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Abstract — Electrically Small Antennas (ESAs) are of high 
interest in applications where a compact size wants to be pre-
served. With the objective of the realization of a highly efficient 
and superdirective array within a very compact space, a new ra-
diating element and array design is proposed, optimized for 
maximum attainable gain. A cosines-dipole printed antenna is 
designed by adjusting the amplitude and periodicity of the co-
sine microstrip, to resonate at the desired frequency of 916 
MHz. Then, to achieve high gain two elements are closely 
spaced, mirrored to their excitation point, one fed and the other 
parasitic. An analytical method for gain optimization based on 
the Spherical Wave Expansion (SWE) theory is used to maxim-
ize the array gain. Two different array geometries are compared 
by looking at the power distribution of the spherical modes, and 
the configuration that returns the highest gain is chosen. A real-
ized gain of 6.5 dBi is achieved in simulation, for a total size in-
cluded in a radiansphere of ka=1, with the advantage of having 
a printed antenna, thus planar, easy to integrate, and low cost. 
The proposed antenna solution presents in theory an excellent 
trade-off between electrical size and realized gain. 

Keywords—antenna arrays, electrically small antenna, su-
perdirectivity, high efficiency, antenna gain optimization. 

I. INTRODUCTION 

Electrically Small Antennas (ESAs) have proven to be of 
particular interest due to their small size (relative to the wave-
length of interest) and yet good performance. However, the 
difficulty in their implementation has always been a matter of 
debate, given the fundamental limitations that bound gain and 
bandwidth to the antenna’s physical size [1]. The  milestone 
works of Chu [2] and Harrington [3] set the limits to antenna 
directivity as ( ) ( )m ax

² 2D kr kr= + , with k the wavenumber, 

r the radius of the smallest sphere enclosing the antenna, and 
kr the size of the “radiansphere”. To agree with realizations of 
antennas presenting higher directivity values, Kildal and Best 
[4] proposed a heuristic formula that re-computes this limit as 

( )m ax
² 3D kr= + . For a vanishing kr, this limit converges to 3 

(or 4.77 dBi) agreeing with the directivity of an infinitesimal 
Huygens source. More recently, in [5] a new effective radian-
sphere of size kr+1 that allows the efficient propagation of the 
fundamental mode, even for a vanishing kr, is considered. 
This results in the re-calculation of the limit as 

( ) ( )m a xD = k r + 1 2 π ²+ 2 k r + 1 2 π      
. On the other hand, al-

ready in 1946 Uzkov [6] observed for end-fire arrays of P iso-
tropic sources an increasing directivity up to P² when tending 
to a near-zero inter-element distance. Hence, the size of a ra-
diating source is not the only parameter determining its poten-
tial directivity. Any source whose directivity exceeds these 
limits is considered “superdirective”. Superdirective sources 
that are also efficient are referred to as “supergain”. 

It is generally known that end-fire arrays present high val-
ues of gain, but when their inter-element spacing is reduced (< 
0.2�) [6]. The compact dimensions lead to strong levels of 
mutual-coupling and current magnitudes on the elements, and 
high power dissipation in the resistive part of the antennas. 

The synthesis of supergain arrays can be mathematically seen 
as a relaxation of the optimum problem when directivity is op-
timized. In practice, all the available modes, in the given vol-
ume and radiating in the desired direction, should be correctly 
excited with the additional constraint of keeping the radiation 
efficiency high. 

While the literature on superdirectivity is quite large, only 
few works deal with the synthesis of supergain end-fire arrays. 
In [7], the array factor theory is used to optimize a three-ele-
ment end-fire array presenting 8.6 dBi of gain with a kr=1.4; 
in [8] a convex optimization problem is developed and theo-
retical results are presented for two- and three-dipole end-fire 
arrays; and finally in [9] a method for gain optimization based 
on Spherical Wave Expansions (SWE) theory is presented. 
Recently, in [10] another approach to the design and optimi-
zation of high-gain antennas is presented based on the multi-
pole excitations in a very compact space. An antenna within a 
radiansphere of kr=0.98 is realized and a realized gain of 6.3 
dBi is measured. 

This paper aims to present a new cosines-dipole antenna 
geometry, the design of a new two-element compact array ge-
ometry with a total kr<1, and the use of the SWE method [9] 
to investigate the best array geometry and maximize the gain. 

II. DIRECTIVITY AND GAIN OPTIMIZATION 

Directivity limits for end-fire arrays of P elements, when 
their spacing vanishes, are known from the literature in the 
case of isotropic sources, according to Uzkov's observation 
[6] as P², and for electrical dipoles and Huygens sources as 
P²+P-1/2 and P²+2P respectively, according to [11]. In the 
latter, it is also pointed out that when directivity tends to its 
maximum, according to the efficiency, a drop in the gain is 
observed. The gap between directivity and gain depends on 
the efficiency values of the array elements. 

When P=2 half-wave electrical dipoles are considered, 
their maximum directivity is 7.3 dBi, while for the gain not 
the same limit can be stated. However, despite losses severely 
impacting the array performance when compact sizes are tar-
geted, gain optimization can be a solution. As reported in [9] 
by taking into account the radiation efficiency of the elements 
the optimization can be modified and target maximum gain 
rather than directivity. Based on the SWE theory, this optimi-
zation searches for a trade-off between the highest possible 
number of radiating modes and their efficiency. In the case of 
directivity, one may observe higher order modes excited and 
a consequent high directivity, but an actual very low gain. 
Such higher-order modes can be excited in the structure, but 
they are mainly dissipative and cannot radiate energy. The 
gain optimization cuts away that portion of modes that are not 
efficient. In practice, it reduces the directivity and increases 
the gain. By employing the method presented in [9], one can 
find the optimal excitation, i.e. the complex coefficient ap, 
necessary to excite the best combination of spherical mode 
for maximum gain, as detailed in the following paragraph. 



A. Synthesis of Supergain End-Fire Arrays 

According to the SWE theory, outside of the radiansphere 
of radius kr, the electric field radiated by P radiating sources 
can be expressed with a combination of spherical far-field 

functions ( ),smnK θ φ
uur

as 
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with η0 being the complex impedance of the vacuum and 

,sm n pQ  the spherical wave coefficients for each of the 

p=1,…,P elements. The term 
smn denotes the triple sum 

over the indexes s,m,n. The degree n can be truncated to a 
Nmax normally proportional to the size of the sphere, while the 
order m is limited by m n≤ . The index s=1,2 indicates TE- 

or TM-modes, respectively. According to [9] 
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is the total gain of the array. The 
*

c oi
r

 is the unit vector in the 

polarization direction, and the term  
,n pδ  is the dissipation 

factor, or the ratio 
, ,loss n rad nP P , expressing the losses of each 

spherical mode of n-th degree radiated by the p-th element. 
In [9], [12] it is demonstrated that the maximum of (2) is 
achieved whit the set of spherical wave coefficients  
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with c an arbitrary constant. Then, the desired coefficients ap 
are the solution of the matrix problem where the initial con-
ditions are expressed by a matrix containing all the SWE co-

efficients ,1 ,
,...,

initial
Q

smn smn P
Q Q =    of equation (2), calcu-

lated for the P elements. The coefficients of the optimal 

modal distribution are known by (3) as 
max

optimal
Q

smn
Q =   cal-

culated with the same number of spherical modes Nmax. Then, 
a matrix inversion of these two quantities  

-1

initial optim al
a Q × Q=  (4) 

is the solution to the problem. The vector a in our case would 
contain two complex numbers a1 and a2, proportional to the 
optimal elements feed for gain maximization. 

B. Parasitic array 

The complex coefficients ap solution for maximum gain 
represents the excitations of the array elements. The ampli-
tude and phase of the ap are proportional to the magnitude and 
phase of the currents that must be excited. Setting such a spe-
cific current on each element with a fully driven configura-
tion leads to the optimal result. However, it is often preferred, 
for a matter of complexity, or realization feasibility, to seek 
an alternative solution. Parasitic loading demonstrated an ex-
cellent agreement with full-driven excitation for su-
perdirective arrays [13]. The amplitude and phase shift 
needed among the array elements are synthesized by loading 
with equivalent complex loads each element. In this way, the  

 

Fig. 1. Geometry illustration of the cosines-dipole printed antenna. 

 

Fig. 2. Parametric results of the S11 modifying the parameter A (top figure) 
and b (bottom figure) of the cosine microstrip line. 

real and imaginary parts of the element’s impedance can be 
tuned to build the desired current. The initial ap complex co-
efficients is transformed then in a set of impedances Zp. 

In our case of a two-element array, parasitic loading is 
quite straightforward, as only one load must be calculated. 
First, the two complex values a1 and a2 are normalized to the 
value a1 because represent the fed element. We are interested 
in the amplitude and phase shift of the second element com-
pared with the first. Then the complex value a2,norm and the 
scattering matrix S are used to calculate the load Z2. This im-
pedance is connected in series with the second element and 
provides the same effect of the full-drive excitation of a1 and 
a2 as separate excitations.  

III. SINGLE SOURCE AND ARRAY DESIGN METHOD 

The objective is the design of the highest possible gain 
antenna in a limited space of kr<1. End-fire arrays present 
compact dimensions and high gain. As revealed in the SotA 
of superdirectivity, dipolar-type radiators are preferred con-
sidering that they can be flexibly miniaturized without com-
promising radiation efficiency. Moreover, the results must be 
cheap and easy to fabricate, and for these reasons, a printed 
type of antenna is investigated. The design of a miniaturized 
electrical dipole, based on a co-sinusoidal bend of the two 
arms, and printed on a dielectric substrate is reported. Then, 
two configurations of two-element end-fire arrays of this new 



proposed element are investigated. By using the SWE analy-
sis on the radiated field and the array optimization, the best 
configuration for maximum gain is chosen. 

A. The cosine dipole 

Dipole miniaturization can be done by bending the di-
pole’s arms. This is equivalent as an increase in the electrical 
path of the current which allows to match the desired fre-
quency.  The employee of a cosine line geometry presents a 
smoother current path, and even for a 40% of total length re-
duction a radiation efficiency higher than 99% is observed. 
The cosine dipole is defined by three parameters, correspond-
ing to the dimensions of the cosine function, assuming it writ-

ten as cos( )A b y⋅ . One has that 

• the larger the value of b, the smaller the period and the 
distance between two maxima or minima are; 

• the larger the value of A, the greater the amplitude of 
the cosine line; 

• y is the direction where the line is shaped, and it varies 
from ymin to ymax, defining the vertical dipole length. 

To match the interested frequency of 916 MHz the param-
eters A and b must be tuned. At first, for a fixed amplitude � �

 � 16⁄  the effect of the parameter b is investigated. One can 

observe that the lower is b, the closer is the cosine to a straight 
line, and the return loss improve as the resonance frequency 
increase (Fig. 2). The choice of b affects the resonance and the 
length of the line, but not the overall length of the dipole, 
which is defined by ymax – ymin. The amplitude A scale up or 
down the line according to its value, and has also an effect on 
the resonance of the antenna (Fig. 2). Finally, the parameters 
are set as ymax – ymin = 0.3 � (10 cm), A=� 22⁄  (14.9 cm), and 

b=0.107. The substrate chosen is the Roger 5880 ( 2.2rε = ) 

with thickness 0.7 mm. The printed line is made of copper (
85.7eσ = ) with a width of 2 mm and thickness 0.07 mm. The 

final geometry is presented in Fig. 1. 

B. Two-elements array 

The single element is none other than a dipole, as described in 
the previous section. The advantageous low profile permits 
the design of a two elements array within the radiansphere of 
an electrically small antenna (kr<1). The curved shape takes 
advantage of the available surface of the sphere, even if just 
on its central section (circle of radius 1 2	⁄ ). It has been high-
lighted in Sections I and II that high gain is possible only when 
radiation efficiency is high, and element spacing is critical 
when lower than a certain threshold [9]. Therefore, two differ-
ent array configurations, as illustrated in Fig. 3, have been in-
vestigated and compared. The first case favors the length of 
cosines-bended dipole’s arm, but the two elements are very 
close to fit into the fixed sphere. The second case considers 
more distant elements, and a further length reduction of the 
arms to fit in the same sphere. 

C. Gain optimization and simulated results 

In the first case, the two elements have a central axe-to-
central axe distance of 0.06�. The overall length of the di-
poles is reduced by 38%. The configuration is illustrated in 
Fig. 3 with green lines. The structure is symmetric and the 
spherical modes can be more evenly excited. When the gain 
optimization method of Section II is applied, the SWE of the 
total array field is depicted in Fig. 3. One can distinguish the  

 

 

Fig. 3. Two possible element geometry and disposition fitting in the radian-

sphere of kr=1. On the right the power distribution of the SWE for Cases 1 
and 2 when the gain is optimized. TE modes are shown in red bars (first line) 

and TM modes in blue bars (second line). 

 

Fig. 4. Geometry of the two elements cosine-dipoles mirrored to the feeding 

point. The zooms highlight the feeding port of the active elements and the 
parasitic loading of the second one. 

TE and TM components of n=1 fully excited, and the excita-
tion of the TM mode of n=2. The power distribution is the 
one of two dipoles closely spaced, as demonstrated in [11]. 
All the modes are evenly excited, which means that the en-
ergy shared between the excited modes and it results in stable 
radiation. The simulated patterns of the realized gain the E- 
and H-planes are illustrated in Fig. 5. In this case, a directivity 
of 7.1 dBi and a gain of 6.5 dBi are observed. The second 
case considers, in the same radiansphere, a more distant ele-
ment disposition. The central axe-to-central axe distance is of 
0.17�. To make the dipoles fit in the sphere, the cosines-line 
miniaturization is increased by up to a 46% reduction of the 
total dipole length, as illustrated in Fig. 3 (red lines). The ef-
ficiency observed is still close to the unity, but this configu-
ration presents a different modal distribution when the gain is 
optimized (Fig. 3). The excited modes are the same, but the 
power is not evenly distributed compared to the first case. In 
particular, for n=1 the TM mode has the 19% of power, and 
the TE mode the 45% of power. This unbalance is the result 
of the increased element-spacing. Considering a dipole cen-
tered in the origin of the coordinate system and oriented along 
the y direction, it is known from its SWE that by shifting 
along the z direction TE modes components appear. Then, the 
resulting modal distribution differs from the optimal one 
which sees the TE and TM modes of n=1 equally excited 
(Huygens source). The dipole miniaturization is also respon-
sible, since the total length is decreased, and the cosine-line 
miniaturization squeezes the arms over each other and makes 
the line closer to a loop, further enhancing the TE mode ex-
citation. The radiation patterns in E- and H-planes of the re-
alized gain is illustrated in Fig. 5. The directivity observed is 
5.4 dBi and the gain of 5.3 dBi. In the latter case, directivity 
and gain are very close, telling us that the problem is not re-
lated to efficiency, but to the way it possible to excite the 
modes in the radiating structure. 



IV. DISCUSSION AND CONCLUSIONS 

In this paper, the process of synthesis of a supergain end-
fire arrays is discussed, highlighting the difference with the 
optimization of directivity. Then, the design process of a 
compact and high-gain array is described. Firstly, a new 
printed cosine-dipole antenna is shown. Then, two different 
configurations of two-element arrays are analyzed, represent-
ing the compromise between single-element size and inter-
element spacing, at a fixed radiansphere of kr=1. With the 
help of SWE, it was possible to maximize the gain and show 
the different power distribution of the radiated  modes in the 
two cases, determining the causes of the difference in perfor-
mances. It is noted that a homogeneous power distribution 
returns a higher gain. Moreover, the result obtained for the 
directivity is close to the limits found in [11] for dipole-based 
end-fire arrays, but with a surprisingly high level of realized 
gain. One can then again verify Uzkov's assertion, with di-
rectivity being more important the closer the elements are to-
gether. What is remarkable here is that this can be equally 
valid for gain, if certain design conditions occur. In particu-
lar, the first case with a reduced element spacing and 36% of 
dipole miniaturization shows a realized gain in simulations of 
6.5 dBi, making this compact array of kr=1 a supergain pla-
nar antenna. This value surpasses the Chu-Harrington limit 
that this size is set to 4.77 dBi, and the Kildal-Best limit set 
to 6 dBi. 

 

Fig. 5. Simulated (CST Microwave Studio) radiation patterns in E- and H-

planes at 916 MHz for the two cases. Cosine-dipoles are closely spaced in 

Case 1 and farther apart in Case 2. 

Fig. 6. Analytical reconstruction in MATLAB of the 3D Gain radiation pat-

tern from the SWE coefficients for the two cases. 
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TABLE I.  OPTIMIZATION RESULTS 

Element 
disposition 

Optimization results 

aopt Zopt
* Dir [dBi] Gain [dBi] 

Case 1 
152.460.45∠−

 j28.85 7.1 6.5 

Case 2 93.290.48∠−
 j67.25 5.4 5.3 

*Optimal loads include a real part forced to zero for gain optimization. 
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