆 ) for various Discrete Transforms 

 

 

 

4 – Evaluation of 𝑝 (see equation (2)) with non-uniform BC 

The fix-point algorithm described in equation (2) (left), summarizes in two steps: evaluate 𝑝(𝑇), apply 
the Green operator (𝑇 = 𝐺 (𝑝)). The second step was the purpose of the previous section. The 
evaluation of 𝑝, described below, is done in real space using finite differences with the 𝑂- or 𝐻-scheme. 
Recall that 𝑝 is defined on the grid of nodes, as well as 𝑇, with the range [0: 𝑛]. 

4.1 – Evaluation with non-uniform Dirichlet or periodic BC and null Neumann BC 

The definition of 𝑝 is given in equation (2) and it is divided in two parts 𝑝 = 𝑝 − 𝑝  with 𝑝 = div (𝒒) 

and 𝑝 = 𝑘 div 𝛁𝑫𝑻  where the norm of 𝑝  is used as convergence criterion. The important steps 

of the evaluation are reported below. 



  

Step 1: Evaluating 𝛁𝑫𝑻 

The derivation of  𝑇 using 𝐻-scheme, naturally gives the complete field of 𝛁𝑫𝑻 defined at centres 
(range [0: 𝑛 − 1] : ). On the contrary, using the 𝑂-scheme, 𝛁𝑫𝑻 being defined at nodes (range 
[0: 𝑛 ] : ), it requires the knowledge of  𝑇 in the 6 planes (indices 𝑖 = −1 and 𝑖 = 𝑛 + 1, for each 
direction 𝑑) surrounding the unit-cell. The value of 𝑇 for these additional points are evaluated 
according to the symmetry conditions, chosen in agreement with the choice of BC (see section 3.7). 

Step 2: Evaluating div 𝛁𝑫𝑻   

div 𝛁𝑫𝑻  is defined at nodes (range [0: 𝑛 ] : ). Using the 𝑂-scheme, 𝛁𝑫𝑻 being defined at nodes 
(with the same range [0: 𝑛 ] : ), it requires the knowledge of  𝛁𝑫𝑻 in the 6 surrounding planes (of 
nodes). Similarly, using the 𝐻-scheme requires the knowledge of  𝛁𝑫𝑻 in the 6 surrounding planes (of 
centres). In both cases, the symmetry conditions of 𝛁𝑫𝑻, deduced from the symmetry of 𝑇 in section 
3.6, are used. 

Step 3: Evaluating 𝒒 = −𝐾. (𝛁𝐃𝑻∗ + 𝛁𝐃𝑻). 

The evaluation of 𝒒 is very simple, and emphasis is put on the term 𝛁𝐃𝑻∗. Defined during the 
initialization, it allows for non-uniform Dirichlet or periodic BC.  

For Dirichlet BC on both sides (i.e. WAWA symmetry), in a given direction 𝑑, 2D heterogeneous 
temperatures fields are imposed on the two opposite faces of the unit-cell, for example 
𝑇∗[0,0: 𝑛 , 0: 𝑛 ] and 𝑇∗[𝑛 , 0: 𝑛 , 0: 𝑛 ] if 𝑑 = 1. Any field compatible with these boundary conditions 
can be used for 𝑇∗, a simple linear interpolation is chosen. The same linear interpolation is used if 
Dirichlet BC are applied on 1, 2 or 3 couples of opposite faces. 

For Dirichlet BC on one side and Neumann BC on the other side (i.e. WAWS or WSWA symmetry): the 
same linear interpolation is used, with the value of  𝑇∗ on the Neumann side arbitrarily chosen equal 
to 𝑇∗on the Dirichlet side. 

Finally, note that for the 𝐻-scheme, the definition of 𝑇∗ on the range [0: 𝑛 , 0: 𝑛 , 0: 𝑛 ] is sufficient 
to evaluate 𝛁𝐃𝑻∗ on the grid of centres. For the 𝑂-scheme, 𝑇∗ must be defined on the range  [−1: 𝑛 +

1, −1: 𝑛 + 1, −1: 𝑛 + 1]  to evaluate 𝛁𝐃𝑻∗ on the grid of nodes. The linear function used for the 
interpolation inside the unit-cell is kept for extrapolation at points located outside of the unit-cell. 

For periodic BC, gradient fields 𝛁𝐃𝑻∗ as proposed for 2-sides Dirichlet BC, can be prescribed. As the 
temperature fluctuation 𝑇 is periodic, its 1D-average gradient in a given direction 𝑑 is a null 2D field, 
so that the 1D-average gradient of the temperature 𝑇, in direction 𝑑, is equal to the 1D-average 
gradient of 𝑻∗,in direction 𝑑. 

Note that the specific case of uniform 𝛁𝐃𝑻∗, is extensively used in the context of first order 
homogenization, with both Dirichlet and periodic BC. 

Step 4: Evaluation of div (𝒒) 

The same considerations as those described for step 2 (evaluation of div 𝛁𝑫𝑻 ) apply to step 4. 
However, it is worth noting that the symmetry conditions used for 𝛁𝑫𝑻 are also used for 𝒒. Hence, a 



  

WS symmetry condition on 𝑇, corresponding to a null-Neumann BC on 𝛁𝑫𝑻 (i.e. 𝛁𝑫𝑻. 𝒏𝒅 = 0), also 
corresponds to a null-Neumann BC on 𝒒 (i.e. 𝒒. 𝒏𝒅 = 0). 

4.2 – Adding non-zero Neumann BC  

As demonstrated above, using the DT framework and the set of equation (2) only allows to apply null-
Neumann BC. The only way to introduce non-zero Neumann BC is to define an appropriate volume 
source field 𝑟∗ null everywhere except at, or in the inner neighbourhood of, the boundary. In practice, 
𝑟∗ is defined by 𝑟∗ = div (𝒒∗) with a flux 𝒒∗, null everywhere in the unit-cell except at, or in the outer 
neighbourhood of, the boundary (precisions will be given below for the definition of 𝒒∗, consistently 
with the applied fluxes). The definition of 𝑝 is then modified according to: 

𝒒 = −𝐾. 𝛁𝐃𝑻∗ + 𝛁𝐃𝑻 + 𝒒∗

𝑝 = div 𝒒 − 𝑘 𝛁𝐃𝑻             
              (14) 

 

As a consequence, as soon as 𝒒∗ is correctly initialized, the minor modification consists in adding 𝒒∗ to 
−𝐾. 𝛁𝐃𝑻∗ + 𝛁𝐃𝑻  after step 3. Details about the initialization of 𝒒∗ are given below, for a Neumann 
BC applied in direction 1, on the left side, so that the outer normal vector 𝑵 is −𝒆𝟏 and (𝒒. 𝒆𝟏) =

(𝑞 ) = −𝑄∗ , with 𝑄∗ an applied outcoming heat flux (a 2D field in the most general case). 

For the 𝑂-scheme, 𝒒 being defined at nodes, the condition (𝑞 ) = −𝑄∗ is prescribed at 

nodes and the range of the applied flux 𝑄∗, is [0: 𝑛 , 0: 𝑛 ]. As div  is applied to 𝒒∗, it must  also be 
defined on planes of nodes surrounding the unit-cell, so the range of 𝒒∗ is [−1: 𝑛 ] : .  𝒒∗ is null 
everywhere except, for the BC considered here, on the two first planes of nodes for which : 

𝑞∗[−1,0: 𝑛 , 0: 𝑛 ] = −2𝑄∗[0: 𝑛 , 0: 𝑛 ]            (first plane out of the unit − cell)

𝑞∗[0,0: 𝑛 , 0: 𝑛 ] = −𝑄∗[0: 𝑛 , 0: 𝑛 ]                  (boundary plane)                             
              (15) 

 

Assuming, as in 4.1 - step 4, that 𝒒 = −𝐾. 𝛁𝐃𝑻∗ + 𝛁𝐃𝑻  has the same symmetries as 𝛁𝐃𝑻, then a null-
Neumann BC applies to 𝒒 in direction 1 so that   (𝑞 ) = 0. Hence, the choice (𝑞∗) = −𝑄∗ made 

for the boundary plane (equation (15)) allows satisfying the expected Neumann BC (𝑞 ) = (𝑞 ) +

(𝑞∗) = −𝑄∗. The choice 𝑞∗ = −2𝑄∗ made for the first plane out of the unit-cell, is done to respect 

the condition that the derivative evaluated at the boundary with the 𝑂-scheme,  
∗

=

∗[ , : , : ] ∗[ , : , : ]
=  

∗[ , : , : ], should be equal to the derivative evaluated from nodes 

located inside the cell, 
∗

=
∗[ , : , : ] ∗[ , : , : ]

=
∗[ , : , : ]

=
∗

. 

For the 𝐻-scheme, 𝒒 being defined at centres, the condition (𝑞 ) = −𝑄∗ is prescribed at the 

middle points of two centres separated by the unit-cell boundary. Hence, the range of the applied flux 
𝑄∗ is [0: 𝑛 − 1,0: 𝑛 − 1]. As div  is applied to 𝒒∗, it must  also be defined on planes of centres 
surrounding the unit-cell, so the range of 𝒒∗ is [−1: 𝑛 ] : .  𝒒∗ is null everywhere except, for the BC 
considered here, on the first plane of centres (outside the unit-cell) for which : 

   𝑞∗[−1,0: 𝑛 − 1,0: 𝑛 − 1] = −2𝑄∗[0: 𝑛 − 1,0: 𝑛 − 1]           (16) 



  

 

With this choice, the flux at the boundary, located in the middle of the two centres consists of (𝑞 ) =

 (𝑞 ) +  (𝑞∗) , with  (𝑞∗) =
∗[ , : , : ] ∗[ , : , : ]

=
∗

= −𝑄∗ and  (𝑞 ) =

0 (as a null-Neumann BC is imposed to 𝒒, see section 4.1 – step 4). Hence, the expected Neumann BC, 
(𝑞 ) = −𝑄∗,  is satisfied. 

Here, attention must be paid to the points located at the edges of the domain [−1, −1: 𝑛 , −1: 𝑛 ], 
which are not considered in equation (16).  They must be filled with the symmetry conditions 
associated to 𝛁𝐃𝑻 in direction 2 and 3. This remark holds for the 𝐻-scheme. For the 𝑂-scheme, the 
points at the edges are not used to evaluate div (𝒒∗) so that applying these symmetry conditions is 
not mandatory. 

The definition of 𝒒∗ proposed here for a non-zero Neumann BC on face 𝑆  can be easily extended to 
any other face. Submitted to a non-zero Neumann BC 

5 – Additional remarks 

5.1 – A proof of concept 

The implementation made of the FFT-based method used for the validation tests, is a proof of concept 
demonstrating its flexibility. The user defined inputs are:  

- the discrete thermal conductivity field defined on the whole unit-cell,  
- for each couple of opposite faces, the choice of BC (Dirichlet/Dirichlet, Dirichlet/Neumann, 

Neumann/Dirichlet, Neumann/Neumann or Periodic BC corresponding to the 5 possible 
symmetry conditions WAWA, WAWS, WSWA, WSWS and P),  

- the fields 𝑇∗  and 𝒒∗ associated respectively to the Dirichlet and Neumann BC, 
- the FD scheme chosen between the 𝑂- and the 𝐻-scheme. 

The proposed implementation is then able to simulate any of the configurations given by these inputs. 
Considering the choice of BC, it must be emphasized that 5 × 5 × 5 = 125 different types of BC can 
be prescribed. 

This proof of concept relies on the matlab  language, and the toolbox matlab-dtts proposed by Treeby 
[18], who implemented an interface with the 8 Discrete Sine and Cosine Transforms available in the 
library fftw [5].  

The next step will consist of implementing this method in the massively parallel AMITEX code [8].  

5.2 – Convergence criterion 

The convergence criterion, associated to the equilibrium equation div (𝒒) = 0, reads: 

  𝜀 =
‖div (𝒒)‖

𝒒
𝑑𝑥

 < 𝜀        (17) 

with 𝑑𝑥 the voxel size. The iterative algorithm is interrupted as soon as this criterion is satisfied. 

5.3 – Convergence Acceleration 



  

The convergence acceleration technique proposed by Anderson [3], implemented in the code AMITEX 
[8] to accelerate the FFT-based fix-point algorithm [4], is also implemented here with a depth of 3 and 
an acceleration every 3 iterations. Briefly, it consists of saving in a buffer the last 4 couples of solution 
and residual fields, and to propose every 3 iterations, a new solution field deduced from the saved 
fields (see [4], for a more detailed description). 

5.4 – Discussion 

In the present paper, choice is made to evaluate 𝑝 = div 𝒒 − 𝑘 𝛁𝐃𝑻  in real space and then perform 
a DT, apply the Green operator in Fourier space and inverse DT to obtain 𝑇. Another, and more usual 
way, is to evaluate 𝒒, perform the DTs, apply the Green operator (different from the one presented 
here) and inverse DTs to obtain 𝛁𝐃𝑻.  

In the first implementation, DT/inverse DT are performed on a scalar field, for the second, they are 
performed on vector fields and the number of DT/inverse DT is multiplied by 3. 

The arguments for reducing the number of DT/iDT are the following: 

- The 𝐻- and 𝑂-schemes proposed here are very ‘local’ (8 or 6 points are involved in the 
derivation operators) and it can be more efficient to apply derivatives in real space, instead of 
applying additional transforms and inverse transforms. 

- This point is reinforced when using Discrete Sine and Cosine Transforms, whose 
implementation in the library fftw is, according to the authors, less efficient than DFT.  

- It is also reinforced when dealing with a massively parallel implementation (the next target 
after this proof of concept). Actually, with data distributed over a 2D pencil decomposition as 
in [8], the 3D transform requires a transposition of data to perform the 1D transforms in each 
direction. This transposition corresponds to a “ALLTOALL” communication between all the 
processes that comes with an additional communication cost.  

6 – Validation 

As simulations performed with the 𝐻-scheme are equivalent to Finite Element simulations with linear 
hexaedral finite elements (Hex8R) [14], a quantitative cross validation can be made by comparisons of 
strictly equivalent simulations performed with the FE and FFT-based codes. For that purpose a cubic 
unit-cell (dimension 1 × 1 × 1) is used, with a non-centred spherical inclusion (radius 0.3, centre at 
(0.15,0.4,0.6), see Figure 2). The unit-cell is simple but non-symmetric, with the inclusion crossing the 
boundary. This choice allows to demonstrate that the method is not limited to unit-cells with inner 
symmetries and that it is capable to account for material discontinuities located at the boundary. To 
enforce strong heterogeneities a high contrast is chosen for the thermal conductivity (matrix 1, 
inclusion 10 ). The unit-cell is discretized with 32x32x32 voxels. A high accuracy is prescribed for this 
validation (convergence criterion 𝜀 = 10 ).  

Note that all the simulations below have been performed with a single flexible implementation that 
allows to choose between 125 types of symmetries and 2 finite difference schemes. A selection of 
loadings of increasing complexity is proposed below. Table 3 gathers the different loadings used in the 
following sub-sections. 

 



  

 

 

Figure 2 : Thermal conductivity field corresponding to a resistive spherical inclusion of radius 0.3, 
centred at (0.15, 0.4, 0.6) in a 1x1x1 unit-cell.  The six different faces 𝑆 , used to apply various 
loadings with either periodic, Dirichlet or Neumann BC are reported. 

 

Test name 𝑆  𝑆  𝑆  𝑆  𝑆  𝑆  
Periodic 𝑇(0, 𝑥 , 𝑥 )

= 𝑥 + 𝑥
+ 𝑇(0, 𝑥 , 𝑥 ) 

𝑇(𝐿 , 𝑥 , 𝑥 )
= 𝐿 + 𝑥 + 𝑥
+ 𝑇(𝐿 , 𝑥 , 𝑥 ) 

𝑇(𝑥 , 0, 𝑥 )
= 𝑥 + 𝑥
+ 𝑇(𝑥 , 0, 𝑥 ) 

𝑇(𝑥 , 𝐿 , 𝑥 )
= 𝑥 + 𝐿 + 𝑥
+ 𝑇(𝑥 , 𝐿 , 𝑥 ) 

𝑇(𝑥 , 𝑥 , 0)
= 𝑥 + 𝑥
+ 𝑇(𝑥 , 𝑥 , 0) 

𝑇(𝑥 , 𝑥 , 𝐿 )
= 𝑥 + 𝑥 + 𝐿
+ 𝑇(𝑥 , 𝑥 , 𝐿 ) 

Dirichlet 𝑇(0, 𝑥 , 𝑥 )
= 𝑥 + 𝑥  

𝑇(𝐿 , 𝑥 , 𝑥 )
= 𝐿 + 𝑥 + 𝑥  

𝑇(𝑥 , 0, 𝑥 )
= 𝑥 + 𝑥  

𝑇(𝑥 , 𝐿 , 𝑥 )
= 𝑥 + 𝐿 + 𝑥  

𝑇(𝑥 , 𝑥 , 0)
= 𝑥 + 𝑥  

𝑇(𝑥 , 𝑥 , 𝐿 )
= 𝑥 + 𝑥 + 𝐿  

Neumann 𝑞 (0, 𝑥 , 𝑥 )
= 1 

𝑞 (𝐿 , 𝑥 , 𝑥 )
= 1 

𝑞 (𝑥 , 0, 𝑥 )
= 1 

𝑞 (𝑥 , 𝐿 , 𝑥 )
= 1 

𝑞 (𝑥 , 𝑥 , 0)
= 1 

𝑞 (𝑥 , 𝑥 , 𝐿 )
= 1 

Per./Dir./Neu. 𝑇(0, 𝑥 , 𝑥 )
= 𝑥 + 𝑥
+ 𝑇(0, 𝑥 , 𝑥 ) 

𝑇(𝐿 , 𝑥 , 𝑥 )
= 𝐿 + 𝑥 + 𝑥
+ 𝑇(𝐿 , 𝑥 , 𝑥 ) 

𝑇(𝑥 , 0, 𝑥 )
= 𝑥 + 𝑥  

𝑇(𝑥 , 𝐿 , 𝑥 )
= 𝑥 + 𝐿 + 𝑥  

𝑞 (𝑥 , 𝑥 , 0)
= 1 

𝑞 (𝑥 , 𝑥 , 𝐿 )
= 1 

Neu-Dir/Dir/Neu 𝑞 (0, 𝑥 , 𝑥 )
= 1 

𝑇(𝐿 , 𝑥 , 𝑥 )
= 𝐿 + 𝑥 + 𝑥  

𝑇(𝑥 , 0, 𝑥 )
= 𝑥 + 𝑥  

𝑇(𝑥 , 𝐿 , 𝑥 )
= 𝑥 + 𝐿 + 𝑥  

𝑞 (𝑥 , 𝑥 , 0)
= 1 

𝑞 (𝑥 , 𝑥 , 𝐿 )
= 1 

Dir-Neu/Dir/Neu 𝑇(0, 𝑥 , 𝑥 )
= 𝑥 + 𝑥  

𝑞 (𝐿 , 𝑥 , 𝑥 )
= 1 

𝑇(𝑥 , 0, 𝑥 )
= 𝑥 + 𝑥  

𝑇(𝑥 , 𝐿 , 𝑥 )
= 𝑥 + 𝐿 + 𝑥  

𝑞 (𝑥 , 𝑥 , 0)
= 1 

𝑞 (𝑥 , 𝑥 , 𝐿 )
= 1 

Non-uniform 𝑇(0, 𝑥 , 𝑥 )
= 𝑇∗(0, 𝑥 , 𝑥 ) 

𝑞 (𝐿 , 𝑥 , 𝑥 )
= 𝑄∗(𝐿 , 𝑥 , 𝑥 ) 

𝑞 (𝑥 , 0, 𝑥 )
= 0 

𝑞 (𝑥 , 𝐿 , 𝑥 )
= 0 

𝑞 (𝑥 , 𝑥 , 0)
= 0 

𝑞 (𝑥 , 𝑥 , 𝐿 )
= 0 

Table 3 : Description of the loading cases used for the validation of the method. The unit-cell and the 
faces 𝑆  are defined in Figure 2. For the “periodic” case,  𝑇 is periodic (equal on opposite faces). For 
the “non-uniform” case, 𝑇∗ and 𝑄∗ are defined in section 6.3. For the other cases, applied 𝑮∗ or 
𝑸∗(see definition in section 6.1) are set to one, leading to the BC reported in the present table. 

 

6.1 – Uniform loadings with full Periodic, Dirichlet and Neumann BC. 

The loadings considered here are given by, for all 𝑥 at the boundary of the unit-cell, 𝑇(𝒙) = 𝑮∗. 𝒙 +

𝑇(𝒙), 𝑇 submitted to null-Dirichlet or periodic BC, or 𝒒(𝒙). 𝑵(𝒙) = 𝑸∗. 𝑵(𝒙) for Neumann BC. They 
are called ‘uniform’ in the sense that 𝑮∗ and 𝑸∗ are uniforms over the unit-cell. Such loadings are 
commonly used in the homogenization context as they provide respectively, an upper bound, an 

𝑆  

𝑆  
𝑆  

𝑆  

𝑆  
𝑆  



  

estimate and a lower bound, for the homogenized conductivity. It is easily demonstrated that  𝛁𝑻 =

𝑮∗ for periodic and Dirichlet BC and  𝒒 = 𝑸∗for Neumann BC. In the simulations below the loadings 
are applied with 𝐺∗ = 𝐺∗ = 𝐺∗ = 𝑄∗ = 𝑄∗ = 𝑄∗ = 1.  

Finite element simulations are performed with the FE code CAST3M [1], using Hex8R elements. Table 
4 gathers the average heat flux and temperature gradient for the three FE simulations and the relative 
error (definition in the table legend) between FE and FFT-based simulation. As expected, the relative 
error is very low with a maximum value of less than 10  for Neumann simulation. This is consistent 
with the low value of the criterion of 10  used in the FFT-based algorithm. The precision on the 
average temperature gradient is null for Dirichlet and periodic BC: actually this quantity is strictly 
imposed by the algorithm. On the contrary, for Neumann BC, the applied flux is not strictly applied by 
the algorithm and the precision of the average flux depends on the convergence criterion. At last, the 
maximum relative error is by far the error on ∇𝑇  for the Neumann BC. It is related to the fact that, on 
face 𝑆 , a constant heat flux is applied directly to the inclusion whose conductivity is very low. That 
induces very large (and heterogeneous) temperature gradient as observed in the table (when 
comparing ∇𝑇  to the other components). The higher number of iterations also reveals that the 
Neumann BC simulation (with the low conductive inclusion crossing the boundary) is more delicate. 

 It. Factor ∇𝑇  ∇𝑇  ∇𝑇  q  q  q  
Periodic 47  1.000 1.000 1.000 -0.8430 -0.8669 -0.8661 
Rel. error  10  0.00 0.00 0.00 0.12 0.02 0.86 
Dirichlet 46  1.000 1.000 1.000 -0.8772 -0.8732 -0.8760 
Rel. error  10  0.00 0.00 0.00 0.50 0.29 0.24 
Neumann 152  -20.72 -1.192 -1.183 1.000 1.000 1.000 
Rel. error  10  0.76 0.01 0.01 0.00 0.02 0.02 
Per/Dir/Neu 49  1.000 1.000 -0.0037 -0.8444 -0.8779 0.0022 
Rel. error  10  0. 0. 0.28 0.00 0.00 0.50 
Neu-Dir/Dir/Neu 117  -19.17 1.000 0.1773 -0.4170 -0.8206 -0.1706 
Rel. error  10  0.15 0.00 0.00 0.01 0.00 0.00 
Dir-Neu/Dir/Neu 48  0.4700 1.000 0.1833 -0.3969 -0.8828 -0.1209 
Rel. error  10  0.13 0.00 0.93 0.05 0.01 0.80 
Non-uniform 75  -0.3240 0.0170 -0.0170 0.2500 -0.0071 0.0071 
Rel. error  10  0.05 0.10 0.10 0.02 0.42 0.42 

Table 4 : Average temperature gradient and heat flux evaluated with a FE code (CAST3M) for the 
various loadings, and the relative error comparing FE and FFT-based simulation (with a convergence 

criterion 𝜀 = 10 ). The relative error is defined, for each component 𝑖, by ,  𝑋 being the 

average temperature gradient  𝛻𝑇  or the average flux  𝑞 . 

 

6.2 – Uniform loadings with combined Periodic, Dirichlet and Neumann BC. 

Combined BC are now considered with Periodic/Dirichlet/Neumann BC in directions 1/2/3. The 
uniform applied load is given by   𝐺∗ = 𝐺∗ = 𝐺∗ = 1  and 𝑄∗ = 1. Results in Table 4 validate the FFT-
based simulation with a relative error below 10  (this value is larger than the others but ∇𝑇  and 𝑞  
are also much smaller in this case). It can be noticed that, as mentioned before, ∇𝑇 and  ∇𝑇  are strictly 
imposed by periodic and Dirichlet BC in directions 1 and 2 (∇𝑇 =  𝐺∗, ∇𝑇 =  𝐺∗), whereas q  is very 



  

different from 𝑄∗, the heat flux imposed by Neumann BC in direction 3. To explain it, the expression 
of the average heat flux, using the equilibrium equation, is given below:  

   𝑉𝒒 = 𝒒 dV = 𝒙 (𝒒. 𝑵)dS

= 𝐿 𝑞 𝒆𝟏 + (𝑥 𝒆𝟐 + 𝑥 𝒆𝟑)(𝑞 − 𝑞 ) dS + … + …          
(18) 

 

where 𝑞  and 𝑞  are the heat fluxes (1st component) on the two opposites faces 𝑆  and 𝑆 . Integration 
in these 2 opposites faces in direction 1, is symbolically gathered in 𝑆 . For Neumann and periodic BC 
𝑞 − 𝑞 = 0: the contribution of the BC (on faces 𝑆 ) to the average heat flux is only in direction 1, and 
equal to 𝑄∗𝒆𝟏 for Neumann BC. For Dirichlet BC, fluxes on opposite faces can be different, giving rise 
to a possible coupling with the other directions. As the inclusion is not centered on the face 𝑆 , this 
explains the difference observed between q  and 𝑄∗. 

Up to now, simulations were performed with the same condition on both sides, we now consider the 
cases of Neumann and Dirichlet BC on opposite faces, here in direction 1. Direction 2 and 3 are still 
submitted to Dirichlet and Neumann BC. The uniform applied load is given by   𝐺∗ = 𝐺∗ = 𝐺∗ = 1  
and 𝑄∗ = 𝑄∗ = 1.  Results in Table 4 about these two new tests case, with a maximum relative error 
of 10 , validates the implementation with Neumann and Dirichlet BC on opposite faces. Note that, 
consistently with previous observation, the error and the number of iterations are larger when the 
Neumann BC is applied to the face crossed by the low conducting inclusion. 

6.3 – Non-uniform (and combined) loadings 

The case of non-uniform loadings is now considered in direction 1, combined with null flux Neumann 
BC on the four other faces (directions 2 and 3). Dirichlet BC is applied on surface 𝑆  with the 

temperature prescribed by 𝑇(𝒙) = 𝑇∗(𝒙) = 𝑇 1 −
/

/

/

/
. On the opposite face 𝑆 , 

the flux is null except on a square of size 0.5 × 0.5, centred on the face. The comparison with FE 
simulations, on the average gradient and heat flux in Table 4, reveals errors lower than 10 . As 
expected from equation (16) and the chosen BC, the average flux in direction 1, 𝑞 , is equal to 𝑄∗/4 
(𝑄∗ being applied on a surface of size 0.5 × 0.5). The non-vanishing values for 𝑞  and 𝑞  is explained 
once again by the coupling arising when using Dirichlet BC (see equation(16) ).   

For this non-uniform case, a relative error on the complete flux fields is also evaluated with 𝐸 =

‖𝑞 − 𝑞 ‖ /‖𝑞 ‖ . The values, gathered in Table 5 for different convergence criteria, confirms, 
now on full fields, that the error is very low and reduces with the convergence criteria. 

𝜀  10  10  10  
𝐸 1.2 10  8.6 10  8.6 10  

Table 5 : Relative error 𝐸 on flux fields between FE and FFT-based simulations for difference 
convergence criteria 𝜀 . 

The flux fields 𝑞 , given in Figure 3, allows visualizing the applied heat flux on a square region on face 
𝑆  (right image) and, indirectly, the non-uniform Dirichlet BC with the applied parabolic profile on face 



  

𝑆  (left image). The inclusion having a very low thermal conductivity, the heat flux is almost equal to 
zero. 

 

Figure 3 : Heat flux field 𝑞  for the non-uniform loading 

 

6.4 – Simulations with the 𝑂-scheme 

For the 𝑂-scheme, without any appropriate FD code that could provide a rigorous comparison with 
FFT-based results, validation is then reduced to a comparison between FFT-based simulations 
performed with the 𝑂- and 𝐻-schemes. Average heat flux and temperature gradient are compared 
quantitatively as a function of the spatial resolution in Table 6. As expected, the difference decreases 
when increasing the spatial resolution, both simulations converge towards the solution. The largest 
difference is observed with Neumann BC, especially when applied to the face crossing the low 
conducting inclusion.  For all the simulations, it has been observed that the 𝐻-scheme converge faster 
than the 𝑂-scheme, and the evolution of the differences in Table 6 is mostly due to the 𝑂-scheme. As 
an example, for the full-Neumann BC simulation, ∇𝑇  evolves between -20.72 and -20.61 when 
increasing the resolution from 32 to 128, for the 𝐻-scheme, and between -16.30 and -19.56 for the 𝑂-
scheme.  

To complete qualitatively this validation, the heat flux field 𝑞  evaluated for the non-uniform loading 
with the 𝑂-scheme, is displayed in Figure 4. It compares very well with Figure 3, obtained with the 𝐻-
scheme. 

 32 64 128 
Periodic 0/0.0093 0/0.0045 0/0.0024 
Dirichlet 0/0.001 0/5.34 10-4 0/4.82 10-4 
Neumann 4.4151/0. 2.0259/0 1.0503/0 
Per/Dir/Neu 0.0612/0.0066 0.0308/0.0033 0.0155/0.0017 

Table 6 : Difference between 𝑂- and 𝐻-schemes on the average temperature gradient and flux  
(‖𝛿𝜵𝑻‖ / ‖𝛿𝒒‖) 
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Figure 4 : Heat flux field 𝑞  for the non-uniform loading, obtained with the 𝑂-scheme 

 

7 – Conclusions 

A flexible FFT-based implementation has been proposed to extend its usage from periodic BC to any 
type of the 5 BC applied to each couple of faces: Dirichlet/Dirichlet, Dirichlet/Neumann, 
Neumann/Dirichlet, Neumann/Neumann and Periodic.  All these conditions can be associated with any 
non-uniform loading. The implementation relies on two important points. 

The first point concerns the use of discrete sine and cosine transforms, whose definition can be linked 
to the definition of discrete Fourier transform applied to a 4 times extended signal, using appropriate 
symmetries. Hence, the periodic Green operator can be applied to this extended signal for an 
appropriate selection of wave vectors. Besides, the discrete sine or cosine transforms have also to be 
performed on an appropriate selection of grid points. With these two selection operators, the discrete 
Green operator, associated to any set of symmetry conditions, can be easily applied.  

The second point is the term 𝑝 (see equation (2)), evaluated in real space using discrete derivation 
schemes and taking into account the appropriate symmetries, it also introduces the non-uniform 
loading through the quantities 𝑇∗ and 𝒒∗ whose definition is associated to Dirichlet (and periodic) and 
Neumann BC, respectively. 

This flexible implementation has been validated from a cross-comparison between FFT-based 
simulations, using the 𝐻-scheme for discrete derivation, and a FE simulations, using linear hexahedral 
elements with reduced integration. As expected from these strictly equivalent simulations [14], the 
simulations provide the same results, up to the precision of the FFT-based iterative algorithm. The 
validation has been performed on various types of loadings: uniform loadings with full or combined 
Dirichlet, periodic or Neumann BC, with non-uniform loadings and Dirichlet/Neumann or 
Neumann/Dirichlet BC on opposite faces. 

𝑞  𝑞  



  

The implementation also proposes two different types of Finite Difference schemes: the 𝐻-scheme, 
for which the derivation operator changes the support from a grid of nodes to a grid of centres, or vice-
versa, and the 𝑂-scheme, for which all quantities are defined on the same grid (of nodes). It should 
pave the way to implement other FD schemes. 

From the simulations performed with a low conductivity inclusion (contrast 1000 with the matrix) 
crossed by the boundary, and a very high precision (𝜀 = 10 ), various remarks can be made: the 
number of iterations is very reasonable (between 46 and 152) and it is higher when Neumann BC are 
applied to the face crossed by the inclusion (in agreement with intuition). The present implementation 
appears much more efficient than using a buffer zone to apply Dirichlet BC [6]. Limited to unit-cells 
with parallelepiped shapes,  the present method is not able to deal with volumes with arbitrary shapes 
and in that case using a buffer zone [6] [17] [16] remains an interesting solution. It also extends the 
capabilities of the method proposed recently [11] to non-uniform loadings as well as 
Dirichlet/Neumann BC on opposite faces.  

As future prospects, the present implementation proposed in the context of conducting materials is a 
first step towards mechanical problems. Besides, the present proof of concept implemented through 
the matlab language, will have to be introduced in the FFT-based simulation code AMITEX [8] to take 
benefit of its massively parallel implementation. 
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APPENDIX: Symmetries of discrete signals and corresponding Discrete Trigonometric Transforms : 
graphical representations. 

The figures below give different examples of symmetries for discrete signals, symmetries that are 
implicitly assumed when using the corresponding Discrete Trigonometric Transforms. 

 

 

Figure 5 : Discrete signal with symmetry HAHA (upper) or HSHS (lower). The symmetrized signal has a 
2n period. HAHA corresponds to DST2 and HSHS to DCT2 (according to the fftw definition used in the 
present paper). 
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Figure 6 : Discrete signal with symmetry WAWA (upper) or WSWS (lower). The symmetrized signal 
has a 2n period. WAWA corresponds to DST1 and WSWS to DCT1 (according to the fftw definition 
used in the present paper). 
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Figure 7 : Discrete signal with symmetry WAWS. The symmetrized signal has a 4n period. WAWS 
corresponds to DCT3 (according to the fftw definition used in the present paper). 
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