
HAL Id: cea-04473740
https://cea.hal.science/cea-04473740

Submitted on 22 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A hybrid solution for constraint devices to detect
microarchitectural attacks

Nikolaos Polychronou, Pierre-Henri Thevenon, Maxime Puys, Vincent
Beroulle

To cite this version:
Nikolaos Polychronou, Pierre-Henri Thevenon, Maxime Puys, Vincent Beroulle. A hybrid solu-
tion for constraint devices to detect microarchitectural attacks. EuroS&P 2023 - Security of Soft-
ware/Hardware Interfaces (SILM 2023), located with the 8th IEEE European Symposium on Security
and Privacy, Jul 2023, Delft, Netherlands. pp.259-269, �10.1109/EuroSPW59978.2023.00033�. �cea-
04473740�

https://cea.hal.science/cea-04473740
https://hal.archives-ouvertes.fr


A Hybrid Solution for Constraint Devices to Detect Microarchitectural Attacks

Anonymized

Abstract—We are seeing an increase in cybersecurity attacks
on resource-constrained systems such as the Internet of
Things (IoT) and Industrial IoT (IIoT) devices. Recently,
a new category of attacks has emerged called microarchitec-
tural attacks. It targets hardware units of the system such
as the processor or memory and is often complicated if
not impossible to remediate since it imposes modifying the
hardware. In default of remediation, some solutions propose
to detect these attacks. Yet, most of them are not suitable for
embedded systems since they are based on complex machine
learning algorithms.

In this paper, we propose an edge-computing security
solution for attack detection that uses a local-remote machine
learning implementation to find an equilibrium between
accuracy and decision-making latency while addressing the
memory, performance, and communication bandwidth con-
straints of resource-constrained systems. We demonstrate
effectiveness in the detection of multiple microarchitectural
attacks such as Rowhammer or cache attacks on an embed-
ded device with an accuracy of 98.75% and a FPR near
0%. To limit the overhead on the communication bus, the
proposed solution filters 99% of the samples during normal
operation.

Index Terms—IoT, Security, HPCs, Edge-Computing, Local-
Remote Detection, Microarchitectural Attacks

1. Introduction

In recent years, we have observed an increasing num-
ber of Internet of Things (IoT) and Industrial IoT (IIoT)
devices. Millions of these devices are placed in critical
locations and collect data that are later processed to make
appropriate decisions and take actions. However, despite
their use in critical applications (such as health, transport
or smart cities), IoT devices often lack security guarantees
and security support.

In parallel to malwares such as cryptolockers, worms
or trojans, a new class of attacks has emerged that we
refer to as microarchitectural attacks. Microarchitectural
attacks include attacks such as Cache Side-Channel At-
tacks (CacheSCA) [9], Rowhammer [8], Spectre [16],
and Meltdown [20] and target hardware units such as
the processor or the memory. One major threat of these
attacks is the complexity required to remediate them that
often imposes the modification of the component itself
or an important overhead on the performances. Thus,
in default of remediation, some solutions based on the
detection of these attacks were presented in the state of
the art to circumvent this problem. Yet, most of them
are not suitable for embedded systems. These solutions
are based on a too complex machine learning algorithm
that does not fit in a little processor or solutions that

create a very big overhead on the communication bus. In
such systems, performance, memory, energy consumption,
and communication bandwidth play an important role in
adopting a security solution to detect microarchitectural
attacks.

Since microarchitectural attacks directly exploit hard-
ware, a number of works [10], [23], [33], [27] rely
on Hardware Performance Counters (HPCs) to detect
these attacks. HPCs are special core registers found in
most modern processors. They enable the measurement
of hardware-specific events with near-zero overhead for
the CPU. Proposed detection solutions extract and analyse
HPCs to characterize the behavior of a program using
machine learning (ML). Despite the large number of pub-
lished security solutions using the HPC-ML configuration,
most of them are not suitable for IoT devices due to their
high overhead induced by complex ML algorithms.

While we aim for a high attack detection rate, we
also need to consider a minimum FPR (that is, avoiding
false alarms during normal execution of the system). Due
to the criticity of some IoT systems (health, industry,
transport, etc), they will implement response mechanisms
to prevent damage to human or environment. Thus,
undetected attacks may obviously damage the system
or extract sensitive data. However, frequently triggering
response mechanisms due to a false alarm (such as a
system recovery) would result in the device not operating
properly. Though, a high FPR can also increase system
overheads. Furthermore, as IoT devices often extract and
transmit data to a remote server, the required bandwidth
is a critical parameter for their normal operation.

Related works: In the literature we find two main im-
plementation approaches: remote and local. The first ap-
proach implements the security mechanism locally within
devices, either in software or hardware. This approach
allows fast detection and reduces communication and
memory overhead of storing and transmitting the HPC
measurements remotely later. On the downside, this ap-
proach increases the performance overhead since we must
extract system information and deploy the ML to decide
for the presence or not of an attack. Simple ML models
such as Logistic Regression (LR), Decision Trees (DT)
etc, can reduce the induced overheads. However, due to
their simplicity they have limited learning capacity which
can result in low accuracy i.e., either high detection rate
and increased FPR, or low detection rate and low FPR.
This is why complex ML implementations are preferred.

To reduce the FPR while having high detection rate,
in [23] the authors use ensemble ML. In an ensemble
ML, two or more ML algorithms are used, while the final
decision is made by a majority vote. The drawback of
this solution is the bigger performance overhead (8%) of
using multiple ML algorithms in combination and using



one specific model per attack vector. In another work [10],
the authors propose Long Short-Term Memory networks
(LSTM) for detection of microarchitectural attacks in
desktop and server environments. They use the LSTM to
learn the behavior of the system during normal operation,
which enables them to detect any deviation from it as
malicious. They manage to detect attacks with 99.70%
F-score, 0.125% FPR and 3.5% performance overhead.
However, LSTMs are resource-intensive MLs, and while a
3.5% performance overhead is not high for server or desk-
top environments, it can pose limitations when deployed
in an IoT device, as resources are limited. Decreasing
the frequency of HPC extraction and ML deployment can
reduce the overheads, but as shown in [27], in this case
the ML algorithms might be vulnerable to evasive attacks,
i.e., attacks whose behavior is modified in a way that the
extracted HPCs are closer to the normal behavior.

The second approach implements the security mech-
anism in a remote system such as a cloud server. This
approach reduces the performance overhead of the local
implementation of the detection mechanism, since it only
needs to periodically extract HPCs, but significantly in-
creases the memory and communication overhead since
we must store this extracted information before transmit-
ting them to a remote server. In [12], the authors use
LSTM and Conditional Restricted Boltzmann Machine
(CRBM) in a remote system. They succeed in detecting
attacks with 99.97% accuracy and have an FPR of 0.5%.
In [17], the authors use a one-class SVM and detect
attacks with an accuracy of 100%. Both implementations
extract HPC data every 1 ms, which significantly increases
communication overhead. Considering the hundreds of
other edge devices transmitting all of their extracted in-
formation, these solution might lead to exceeding the
networks capacity, which can result in slowdowns and
unavailability.

Both approaches seek to minimize some overheads
at the expense of others. On the other hand, we find a
promising approach [33] for resource-constrained systems.
In [33], authors use information from the HPCs in com-
bination with a remote implementation of ML, to avoid
overheads in the local system. They also try to reduce
the communication overhead of sending all extracted HPC
samples by sending only a compressed version. However,
authors found that increasing the compression rate reduces
the accuracy. A compression rate of 20% and 30% showed
the best detection rate. Yet, their idea is limited in that
it relies on signature checking, which attack authors can
avoid [7]. Also, they rely on matrix multiplication for
local data compression, which tends to increase execution
overhead exponentially with the size of the data being
compressed and linearly with the compression rate. The
authors measure the performance overhead to be more
than 5% at a compression rate of 30%.

From the works cited above, we observe that
the use of complex ML models is preferred, due to
their ability to provide a high detection rate, while
minimizing the FPR. On the downside, implementing
these solutions locally induces an increased performance
overhead, which might be restrictive for IoT devices.
While, remote implementations resolve the performance
overhead issue but the required bandwidth required to
periodically transmit all the extracted information should

be optimized, otherwise it could lead to network issues.
Also, they will be totally ineffective if the network is
down.

Contributions: We propose a HPC-based mechanism
allowing to detect microarchitectural attacks and compli-
ant with resource limited devices. This solution is based on
a local-remote approach, featuring a simple ML classifier
locally to the device, alongside complex and resource
heavy ML located in a remote cloud. The local ML will
first try to decide how likely a behavior is suspicious and
send the samples to the cloud only if necessary for further
analysis.

This solution is based on edge computing concepts
and takes advantage of both local and remote approaches
to accurately detect attacks, targeting a 0% FPR without
imposing large overhead on the local system while mini-
mizing bandwidth. This target of 0% FPR is introduced by
the likelihood of automatic fallback mechanisms in critical
IoT devices that will disrupt physical processes (e.g.,
health monitoring, power distribution, etc) and which
should only be triggered for good reasons. Hence, our
contributions are the following:

• We propose the first HPC-based local-remote ML
mechanism to detect microarchitectural attacks in
resource-limited devices. To decide when to send a
sample to the remote ML, we implement a two-level
detection threshold scheme.

• We evaluate and compare ML algorithm implemen-
tations in local, remote, and local-remote systems.
We evaluate our solution against microarchitectural
attacks and compare it to related works.

• Finally, we propose and evaluate a near zero false
positives strategy (FP) based on an Isolation Forest
algorithm used in combination with the local-remote
implementation.

Outline: The remainder of the paper is organized as
follows. In Section 2, we introduce our local-remote ML
mechanism allowing to detect microarchitectural attacks
and analyze it in detail. Then, in Section 3, we compare
ML algorithms implemented locally, remotely, and finally
the local-remote implementation. In Section 4, we adapt
the approach of [29] to the needs of our proposed idea
and successfully further reduce the FPR. Section 5 talks
about the comparison between our solution with related
works and Section 6 discusses limitations of our solution.
Finally, Section 7 summarizes our work and concludes.

2. Proposed solution

We propose a solution that uses edge computing tech-
niques to detect microarchitectural attacks in constraint
devices such as IoT and decrease the use of the communi-
cation bandwidth. The global architecture is represented in
Figure 1 and describes a first level of detection on the local
IoT devices and a second on a remote server. The edge
device preprocesses the extracted HPC data to filter out
the ones with low value of maliciousness, i.e., the normal
HPC measurements. To be somewhat independent of a
remote security solution, the local ML is able to raise an
alarm when it is convinced that an attack is being carried



Figure 1. Global overview of the proposed solution.

out. This is useful in cases where the network is down
and no connection to the remote solution is possible. HPC
values that cannot easily be labeled neither as malicious
or trusted are transmitted to a remote server for further
analysis. In this case, a complex ML can accurately detect
malicious activities. The proposed idea allows us to move
parts of the storage and processing resources away from
the remote center and closer to the local device. This idea
overcomes many limitations of traditional cloud comput-
ing such as latency, service delays, network outages, and
reliability.

2.1. Local ML implementation

In each edge device, the local ML algorithm which
processes the HPC values can be supervised or unsuper-
vised. It reads the HPC samples and outputs a probability
between 0% and 100% for each sample to be a microarchi-
tectural attack. The implementation, as shown in Figure 2,
allows us to trust samples with a low probability of an
attack. It sends samples with an intermediate probability
to a remote ML for further evaluation and raises an alert
if there are samples with a high attack probability. This
is achieved by setting two thresholds.

Figure 2. Two-level detection threshold implementation.

The first threshold (alert threshold) acts as a trigger for
detecting samples that have a high probability of being a
microarchitectural attack. We choose the alert threshold
based on the maximum probability obtained using the
local ML for only normal training samples, plus an extra

offset. This offset acts as an uncertainty level. By choosing
the alert threshold as this, we are more certain that during
evaluation the local ML will not raise false alerts.

The second threshold (suspicious threshold) is set to
allow the samples that our local ML cannot identify with
high confidence to be stored and later sent to the remote
ML for further processing. MLs from related work use
a probability of 50% to classify samples as malicious
or normal. We chose to set the suspicious threshold to
the threshold with the maximum Gmean, as shown in
(1). Gmean is a metric that tries to find an equilibrium
between FPR and True Positive Rate (TPR). Essentially,
Gmean will give us the probability threshold that allow
us to filter as many normal samples as possible, while
also maximizing the suspicious samples to raise an alert
locally or sent them to the remote for further evaluation.

Gmean =
√

TPR ∗ (1− FPR) (1)

Subtracting an offset allows the local ML to label
samples as suspicious a bit more loosely. This will allow to
send malicious samples with behavior closer to normal to
the remote ML, but also possibly future attacks based on
zero-day vulnerabilities which may differ from learning
data and have a lower suspicious score. The trade-off
being that more normal traffic will also be sent for remote
analysis.

2.2. Remote ML implementation

Suspicious samples are stored locally and then sent
to a remote ML for further analysis. The local system
sends suspicious samples every ∆s to the remote system.
This value is chosen empirically and more analyses will
be required to evaluate its optimum. The remote ML is
based on a complex ML, which is capable of learning
complicated behaviors. It can be either a supervised or an
unsupervised ML implementation. An unsupervised ML
implementation, such as an LSTM, learns only normal
behavior and detects any behavior that deviates signifi-
cantly from the patterns our ML mechanism is trained to
identify as a normal behaviour. Using MLs that learn only
from normal behavior, we can potentially detect zero-day



attacks by hypothesizing that they deviate from normal
behavior and that the local ML succeeds in labelling them
as suspicious.

The remote system examines suspicious samples
it receives from the local system for differences from
normal behavior and flags them as abnormal if they
deviate and notifies the local system. Examples of
such complex MLs are Autoencoders, one-class SVM,
and LSTM networks. LSTM is a network that uses
information from past samples to make predictions for
current or future samples. Thus, if a remote LSTM ML
is used, the additional information about the past HPC
samples increases the data sent to the remote.

Benefits of a local-remote approach: Local filtering
allows us to reduce the memory requirements for local
storage of the extracted samples while minimizing the
communication and network overhead for transmitting
the samples to the remote system each ∆s. Using this
local-remote approach, we can generally filter most of the
extracted data under normal operation, while only trans-
mitting remotely data under attack. In the following sec-
tions, we evaluate various local-remote implementations
and present their overhead and detection capabilities.

3. Solution evaluation

In this section, we evaluate various local or remote ML
models individually and their combination using several
detection metrics. We also evaluate the overheads incurred
in the local system and the data successfully filtered.
Section 3.1 will introduce our experimental platform and
the choice of HPC we use for monitoring. Section 3.2 will
present our experimental results, justifying our final choice
of ML algorithms. In Section 3.3, we evaluate the filtering
succeeded by the two-level threshold approach and finally,
in Section 3.4, we optimize the memory required to save
the extracted HPC data labelled suspicious.

3.1. Experimental platform

Our experimental platform is based on a Raspberry Pi4
Model B running on Ubuntu 20.04.2 LTS. Its processor
is widely used in embedded devices with high resources
requirements such as I-IoT gateways and has four ARM
Cortex-A72 cores running at 1.5GHz. Each core of the
processor provides 84 HPCs and enables the extraction
of measurements from six registers simultaneously. As
proposed in [27], we extract measurements from the HPC
registers each 1ms to be able to detect cache attacks in-
tegrating eviction techniques. A dedicated kernel module
mainly based on assembly code was used to extract the
samples in order to limit the performance overhead.

To demonstrate our idea, we use several microarchi-
tectural attacks as test vectors. These include CacheSCA
variants, Spectre variants, Meltdown, and Rowhammer.
Also, we include obfuscated (evasive) variants as sug-
gested in [27] by inserting nop or sleep instructions in
the attack code to hide malicious activity. Most of these
attacks are publicly available from github [24], [35], [14],
[25], [6], [30], [5] and modified to be able to run on
the targeted processor. For our benign applications, we
use MiBench [11] and PARSEC [3], which are industry

standard embedded system benchmarks that cover a wide
range of applications. Our library contains 29 attacks and
72 normal applications.

As the number of events that can be measured simul-
taneously is limited to six on our experimental platform, it
is essential to select the optimal subset of HPC registers
to monitor in order to obtain the best detection results.
There are different ways to identify the best suitable HPC
registers:

• A first solution is to use HPC registers related to
different hardware units of the processors: cache
memory, bus, TLB, etc.

• A second solution is to use generic HPC registers,
that is to say, events that are implemented in most of
the CPU cores (Intel, AMD, ARM, RISC-V).

• Feature extraction methods such as Pearson correla-
tion [1] or Mutual Information [19] are mathematical
methods allowing to calculate the amount of informa-
tion provided by a hardware event in order to detect
or classify data.

• A theoretical study was proposed in the review [26]
to present the most interesting events to detect mi-
croarchitectural attacks.

Finally, we selected six HPC events using Mutual
information method. This requires the extraction of all
available HPCs in the ARM cortex-A72 processor core
during the execution of normal and malicious applications.
The experimental setup described in Figure 3 was used
to extract these measurements. The methodology can be
divided in multiple steps:

• Step 1: Configuration of the extraction of the HPC
events and the monitoring interval.

• Step 2: Execution of benign and malicious applica-
tions.

• Step 3: Extraction of the raw traces of HPC values
from a computer.

• Step 4: Use of Mutual Information method to eval-
uate and identify the 6 best HPCs events.

The top six features we obtained with this methodol-
ogy for microarchitectural attacks detection in the context
of IoT are the following:

• ISB_SPEC: This event counts each instruction bar-
rier speculatively executed.

• L1D_TLB_REFILL: This event counts any L1 data
TLB refill.

• BR_IMMED_SPEC: This event counts each branch
speculatively executed.

• L2D_CACHE_REFILL: This event counts any L2
unified cache refill

• BR_MIS_PRED: This event counts any branch
which is not correctly predicted.

• MEM_ACCESS_LD: This event counts memory
accesses due to load instructions

3.2. Evaluation of different ML algorithms

For the training of the ML algorithms we used a 70/30
random split of the different applications. Since some
applications have a longer execution time than others,
we used time-series data augmentation techniques as pro-
posed in [13] to balance the number of samples between



Figure 3. Testbed used to identify best features.

each application, either by upsampling or downsampling.
Such techniques are time warping, magnitude warping,
window warping, scaling, and window slicing. After aug-
menting our dataset we use 20% of the training data for
validation using stratified sampling [36].

As a first step, we identify how each ML algorithm
performs on our classification problem. Our motivation
for evaluating the performance of each ML classifier is
to show that simple local MLs are capable of identifying
malicious samples but have a high FPR. This allows us
to demonstrate the need to use complex MLs that have a
lower FPR, and finally the advantages of a local-remote
ML solution.

We selected two local ML classifiers for testing: (i)
Linear SVC (LSVC), and (ii) AdaBoost using five Logistic
Regression classifiers. We also select two remote ML clas-
sifiers: (i) LSTM, and (ii) LSTM Autoencoder (LSTMAE)
with each of them using the seven past samples to predict
the current one. For the evaluation, we use the following
metrics: True Positive Rate (TPR) or detection rate, and
FPR. TPR is a metric that measures how well we identify
True Positives (TP) and FPR is the percentage of negative
samples falsely classified as positive relative to the total
number of negative samples. We pay significant attention
to FPR because we argue that low FPR is as important as
high TPR for resource-limited and critical devices.

TABLE 1. CLASSIFICATION METRICS FOR THE DIFFERENT ML
ALGORITHMS SIMPLE (LINEARSVC & ADABOOST) AND MORE

COMPLEX (LSTM7 & LSTM AUTOENCODER7).

Single Level
Threshold

TPR FPR

LinearSVC 99.75% 1.63%
AdaBoost

(Logistic Regression)
99.70% 0.68%

LSTM7 72.99% 0.03%
LSTM+

AutoEncoder7
92.41% 0.45%

In Table 1, we display results according to the different
classification metrics for each of the classifiers. These
results for the simple MLs are obtained by using as the
classification threshold, the 50% probability of a sample
being a microarchitectural attack as in other state of the art
works. For the complex MLs, we use as the classification
threshold, the quantile (99.85%) of the distribution of the

mean square of the reconstruction errors of the normal
training dataset as in [28].

Also as we can see from Table 1, the local MLs have
a high TPR (∼ 99.70%) but also a high FPR (0.68% and
1.63%) while the more complex MLs have lower FPR
(0.03% and 0.45%) than the simple MLs. The lower TPR
of the complex ML is due to the fact that the simple MLs
use classification, able to learn patterns from the input
and knowing the final label, while the complex perform
anomaly detection and detect as malicious any input that
greatly deviates from the normal dataset. This is why the
remote has lower FPR, since they are trained only with
normal data, which helps the remote ML to recognize
most normal samples. To recall, having a 0.5% FPR would
mean that 5 samples out of 1000 would be erroneously
detected as malicious. With a sampling rate of 1ms, this
would potentially mean a false alarm every 1 seconds.

TABLE 2. CLASSIFICATION METRICS FOR THE LOCAL-REMOTE.

Two Level
Threshold

TPR FPR

AdaBoost + LSTM7 73.09% 0.02%
AdaBoost +

LSTM AutoEncoder7
92.66% 0.13%

In Table 2, we observe how the combination of the
simple local ML with the more complex remote ML
responds to this classification problem. As we can see the
TPR remains high (92.66%) and the FPR low (0.13%)
when using the combination of AdaBoost and LSTM
AutoEncoder7 algorithms.

Benefits of a local-remote approach: First minimiz-
ing the FPR is desirable since one FP is enough to label
a whole application as malicious. As stated in Section 1,
frequently taking actions due to an alarm during normal
operation can make the device unusable. Furthermore, the
TPR remains high, which allows us to capture as much
malicious activity as possible and only need one timing-
window with high anomaly score to detect a malicious
app. The TPR is lower that the simple single-level thresh-
old MLs, since the local part of the local-remote only
raises alerts for high probability samples and transmits
the suspicious for further evaluation in the remote. Also,
attacks do not execute only malicious actions in their



Figure 4. Data stored to the local memory per second (red dotted line) and sent to the remote ML for further evaluation each ∆s 1 minute (purple
triangles). The shaded areas indicate the period where the system is under attack.

whole execution, and the remote ML will recognize such
parts as normal, and not as attacks as indicated in our
labelling effectively lowering the TPR.

3.3. Edge-device Local ML filtering

In this section we evaluate the filtering succeeded
by the two-level threshold approach. We focus on the
filtering succeeded during normal operation only, since
this is the state of the device in most of its operation
and we do not want to overflow the communication
interface with limited value data under this condition.
From Table 3 we can observe the filtering succeeded
under normal operation, when the local ML is configured
as AdaBoost (same case than in Table 2), monitoring the
system each 1ms, monitoring six 32 bit HPC counters per
core, and 4 cores in total, while transmitting the data to
the remote each 1 minute. The total size of data extracted
from the system per minute of execution is 5760Kb.

Benefits of a local-remote approach: From Table 3,
we can see that our approach can successfully filter more
than 99% of the extracted HPC data under normal opera-
tion. This is due to the local ML being very successful to
label as normal benign applications (keeping them under
the suspicious threshold). This allows us to dramatically
reduce the bandwidth required under normal operation
where solutions containing only a remote ML will send
all samples to the cloud.

TABLE 3. DATA SEND PER MINUTE UNDER NORMAL OPERATION
AND PERCENTAGE OF FILTERING WHEN 5760KB OF HPC DATA ARE

EXTRACTED PER MINUTE.

Local ML
(filtering only)

Data send
per minute

filtering
percentage

AdaBoost
(Logistic Regression)

39kb 99.32%

3.4. Memory & Detection Time Optimization

In this subsection we optimize the memory required to
save the extracted HPC data labelled suspicious. Further-

more, we optimize the detection time, since under attack
we would like to detect the attacks before the specified
∆s = 1 minute and further waiting the remote ML to
give us the final decisions. To succeed with the above, we
make the two following observations from Figure 4 and
Figure 5:

• Under normal only operation the saved suspicious
data does not exceed a certain value, which in this
case as seen in Figure 5 is not more than 50Kb.

• When an attack executes on the system, the rate of
saving suspicious data in local storage increases. We
can observe that in Figure 4 in periods 2-3, 5-6, 8-9.

Figure 5. Data stored to the local memory per second (red dotted line)
and sent to the remote ML for further evaluation each ∆s 1 minute
(purple triangles) under normal operation.

So to optimize the memory required and the detection
time, we set the size of the local storage to the calculated
maximum amount of data saved and transmitted under
normal operation, so under normal operation we do not
exceed this size. For AdaBoost this is 54kb. If under
attack, we require more memory to save the extracted HPC
samples, and rather than saving more data and as soon as
the memory is full, we send the data directly to the remote
to have a quicker detection time. As mentioned in the
previous observations, under attack the rate of suspicious
data saved is greater than under normal operation, which
most probably will overflown the local storage.

This implementation choice allows us to only specify
the necessary memory for local storage, rather than using



Figure 6. Isolation Forest used by Sadaf et al. [29] to increase classifi-
cation metrics.

a 5760Kb memory, and also under attack we transmit the
data faster in most cases, than waiting the specified ∆s.

4. False Positive Minimization Using an Iso-
lation Forest

In the previous section, we successfully reduced the
required communication bandwidth and optimized the
memory and detection time. But, as observed from Ta-
ble 2, the FPR of the local-remote might be lower than
both complex and single MLs used individually, but it can
still be minimized to avoid unnecessary false alarms. To
minimize the FPR, we adapt a solution proposed by [29]
as can be seen in Figure 6. Sadaf et al. use an Isolation
Forest [21] to optimize their classification metrics. An
Isolation Forest is a technique allowing to detect/find
outliers in a set of data as the samples that greatly differ
from others. In their implementation as seen in Figure 6,
the input samples are predicted by a ML. As their ML
is not perfect, it has some FPs and some FNs. In their
hypothesis, FPs are outliers among the rest of the TPs
and FNs are outliers among the majority of TNs. By using
then an Isolation Forest in the positives, they can find the
FPs and change their final label to negative increasing the
correct predictions and classification metrics.

In our case to minimize the FPR, we adapt their
approach by also using the memory and detection time
optimization presented before in Section 3.4. To do this
we make the following hypotheses:

• If the remote ML received the data before the ex-
pected ∆s, we trust its decisions since this most
probably happened due to the execution of an attack.

• If the remote ML received data at the expected ∆s,
we can expect being under normal operation and
must be careful for FPs. Thus, we double check the
remote’s ML positive decisions using an Isolation
Forest.

In Figure 7, we can see both our pseudo-algorithm and
our technique to adapt the approach proposed by Sadaf et
al. When the remote received the data as expected at ∆s,
for each remote ML positive decision, we also check if the
suspicious samples are inliers or outliers in the Isolation
Forest. If the Isolation Forest indicates that the sample is
an inlier, i.e., it predicts that it is similar with a large pool
of normal samples used for the remote ML training, then

Figure 7. Isolation Forest technique used by Sadaf et al. adapted for our
approach.

we reset the decision to negative, otherwise we notify the
embedded device of the presence of an attack. As we can
see from Table 4, the use of the Isolation Forest to double
check remote’s decisions, can successfully reduce the FPR
to a near 0% compared to not using it, which results in
0.13%.

TABLE 4. CLASSIFICATION METRICS FOR THE LOCAL-REMOTE ML
with and without THE ISOLATION FOREST FOR FP REDUCTION.

Two Level
Threshold

TPR FPR

AdaBoost +
LSTM AutoEncoder7

92.66% 0.13%

AdaBoost +
LSTM AutoEncoder7

+ Isolation Forest
92.66% ∼ 0%

5. State-of-the-Art Comparison

Table 5 presents how our work compares to other
approaches in the SOTA. This is not a comparison on the
same dataset, since we use different attack vectors and
normal libraries, in addition to the different experimental
platform, but it shows the contributions of our approach
as all articles try to detect the same microarchitectural
attacks.

As we can see from the table, when the threat model
has limited attack vectors (as in rows 1-4), simple ML
models such as Logistic Regression can succeed in detect-
ing the attacks with high accuracy and low FPR. When the
threat model has more attack vectors (rows 5-), then more
complex MLs are used, such as ensemble ML and LSTM,
which keep the accuracy high, while minimizing the FPR.
On the downside, we can observe that WHISPER [23]
has an overhead of 8%, and FortuneTeller an overhead
of 3.5%. These overheads might not be significant in the
targeted desktop/server systems, but using these solutions



TABLE 5. COMPARISON OF OUR LOCAL-REMOTE IMPLEMENTATION TO THE RELATED WORKS.

Detection
Mechanism

Attacks Accuracy F-score
FPR or

Precision
Overhead System

Local
or

Remote

Mushtaq et al. [22]
Logistic Regression

(No Load)
Flush+Reload 99.51%

0.48%
FPR

0.94% Local

Mushtaq et al. [22]
SVM (No Load)

Flush+Reload 98.82%
0.397%

FPR
1.29% Local

Mushtaq et al. [22]
Logistic Regression

(No Load)
Flush+Flush 91.73%

0%
FPR

1.10% Local

Mushtaq et al. [22]
SVM (No Load)

Flush+Flush 97.42%
0%
FPR

0.79% Local

WHISPER [23]
Ensemble Learning

One model per attack
(DT, RF and SVM)

(No Load)

CacheCSA,
(F+F, F+R, P+P),
Spectre, Meltdown

>97.05% <8% Local

FortuneTeller
[10] LSTM

Spectre, CacheCSA,
(F+F, F+R, P+P),

Meltdown, Rowhammer
99.70%

0.125%
FPR

3.50% Local

Wei et al. [34]
OC-SVM

Prime + Probe,
Spectre, Rowhammer,

Evasive
<98.63%

<0.5%
FPR

Wei et al. [34]
LSTM

Prime + Probe,
Spectre, Rowhammer,

Evasive
<99.06%

<0.5%
FPR

Kuruvila et al. [18]
Random Forest

Flush + Flush, PNScan,
Spectre, Meltdown,

Rowhammer, BashLite
89.90% 89.91%

89.25%
Precision

<1.22% Local

Wang et al. [32]
MPL

CacheCSA,
(F+F, F+R, P+P),

Spectre
<98.9% <97%

5.3%
FPR

<3.2%

Wang et al. [32]
Logistic Regression

CacheCSA,
(F+F, F+R, P+P),

Spectre
<98,9% 91.90%

14.9%
FPR

<3.23%

Ours
AdaBoost +

LSTM AutoEncoder7

Spectre, Rowhammer,
CacheCSA

(F+F, F+R, E+R, P+P),
Meltdown, Evasive

98.75% 96.19%
∼ 0%
FPR

0.80%
Local

Remote

on an embedded device could be challenging. Wei et
al. [34], Kuruvila et al. [18], and Wang et al. [32] propose
solutions for embedded systems. While Wei et al. succeed
having high accuracy and low FPR, they use an LSTM,
which is a resource demanding ML algorithm, and it could
be challenging fitting it in a resource limited system. On
the other hand, Kuruvila et al and Wang et al. use simpler
MLs to reduce the overheads imposed on the embedded
device, but as we see from the table the FPR is high (or
precision is low). In comparison, our solution succeeds
in keeping the detection accuracy high (98.75%), having
minimal FPR (∼ 0%) and imposing a minimal overhead
(0.8%) on the edge-device.

Finally, compared to the solution proposed by [33],
which was able to compress the extracted data by 20-

30% while keeping the overhead around 5%, we see that
our solution can filter up to 99% while the overhead is
less than 1%.

6. Discussion

In this section we discuss some implications of our
findings and limitations of our approach and propose
some ideas to improve future solutions.

Overhead in more constraint devices: In Section 5
and more precisely in Table 5, we mentioned that the
overhead imposed by our solution in the Raspberry PI4
is less than 1%. However, this kind of platform has high
computation resources and is considered as a complex



IoT device. To validate that our proposed solution can
be integrated in more resources constrained devices,
more experiments should be performed to evaluate the
overhead induced by HPC monitoring with tiny ML.

Limited dataset: Botacin et al. [4] recently
discuss about the use of limited dataset to detect
microarchitectural attacks and other kind of malwares
with ML algorithms. In order to circumvent this issue,
we choose to use evasive attacks based on techniques
proposed in [27]. These include the insertion of NOP or
sleep instructions in between sensitive tasks to modify
the output counts to range closer to normal behavior. We
also use some data augmentation techniques to increase
the size of some applications. We can still improve by
finding more hidden strategies to obfuscate the attack
scripts or use GAN (Generative Adversarial Network)
based Augmentation as proposed in [15].

Improving the security of the solution: It was
proven in [2] that an advanced attacker with knowledge
of our simple local ML parameters, could hardly
develop code that produces behavior similar to normal
while still succeeding the attack. However, the current
solution is implemented in software, which means
that the local security supervisor including the HPC
extraction, the tiny ML and the publishing of suspicious
samples implementation and the other applications share
resources. This issue still introduces a vulnerability that
can be used by an attacker to circumvent or break the
solution with a malware. An improved solution will be to
implement the local detector as a trusted application in a
TEE (Trusted Execution Environment) such as Trustzone
or as a dedicated hardware implementation as it was
proposed in [31].

Network availability: If the network is down or
victim of a Denial of Service attack, our approach
will only rely on the ability of the local ML to detect
the attacks. Still, it provides a level of security since
it can detect high probability samples. Depending
on the criticality of the user application, the lack of
communication between the IoT node and the control
server can also be considered as an attack.

Periodicity to send data to control server: Another
parameter we would like to investigate is ∆s. In this work
it was empirically set to one minute, but more research
needs to be done that takes into account communication
overhead, detection latency, encryption of suspicious
data, and storage overhead. Sending data more frequently
to the remote can reduce the detection time, but also
increases the overheads, while decreasing ∆s reduces the
overheads but increases detection time.

Malwares detection: In this paper, we choose to focus
on the detection of microarchitectural attack as this class
of attacks is complex to circumvent. This kind of attacks
can not really be considered as a class of malware but
rather as a part of a malware used to gain privileges or
steal sensitive data. As some malwares do not use these
methods, it is required, to detect more categories of attacks
to update our dataset to include complete IoT malwares

such as BashLite, IoTReaper or Mirai. Since these mal-
wares do not stress as much as microarchitectural attacks
the hardware, it will probably necessitate more complex
ML algorithms on the local device and the remote server
or samples from different sources than HPCs.

7. Conclusion

Embedded devices face an increasingly amount of mi-
croarchitectural attacks. Such attacks often require hard-
ware changes to be circumvented and detection is gen-
erally preferred over mitigation. Several works have been
proposed that effectively detect microarchitectural attacks,
but without considering the limitations of embedded de-
vices such as computing power, memory, and bandwidth.
We have shown that local solutions can have a high
detection rate but also a high FPR, while remote solutions
are effective but require a large amount of resources and
network availability.

This work proposes a solution for detecting attacks
on low-resource devices. We propose a local-remote im-
plementation that minimizes the performance, memory,
and communication overhead in edge devices while hav-
ing a high detection rate and minimal FPR. The overall
approach benefits from the presence of complex ML al-
gorithms in a cloud to take appropriate decisions but is
fully able to work in case of network downtime. We also
evaluate the proposed local-remote idea in terms of vari-
ous metrics. We show that the local system successfully
filters 99% of the normal extracted data, which reduces
the bandwidth in normal operation. Furthermore, the local-
remote increases precision compared to a purely single
level threshold implementation, while the FP minimization
strategy using an Isolation Forest, as applied in the context
of this solution, can reduce FPR to near 0%, preventing
unneeded attack responses. Finally, we discuss design
choices and limitations of this work.

Multiple paths can be explored as future works.
First, many parameters can be tweaked to further re-
duce overhead (∆s, changing local implementation to an
FPGA/ASIC solution). This could also reduce the attack
surface of the local detection mechanism itself. Also, this
work is currently limited to microarchitectural attacks.
Many other kinds of attacks target embedded devices and
in particular IoT (malwares exploiting softwares flaws,
denial of service botnets, cryptolockers, reverse shells,
etc). As these attack will less exploit the hardware, we
expect that they will be harder to detect with simply HPCs.
Experimental evaluations should then be performed on our
ability to detect other kinds of attacks with only HPCs and
other signals should be proposed.

References

[1] Correlation coefficient: Simple definition, formula, easy
steps. https://www.statisticshowto.com/probability-and-statistics/
correlation-coefficient-formula/. Accessed: 2022-01-25.

[2] Kanad Basu, Prashanth Krishnamurthy, Farshad Khorrami, and
Ramesh Karri. A theoretical study of hardware performance
counters-based malware detection. IEEE Transactions on Infor-
mation Forensics and Security, 15:512–525, 2019.



[3] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai
Li. The parsec benchmark suite: Characterization and architectural
implications. In Proceedings of the 17th international conference
on Parallel architectures and compilation techniques, pages 72–81,
2008.

[4] Marcus Botacin and André Grégio. Why we need a theory of
maliciousness: Hardware performance counters in security. In
Willy Susilo, Xiaofeng Chen, Fuchun Guo, Yudi Zhang, and Rolly
Intan, editors, Information Security, pages 381–389, Cham, 2022.
Springer International Publishing.

[5] Gorgovan Cosmin. Poc code implementing variant 3a of the melt-
down attack for aarch64. https://github.com/lgeek/spec_poc_arm,
2018.

[6] cryptax. Attempt of implementation of spectre for armv7a. https:
//github.com/cryptax/spectre-armv7, 2018.

[7] John Demme, Matthew Maycock, Jared Schmitz, Adrian Tang,
Adam Waksman, Simha Sethumadhavan, and Salvatore Stolfo. On
the feasibility of online malware detection with performance coun-
ters. ACM SIGARCH Computer Architecture News, 41(3):559–570,
2013.

[8] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowham-
mer. js: A remote software-induced fault attack in javascript. In
International conference on detection of intrusions and malware,
and vulnerability assessment, pages 300–321. Springer, 2016.

[9] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan
Mangard. Flush+ flush: a fast and stealthy cache attack. In
International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, pages 279–299. Springer, 2016.

[10] Berk Gulmezoglu, Ahmad Moghimi, Thomas Eisenbarth, and Berk
Sunar. Fortuneteller: Predicting microarchitectural attacks via un-
supervised deep learning. arXiv preprint arXiv:1907.03651, 2019.

[11] Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M
Austin, Trevor Mudge, and Richard B Brown. Mibench: A free,
commercially representative embedded benchmark suite. In Pro-
ceedings of the fourth annual IEEE international workshop on
workload characterization. WWC-4 (Cat. No. 01EX538), pages 3–
14. IEEE, 2001.

[12] Zecheng He, Aswin Raghavan, Guangyuan Hu, Sek Chai, and
Ruby Lee. Power-grid controller anomaly detection with en-
hanced temporal deep learning. In 2019 18th IEEE International
Conference On Trust, Security And Privacy In Computing And
Communications/13th IEEE International Conference On Big Data
Science And Engineering (TrustCom/BigDataSE), pages 160–167.
IEEE, 2019.

[13] Brian Kenji Iwana and Seiichi Uchida. An empirical survey of data
augmentation for time series classification with neural networks.
Plos one, 16(7):e0254841, 2021.

[14] Park Jinbum. Csca (crypto side channel attack). https://github.com/
jinb-park/crypto-side-channel-attack, 2018.

[15] Kangseok Kim. Gan based augmentation for improving anomaly
detection accuracy in host-based intrusion detection systems. Inter-
national journal of engineering research and technology, 13:3987,
2020.

[16] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard,
Thomas Prescher, et al. Spectre attacks: Exploiting speculative
execution. In 2019 IEEE Symposium on Security and Privacy (SP),
pages 1–19. IEEE, 2019.

[17] Prashanth Krishnamurthy, Ramesh Karri, and Farshad Khorrami.
Anomaly detection in real-time multi-threaded processes using
hardware performance counters. IEEE Transactions on Information
Forensics and Security, 15:666–680, 2019.

[18] Abraham Peedikayil Kuruvila, Xingyu Meng, Shamik Kundu,
Gaurav Pandey, and Kanad Basu. Explainable machine learning
for intrusion detection via hardware performance counters. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2022.

[19] Erik G Learned-Miller. Entropy and mutual information. Depart-
ment of Computer Science, University of Massachusetts, Amherst,
2013.

[20] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, et al. Meltdown: Reading kernel memory
from user space. In 27th USENIX Security Symposium (USENIX
Security 18), pages 973–990, 2018.

[21] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest.
In 2008 eighth ieee international conference on data mining, pages
413–422. IEEE, 2008.

[22] Maria Mushtaq, Ayaz Akram, Muhammad Khurram Bhatti, Maham
Chaudhry, Vianney Lapotre, and Guy Gogniat. Nights-watch: A
cache-based side-channel intrusion detector using hardware perfor-
mance counters. In Proceedings of the 7th International Workshop
on Hardware and Architectural Support for Security and Privacy,
pages 1–8, 2018.

[23] Maria Mushtaq, Jeremy Bricq, Muhammad Khurram Bhatti, Ayaz
Akram, Vianney Lapotre, Guy Gogniat, and Pascal Benoit. Whis-
per: A tool for run-time detection of side-channel attacks. IEEE
Access, 8:83871–83900, 2020.

[24] Institute of Applied Information Processing and Communications
(IAIK). Armageddon: Cache attacks on mobile devices. https:
//github.com/IAIK/armageddon, 2017.

[25] Institute of Applied Information Processing and Communications
(IAIK). Flush + flush. https://github.com/IAIK/flush_flush, 2021.

[26] Nikolaos-Foivos Polychronou, Pierre-Henri Thevenon, Maxime
Puys, and Vincent Beroulle. A comprehensive survey of attacks
without physical access targeting hardware vulnerabilities in iot/iiot
devices, and their detection mechanisms. ACM Transactions on
Design Automation of Electronic Systems (TODAES), 27(1):1–35,
2021.

[27] Nikolaos Foivos Polychronou, Pierre-Henri Thevenon, Maxime
Puys, and Vincent Beroulle. Madman: Detection of software
attacks targeting hardware vulnerabilities. In 2021 24th Euromicro
Conference on Digital System Design (DSD), pages 355–362.
IEEE, 2021.

[28] Oleksandr I Provotar, Yaroslav M Linder, and Maksym M Veres.
Unsupervised anomaly detection in time series using lstm-based
autoencoders. In 2019 IEEE International Conference on Advanced
Trends in Information Theory (ATIT), pages 513–517. IEEE, 2019.

[29] Kishwar Sadaf and Jabeen Sultana. Intrusion detection based on
autoencoder and isolation forest in fog computing. IEEE Access,
8:167059–167068, 2020.

[30] SecLab. rowhammer_armv8. https://github.com/0x5ec1ab/
rowhammer_armv8, 2019.

[31] Pierre-Henri Thevenon, Sébastien Riou, Duc-Minh Tran, Maxime
Puys, Nikolaos Foivos Polychronou, Mustapha El-Majihi, and
Camille Sivelle. iMRC: Integrated monitoring & recovery com-
ponent, a solution to guarantee the security of embedded systems.
J. Internet Serv. Inf. Secur., 12(2):70–94, 2022.

[32] Han Wang, Hossein Sayadi, Sai Manoj Pudukotai Dinakarrao,
Avesta Sasan, Setareh Rafatirad, and Houman Homayoun. En-
abling micro ai for securing edge devices at hardware level. IEEE
Journal on Emerging and Selected Topics in Circuits and Systems,
11(4):803–815, 2021.

[33] Xueyang Wang, Sek Chai, Michael Isnardi, Sehoon Lim, and
Ramesh Karri. Hardware performance counter-based malware
identification and detection with adaptive compressive sensing.
ACM Transactions on Architecture and Code Optimization (TACO),
13(1):1–23, 2016.

[34] Shijia Wei, Aydin Aysu, Michael Orshansky, Andreas Gerstlauer,
and Mohit Tiwari. Using power-anomalies to counter evasive
micro-architectural attacks in embedded systems. In 2019 IEEE
International Symposium on Hardware Oriented Security and Trust
(HOST), pages 111–120. IEEE, 2019.

[35] Yarom Yuval. Mastik: A micro-architectural side-channel toolkit.
https://github.com/0xADE1A1DE/Mastik, 2022.

[36] Xinchuan Zeng and Tony R Martinez. Distribution-balanced strat-
ified cross-validation for accuracy estimation. Journal of Experi-
mental & Theoretical Artificial Intelligence, 12(1):1–12, 2000.


